1
|
Tashyreva D, Votýpka J, Yabuki A, Horák A, Lukeš J. Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: Charting the morphological diversity of these poorly known heterotrophic flagellates. Protist 2025; 177:126090. [PMID: 40009938 DOI: 10.1016/j.protis.2025.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Diplonemids are a hyperdiverse group of flagellated protists, but with less than two dozen formally described representatives. Here, we describe four new species of cultured diplonemids, identified on the basis of their 18S rRNA sequences, light-, fluorescence-, scanning- and transmission electron microscopy. Three new species belong to the genus Rhynchopus (R. asiaticus sp.n., R. granulatus sp.n., and R. valaseki sp.n.), while the fourth species is an unusual representative of the genus Lacrimia (L. aflagellata sp.n.). The latter organism is the first diplonemid outside the genus Rhynchopus (as defined previously) to show a gliding trophic stage with flagellar stubs concealed inside the flagellar pocket and a highly motile dispersive swimming stage. Since this character is thus no longer a genus-specific apomorphy, we provide a taxonomic revision of the genus Rhynchopus with separation of the new genus Natarhynchopus gen. n. We also identify bacterial endosymbionts of L. aflagellata and R. asiaticus as Ca. Syngnamydia medusae (Chlamydiales, Simkaniaceae) and Ca. Cytomitobacter rhynchopi sp. n. (Alphaproteobacteria, Holosporaceae), respectively, and discuss their potential functions. This is the first report of a chlamydial symbiont within a diplonemid host. We also propose that diplonemids may serve as vectors for chlamydial pathogens of marine fish.
Collapse
Affiliation(s)
- Daria Tashyreva
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Akinori Yabuki
- Japanese Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), Yokohama, Kanagawa 236-0001, Japan
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Kubín J, Juráň J. Ecology of free-living freshwater heterotrophic euglenoids: A summarizing review. Eur J Protistol 2024; 96:126127. [PMID: 39644539 DOI: 10.1016/j.ejop.2024.126127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This review aims to compile sparse information on the ecology of freshwater heterotrophic euglenoids and synthesize the main phenomena and hypotheses from published results. Apparently, heterotrophic euglenoids play a very important role in the nutrient flow of water ecosystems and are irreplaceable heterotrophic contributors in benthic communities, as their total biomass is by far the largest among heterotrophic flagellates. Even though they are obviously a very crucial part of the diversity of freshwater heterotrophic protists, and likely the most represented (in terms of biovolume) group of heterotrophic flagellates, there have been only a few attempts to elucidate their ecological preferences, roles, niches, and importance. They exhibit three nutrition modes-bacterivory, eukaryovory, and osmotrophy-which are strategies closely related to their taxonomical groupings and phylogenetic positions. Unfortunately, the phylogeny of the majority of the species remains unknown, similar to their autecology. There are major problems with the quantitative research methodologies, which is a big challenge for future research to improve.
Collapse
Affiliation(s)
- Jaroslav Kubín
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic.
| | - Josef Juráň
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic; Třeboň Experimental Garden and Gene Pool Collections, Institute of Botany of the CAS, Třeboň, Czech Republic
| |
Collapse
|
3
|
Cadena LR, Edgcomb V, Lukeš J. Gazing into the abyss: A glimpse into the diversity, distribution, and behaviour of heterotrophic protists from the deep-sea floor. Environ Microbiol 2024; 26:e16598. [PMID: 38444221 DOI: 10.1111/1462-2920.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Virginia Edgcomb
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, Lemogo L, Sarrasin M, Stretenowich P, Tripathi P, Yazaki E, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukeš J, Burger G. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 2023; 21:99. [PMID: 37143068 PMCID: PMC10161547 DOI: 10.1186/s12915-023-01563-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| | - Sandrine Moreira
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anna Nenarokova
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tom Batstone
- School of Biological Sciences, University of Bristol, Bristol, UK
- Present address: High Performance Computing Centre, Bristol, UK
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Lionnel Lemogo
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Environment Climate Change Canada, Dorval, QC, Canada
| | - Matt Sarrasin
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Paul Stretenowich
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Canadian Centre for Computational Genomics; McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Euki Yazaki
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Hirosawa, Wako, Saitama, Japan
| | - Takeshi Nara
- Laboratory of Molecular Parasitology, Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki City, Fukushima, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
- Present address: DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B Franz Lang
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Gigeroff AS, Eglit Y, Simpson AG. Characterisation and Cultivation of New Lineages of Colponemids, a Critical Assemblage for Inferring Alveolate Evolution. Protist 2023; 174:125949. [PMID: 37019068 DOI: 10.1016/j.protis.2023.125949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
There are several alveolate groups outside the well-studied trio - ciliates, dinoflagellates, and apicomplexans - that are crucial for understanding the evolution of this major taxon. One such assemblage is the "colponemids", which are eukaryotrophic biflagellates, usually with a ventral groove associated with the posterior flagellum. Previous phylogenetic studies show colponemids forming up to three distinct deep branches within alveolates (e.g. sister groups to Myzozoa or all other alveolates). We have developed dieukaryotic (predator-prey) cultures of four colponemid isolates. One represents the first stable culture of the halophile Palustrimonas (feeding on Pharyngomonas), while SSU rDNA phylogenies show the other isolates as two distinct new lineages. Neocolponema saponarium gen. et sp. nov. is a swimming alkaliphile with a large groove, which feeds on a kinetoplastid. Loeffela hirca gen. et sp. nov. is halophilic, has a subtle groove, usually moves along surfaces, and feeds on Pharyngomonas and Percolomonas. Prey capture in both new genera is raptorial, involves a specialized structure/region to the right of the proximal posterior flagellum, and presumed extrusomes. The relationships amongst Myzozoa, ciliates, and the (now) five described colponemid clades are unresolved, signaling that colponemid diversity represents both a challenge and important resource for tracing deep alveolate evolution.
Collapse
|
6
|
Li Y, Gao P, Sun X, Li B, Guo L, Yang R, Su X, Gao W, Xu Z, Yan G, Wang Q, Sun W. Primary Succession Changes the Composition and Functioning of the Protist Community on Mine Tailings, Especially Phototrophic Protists. ACS ENVIRONMENTAL AU 2022; 2:396-408. [PMID: 37101458 PMCID: PMC10125303 DOI: 10.1021/acsenvironau.1c00066] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Primary succession in mine tailings is a prerequisite for tailing vegetation. Microorganisms, including bacteria, fungi, and protists, play an important role in this process in the driving force for improving the nutritional status. Compared to bacteria and fungi, protist populations have rarely been investigated regarding their role in mine tailings, especially for those inhabiting tailings associated with primary succession. Protists are the primary consumers of fungi and bacteria, and their predatory actions promote the release of nutrients immobilized in the microbial biomass, as well as the uptake and turnover of nutrients, affecting the functions of the wider ecosystems. In this study, three different types of mine tailings associated with three successional stages (original tailings, biological crusts, and Miscanthus sinensis grasslands) were selected to characterize the protistan community diversity, structure, and function during primary succession. Some members classified as consumers dominated the network of microbial communities in the tailings, especially in the original bare land tailings. The keystone phototrophs of Chlorophyceae and Trebouxiophyceae showed the highest relative abundance in the biological crusts and grassland rhizosphere, respectively. In addition, the co-occurrences between protist and bacterial taxa demonstrated that the proportion of protistan phototrophs gradually increased during primary succession. Further, the metagenomic analysis of protistan metabolic potential showed that abundances of many functional genes associated with photosynthesis increased during the primary succession of tailings. Overall, these results suggest that the primary succession of mine tailings drives the changes observed in the protistan community, and in turn, the protistan phototrophs facilitate the primary succession of tailings. This research offers an initial insight into the changes in biodiversity, structure, and function of the protistan community during ecological succession on tailings.
Collapse
Affiliation(s)
- Yongbin Li
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baoqin Li
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lifang Guo
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Yang
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xianfa Su
- School
of Environment, Key Laboratory of Yellow River and Huai River Water
Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P.R. China
| | - Wenlong Gao
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhimin Xu
- Engineering
and Technology Research Center for Agricultural Land Pollution Prevention
and Control of Guangdong Higher Education Institutes, College of Resources
and Environment, Zhongkai University of
Agriculture and Engineering, Guangzhou 510225, China
| | - Geng Yan
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National−Regional
Joint Engineering Research Center for Soil Pollution Control and Remediation
in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- School
of Environment, Key Laboratory of Yellow River and Huai River Water
Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P.R. China
- . Fax: 86-020-87024123. Phone: 86-020-87024633
| |
Collapse
|
7
|
Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, Lukeš J. Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory. THE ISME JOURNAL 2022; 16:1409-1419. [PMID: 35042972 PMCID: PMC9039065 DOI: 10.1038/s41396-022-01192-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 05/03/2023]
Abstract
Diplonemids are one of the most abundant groups of heterotrophic planktonic microeukaryotes in the world ocean and, thus, are likely to play an essential role in marine ecosystems. So far, only few species have been introduced into a culture, allowing basic studies of diplonemid genetics, morphology, ultrastructure, metabolism, as well as endosymbionts. However, it remains unclear whether these heterotrophic flagellates are parasitic or free-living and what are their predominant dietary patterns and preferred food items. Here we show that cultured diplonemids, maintained in an organic-rich medium as osmotrophs, can gradually switch to bacterivory as a sole food resource, supporting positive growth of their population, even when fed with a low biovolume of bacteria. We further observed remarkable differences in species-specific feeding patterns, size-selective grazing preferences, and distinct feeding strategies. Diplonemids can discriminate between low-quality food items and inedible particles, such as latex beads, even after their ingestion, by discharging them in the form of large waste vacuoles. We also detected digestion-related endogenous autofluorescence emitted by lysosomes and the activity of a melanin-like material. We present the first evidence that these omnipresent protists possess an opportunistic lifestyle that provides a considerable advantage in the generally food resource-limited marine environments.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Tomáš Korytář
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Valéria Juricová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jovana Majstorović
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karel Šimek
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
8
|
Belyaev AO, Zagumyonnyi DG, Mylnikov AP, Tikhonenkov DV. The Morphology, Ultrastructure and Molecular Phylogeny of a New Soil-Dwelling Kinetoplastid Avlakibodo gracilis gen. et sp. nov. (Neobodonida; Kinetoplastea). Protist 2022; 173:125885. [DOI: 10.1016/j.protis.2022.125885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 01/04/2023]
|
9
|
Tashyreva D, Simpson A, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. Diplonemids – A Review on “New“ Flagellates on the Oceanic Block. Protist 2022; 173:125868. [DOI: 10.1016/j.protis.2022.125868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
10
|
Xu R, Zhang M, Lin H, Gao P, Yang Z, Wang D, Sun X, Li B, Wang Q, Sun W. Response of soil protozoa to acid mine drainage in a contaminated terrace. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126790. [PMID: 34358973 DOI: 10.1016/j.jhazmat.2021.126790] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 05/28/2023]
Abstract
Acid mine drainage (AMD) system represents one of the most unfavorable habitats for microorganisms due to its low pH and high concentrations of metals. Compared to bacteria and fungi, our understanding regarding the response of soil protozoa to such extremely acidic environments remains limited. This study characterized the structures of protozoan communities inhabiting a terrace heavily contaminated by AMD. The sharp environmental gradient of this terrace was generated by annual flooding from an AMD lake located below, which provided a natural setting to unravel the environment-protozoa interactions. Previously unrecognized protozoa, such as Apicomplexa and Euglenozoa, dominated the extremely acidic soils, rather than the commonly recognized members (e.g., Ciliophora and Cercozoa). pH was the most important factor regulating the abundance of protozoan taxa. Metagenomic analysis of protozoan metabolic potential showed that many functional genes encoding for the alleviation of acid stress and various metabolic pathways were enriched, which may facilitate the survival and adaptation of protozoa to acidic environments. In addition, numerous co-occurrences between protozoa and bacterial or fungal taxa were observed, suggesting shared environmental preferences or potential bio-interactions among them. Future studies are required to confirm the ecological roles of these previously unrecognized protozoa as being important soil microorganisms.
Collapse
Affiliation(s)
- Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; School of Environment, Henan Normal University, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, PR China.
| |
Collapse
|
11
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
12
|
Tikhonenkov DV, Gawryluk RMR, Mylnikov AP, Keeling PJ. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci Rep 2021; 11:2946. [PMID: 33536456 PMCID: PMC7859406 DOI: 10.1038/s41598-021-82369-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Kinetoplastids are heterotrophic flagellated protists, including important parasites of humans and animals (trypanosomatids), and ecologically important free-living bacterial consumers (bodonids). Phylogenies have shown that the earliest-branching kinetoplastids are all parasites or obligate endosymbionts, whose highly-derived state makes reconstructing the ancestral state of the group challenging. We have isolated new strains of unusual free-living flagellates that molecular phylogeny shows to be most closely related to endosymbiotic and parasitic Perkinsela and Ichthyobodo species that, together with unidentified environmental sequences, form the clade at the base of kinetoplastids. These strains are therefore the first described free-living prokinetoplastids, and potentially very informative in understanding the evolution and ancestral states of morphological and molecular characteristics described in other kinetoplastids. Overall, we find that these organisms morphologically and ultrastructurally resemble some free-living bodonids and diplonemids, and possess nuclear genomes with few introns, polycistronic mRNA expression, high coding density, and derived traits shared with other kinetoplastids. Their genetic repertoires are more diverse than the best-studied free-living kinetoplastids, which is likely a reflection of their higher metabolic potential. Mitochondrial RNAs of these new species undergo the most extensive U insertion/deletion editing reported so far, and limited deaminative C-to-U and A-to-I editing, but we find no evidence for mitochondrial trans-splicing.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- grid.4886.20000 0001 2192 9124Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742 Russia ,grid.446209.d0000 0000 9203 3563AquaBioSafe Laboratory, University of Tyumen, 625003 Tyumen, Russia
| | - Ryan M. R. Gawryluk
- grid.143640.40000 0004 1936 9465Department of Biology, University of Victoria, Victoria, British Columbia V8W 2Y2 Canada
| | - Alexander P. Mylnikov
- grid.4886.20000 0001 2192 9124Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742 Russia
| | - Patrick J. Keeling
- grid.17091.3e0000 0001 2288 9830Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
13
|
Yabuki A, Kawato M, Nagano Y, Tsuchida S, Yoshida T, Fujiwara Y. Structural Comparison of Diplonemid Communities around the Izu Peninsula, Japan. Microbes Environ 2021; 36:ME21012. [PMID: 34121037 PMCID: PMC8209450 DOI: 10.1264/jsme2.me21012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
Diplonemea (diplonemids) is one of the most abundant and species-rich protist groups in marine environments; however, their community structures among local and seasonal samples have not yet been compared. In the present study, we analyzed four diplonemid community structures around the Izu Peninsula, Japan using barcode sequences amplified from environmental DNA. These sequences and the results of statistical analyses indicated that communities at the same site were more similar to each other than those in the same season. Environmental variables were also measured, and their influence on diplonemid community structures was examined. Salinity, electrical conductivity, and temperature, and their correlated variables, appeared to influence the structures of diplonemid communities, which was consistent with previous findings; however, since the results obtained did not reach statistical significance, further studies are required. A comparison of each diplonemid community indicated that some lineages were unique to specific samples, while others were consistently detected in all samples. Members of the latter type are cosmopolitan candidates and may be better adapted to the environments of the studied area. Future studies that focus on the more adaptive members will provide a more detailed understanding of the mechanisms by which diplonemids are widely distributed in marine environments and will facilitate their utilization as indicator organisms to monitor environmental changes.
Collapse
Affiliation(s)
- Akinori Yabuki
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 2370061, Japan
| | - Masaru Kawato
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 2370061, Japan
| | - Yuriko Nagano
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 2370061, Japan
| | - Shinji Tsuchida
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 2370061, Japan
| | - Takao Yoshida
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 2370061, Japan
| | - Yoshihiro Fujiwara
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 2370061, Japan
| |
Collapse
|
14
|
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol 2020; 22:4014-4031. [PMID: 32779301 DOI: 10.1111/1462-2920.15190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
We analysed a widely used barcode, the V9 region of the 18S rRNA gene, to study the effect of environmental conditions on the distribution of two related heterotrophic protistan lineages in marine plankton, kinetoplastids and diplonemids. We relied on a major published dataset (Tara Oceans) where samples from the mesopelagic zone were available from just 32 of 123 locations, and both groups are most abundant in this zone. To close sampling gaps and obtain more information from the deeper ocean, we collected 57 new samples targeting especially the mesopelagic zone. We sampled in three geographic regions: the Arctic, two depth transects in the Adriatic Sea, and the anoxic Cariaco Basin. In agreement with previous studies, both protist groups are most abundant and diverse in the mesopelagic zone. In addition to that, we found that their abundance, richness, and community structure also depend on geography, oxygen concentration, salinity, temperature, and other environmental variables reflecting the abundance of algae and nutrients. Both groups studied here demonstrated similar patterns, although some differences were also observed. Kinetoplastids and diplonemids prefer tropical regions and nutrient-rich conditions and avoid high oxygen concentration, high salinity, and high density of algae.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Paula Andrea Castañeda Londoño
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | - Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
15
|
Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, Lukeš J. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol 2020; 22:3660-3670. [PMID: 32548939 DOI: 10.1111/1462-2920.15130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022]
Abstract
Diplonemids are a group of highly diverse and abundant marine microeukaryotes that belong to the phylum Euglenozoa and form a sister clade to the well-studied, mostly parasitic kinetoplastids. Very little is known about the biology of diplonemids, as few species have been formally described and just one, Diplonema papillatum, has been studied to a decent extent at the molecular level. Following up on our previous results showing stable but random integration of delivered extraneous DNA, we demonstrate here homologous recombination in D. papillatum. Targeting various constructs to the intended position in the nuclear genome was successful when 5' and 3' homologous regions longer than 1 kbp were used, achieving N-terminal tagging with mCherry and gene replacement of α- and β-tubulins. For more convenient genetic manipulation, we designed a modular plasmid, pDP002, which bears a protein-A tag and used it to generate and express a C-terminally tagged mitoribosomal protein. Lastly, we developed an improved transformation protocol for broader applicability across laboratories. Our robust methodology allows the replacement, integration as well as endogenous tagging of D. papillatum genes, thus opening the door to functional studies in this species and establishing a basic toolkit for reverse genetics of diplonemids in general.
Collapse
Affiliation(s)
- Drahomíra Faktorová
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre, Czech Republic.,Faculty of Sciences, University of South Bohemia, Cˇeské Budějovice (Budweis), Czech Republic
| | - Binnypreet Kaur
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre, Czech Republic.,Faculty of Sciences, University of South Bohemia, Cˇeské Budějovice (Budweis), Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Lena Graf
- Faculty of Sciences, University of South Bohemia, Cˇeské Budějovice (Budweis), Czech Republic.,Present address: Johannes Kepler University, Linz, Austria
| | - Corinna Benz
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre, Czech Republic.,Faculty of Sciences, University of South Bohemia, Cˇeské Budějovice (Budweis), Czech Republic
| |
Collapse
|
16
|
Škaloud P, Škaloudová M, Jadrná I, Bestová H, Pusztai M, Kapustin D, Siver PA. Comparing Morphological and Molecular Estimates of Species Diversity in the Freshwater Genus Synura (Stramenopiles): A Model for Understanding Diversity of Eukaryotic Microorganisms. JOURNAL OF PHYCOLOGY 2020; 56:574-591. [PMID: 32065394 DOI: 10.1111/jpy.12978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Magda Škaloudová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Dmitry Kapustin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanical Street 35, 127276, Moscow, Russia
| | - Peter A Siver
- Department of Botany, Connecticut College, New London, 06320-4196, Connecticut, USA
| |
Collapse
|
17
|
Kolisko M, Flegontova O, Karnkowska A, Lax G, Maritz JM, Pánek T, Táborský P, Carlton JM, Čepička I, Horák A, Lukeš J, Simpson AGB, Tai V. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996027. [PMID: 33216898 PMCID: PMC7678783 DOI: 10.1093/database/baaa080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) gene is a widely used molecular marker to study the diversity of life. Sequencing of SSU rRNA gene amplicons has become a standard approach for the investigation of the ecology and diversity of microbes. However, a well-curated database is necessary for correct classification of these data. While available for many groups of Bacteria and Archaea, such reference databases are absent for most eukaryotes. The primary goal of the EukRef project (eukref.org) is to close this gap and generate well-curated reference databases for major groups of eukaryotes, especially protists. Here we present a set of EukRef-curated databases for the excavate protists—a large assemblage that includes numerous taxa with divergent SSU rRNA gene sequences, which are prone to misclassification. We identified 6121 sequences, 625 of which were obtained from cultures, 3053 from cell isolations or enrichments and 2419 from environmental samples. We have corrected the classification for the majority of these curated sequences. The resulting publicly available databases will provide phylogenetically based standards for the improved identification of excavates in ecological and microbiome studies, as well as resources to classify new discoveries in excavate diversity.
Collapse
Affiliation(s)
- Martin Kolisko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Olga Flegontova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland.,Department of Parasitology, BIOCEV, Faculty of Science, Charles University, 128 43 Vestec, Czech Republic
| | - Gordon Lax
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julia M Maritz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Tomáš Pánek
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Petr Táborský
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ivan Čepička
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Alastair G B Simpson
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vera Tai
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
18
|
Tikhonenkov DV, Jhin SH, Eglit Y, Miller K, Plotnikov A, Simpson AGB, Park JS. Ecological and evolutionary patterns in the enigmatic protist genus Percolomonas (Heterolobosea; Discoba) from diverse habitats. PLoS One 2019; 14:e0216188. [PMID: 31465455 PMCID: PMC6715209 DOI: 10.1371/journal.pone.0216188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
The heterotrophic flagellate Percolomonas cosmopolitus (Heterolobosea) is often observed in saline habitats worldwide, from coastal waters to saturated brines. However, only two cultures assigned to this morphospecies have been examined using molecular methods, and their 18S rRNA gene sequences are extremely different. Further the salinity tolerances of individual strains are unknown. Thus, our knowledge on the autecology and diversity in this morphospecies is deficient. Here, we report 18S rRNA gene data on seven strains similar to P. cosmopolitus from seven geographically remote locations (New Zealand, Kenya, Korea, Poland, Russia, Spain, and the USA) with sample salinities ranging from 4‰ to 280‰, and compare morphology and salinity tolerance of the nine available strains. Percolomonas cosmopolitus-like strains show few-to-no consistent morphological differences, and form six clades separated by often extremely large 18S rRNA gene divergences (up to 42.4%). Some strains grow best at salinities from 75 to 125‰ and represent halophiles. All but one of these belong to two geographically heterogeneous clusters that form a robust monophyletic group in phylogenetic trees; this likely represents an ecologically specialized subclade of halophiles. Our results suggest that P. cosmopolitus is a cluster of several cryptic species (at least), which are unlikely to be distinguished by geography. Interestingly, the 9 Percolomonas strains formed a clade in 18S rRNA gene phylogenies, unlike most previous analyses based on two sequences.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Soo Hwan Jhin
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
| | - Yana Eglit
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kai Miller
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment “Persistence of Microorganisms”, Institute for Cellular and Intracellular Symbiosis UB RAS, Orenburg, Russia
| | - Alastair G. B. Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Diversity, Toronto, Ontario, Canada
| | - Jong Soo Park
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
- * E-mail:
| |
Collapse
|
19
|
Schoenle A, Živaljić S, Prausse D, Voß J, Jakobsen K, Arndt H. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean (Keelungia nitschei, Petalomonas acorensis, Ploeotia costaversata). Eur J Protistol 2019; 69:102-116. [DOI: 10.1016/j.ejop.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
20
|
Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A. Neobodonids are dominant kinetoplastids in the global ocean. Environ Microbiol 2019; 20:878-889. [PMID: 29266706 DOI: 10.1111/1462-2920.14034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/29/2022]
Abstract
Kinetoplastid flagellates comprise basal mostly free-living bodonids and derived obligatory parasitic trypanosomatids, which belong to the best-studied protists. Due to their omnipresence in aquatic environments and soil, the bodonids are of ecological significance. Here, we present the first global survey of marine kinetoplastids and compare it with the strikingly different patterns of abundance and diversity in their sister clade, the diplonemids. Based on analysis of 18S rDNA V9 ribotypes obtained from 124 sites sampled during the Tara Oceans expedition, our results show generally low to moderate abundance and diversity of planktonic kinetoplastids. Although we have identified all major kinetoplastid lineages, 98% of kinetoplastid reads are represented by neobodonids, namely specimens of the Neobodo and Rhynchomonas genera, which make up 59% and 18% of all reads, respectively. Most kinetoplastids have small cell size (0.8-5 µm) and tend to be more abundant in the mesopelagic as compared to the euphotic zone. Some of the most abundant operational taxonomic units have distinct geographical distributions, and three novel putatively parasitic neobodonids were identified, along with their potential hosts.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Shruti Malviya
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julie Poulain
- CEA - GENOSCOPE - Institut François Jacob, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706, Evry, France.,Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Colomban de Vargas
- Station Biologique de Roscoff, Roscoff, France.,Sorbonne Universités, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
21
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
22
|
Morphological, Ultrastructural, Motility and Evolutionary Characterization of Two New Hemistasiidae Species. Protist 2019; 170:259-282. [PMID: 31154071 DOI: 10.1016/j.protis.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 11/21/2022]
Abstract
Until now, Hemistasia phaeocysticola was the only representative of the monogeneric family Hemistasiidae available in culture. Here we describe two new axenized hemistasiids isolated from Tokyo Bay, Japan. Like in other diplonemids, cellular organization of these heterotrophic protists is characterized by a distinct apical papilla, a tubular cytopharynx contiguous with a deep flagellar pocket, and a highly branched mitochondrion with lamellar cristae. Both hemistasiids also bear a prominent digestive vacuole, peripheral lacunae, and paraflagellar rods, are highly motile and exhibit diverse morphologies in culture. We argue that significant differences in molecular phylogenetics and ultrastructure between these new species and H. phaeocysticola are on the generic level. Therefore, we have established two new genera within Hemistasiidae - Artemidia gen. n. and Namystynia gen. n. to accommodate Artemidia motanka, sp. n. and Namystynia karyoxenos, sp. n., respectively. A. motanka permanently carries tubular extrusomes, while in N. karyoxenos, they are present only in starving cells. An additional remarkable feature of the latter species is the presence, in both the cytoplasm and the nucleus, of the endosymbiotic rickettsiid Candidatus Sneabacter namystus.
Collapse
|
23
|
Lax G, Lee WJ, Eglit Y, Simpson A. Ploeotids Represent Much of the Phylogenetic Diversity of Euglenids. Protist 2019; 170:233-257. [PMID: 31102975 DOI: 10.1016/j.protis.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 11/26/2022]
Abstract
Ploeotids are an assemblage of rigid phagotrophic euglenids that have 10-12 pellicular strips and glide on their posterior flagellum. Molecular phylogenies place them as a poorly resolved, likely paraphyletic assemblage outside the Spirocuta clade of flexible euglenids, which includes the well-known phototrophs and primary osmotrophs. Here, we report SSU rRNA gene sequences from 38 ploeotids, using both single-cell and culture-based methods. Several contain group I or non-canonical introns. Our phylogenetic analyses place ploeotids in 8 distinct clades: Olkasia n. gen., Hemiolia n. gen., Liburna n. gen., Lentomonas, Decastava, Keelungia, Ploeotiidae, and Entosiphon. Ploeotia vitrea, the type of Ploeotia, is closely related to P. oblonga and Serpenomonas costata, but not to Lentomonas. Ploeotia cf. vitrea sensu Lax and Simpson 2013 is not related to P. vitrea and has a different pellicle strip architecture (as imaged by scanning electron microscopy): it instead represents a novel genus and species, Olkasia polycarbonata. We also describe new genera, Hemiolia and Liburna, for the morphospecies Anisonema trepidum and A. glaciale. A recent system proposing 13 suprafamilial taxa that include ploeotids is not supported by our phylogenies. The exact relationships between ploeotid groups remain unresolved and multigene phylogenetics or phylogenomics are needed to address this uncertainty.
Collapse
Affiliation(s)
- Gordon Lax
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Won Je Lee
- Department of Environment and Energy Engineering, Kyungnam University, Changwon, Republic of Korea
| | - Yana Eglit
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Alastair Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
24
|
Bretherton L, Kamalanathan M, Genzer J, Hillhouse J, Setta S, Liang Y, Brown CM, Xu C, Sweet J, Passow U, Finkel ZV, Irwin AJ, Santschi PH, Quigg A. Response of natural phytoplankton communities exposed to crude oil and chemical dispersants during a mesocosm experiment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:43-53. [PMID: 30448744 DOI: 10.1016/j.aquatox.2018.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
During the 2010 Deepwater Horizon oil spill, the chemical dispersant Corexit was applied over vast areas of the Gulf of Mexico. Marine phytoplankton play a key role in aggregate formation through the production of extracellular polymeric materials (EPS), an important step in the biological carbon pump. This study examined the impacts of oil and dispersants on the composition and physiology of natural marine phytoplankton communities from the Gulf of Mexico during a 72-hour mesocosm experiment and consequences to carbon export. The communities were treated using the water accommodated fraction (WAF) of oil, which was produced by adding Macondo surrogate oil to natural seawater and mixed for 24 h in the dark. A chemically enhanced WAF (CEWAF) was made in a similar manner, but using a mixture of oil and the dispersant Corexit in a 20:1 ratio as well as a diluted CEWAF (DCEWAF). Phytoplankton communities exposed to WAF showed no significant changes in PSII quantum yield (Fv/Fm) or electron transfer rates (ETRmax) compared to Control communities. In contrast, both Fv/Fm and ETRmax declined rapidly in communities treated with either CEWAF or DCEWAF. Analysis of other photophysiological parameters showed that photosystem II (PSII) antenna size and PSII connectivity factor were not altered by exposure to DCEWAF, suggesting that processes downstream of PSII were affected. The eukaryote community composition in each experimental tank was characterized at the end of the 72 h exposure time using 18S rRNA sequencing. Diatoms dominated the communities in both the control and WAF treatments (52 and 56% relative abundance respectively), while in CEWAF and DCEWAF treatments were dominated by heterotrophic Euglenozoa (51 and 84% respectively). Diatoms made up the largest relative contribution to the autotrophic eukaryote community in all treatments. EPS concentration was four times higher in CEWAF tanks compared to other treatments. Changes in particle size distributions (a proxy for aggregates) over time indicated that a higher degree of particle aggregation occurred in both the CEWAF and DCEWAF treatments than the WAF or Controls. Our results demonstrate that chemically dispersed oil has more negative impacts on photophysiology, phytoplankton community structure and aggregation dynamics than oil alone, with potential implications for export processes that affect the distribution and turnover of carbon and oil in the water column.
Collapse
Affiliation(s)
- Laura Bretherton
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States.
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States
| | - Jennifer Genzer
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States
| | - Samantha Setta
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States
| | - Yue Liang
- Environmental Science Department, Mount Allison University, Sackville, New Brunswick, Canada
| | - Chris M Brown
- Environmental Science Department, Mount Allison University, Sackville, New Brunswick, Canada
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, United States
| | - Julia Sweet
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States
| | - Uta Passow
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States
| | - Zoe V Finkel
- Environmental Science Department, Mount Allison University, Sackville, New Brunswick, Canada
| | - Andrew J Irwin
- Mathematics and Computer Science Department, Mount Allison University, Sackville, New Brunswick, Canada
| | - Peter H Santschi
- Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, United States; Department of Oceanography, Texas A&M University, College Station, Texas, United States
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States; Department of Oceanography, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
25
|
Burger G, Valach M. Perfection of eccentricity: Mitochondrial genomes of diplonemids. IUBMB Life 2018; 70:1197-1206. [PMID: 30304578 DOI: 10.1002/iub.1927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/14/2023]
Abstract
Mitochondria are the sandbox of evolution as exemplified most particularly by the diplonemids, a group of marine microeukaryotes. These protists are uniquely characterized by their highly multipartite mitochondrial genome and systematically fragmented genes whose pieces are spread out over several dozens of chromosomes. The type species Diplonema papillatum was the first member of this group in which the expression of fragmented mitochondrial genes was investigated experimentally. We now know that gene expression involves separate transcription of gene pieces (modules), RNA editing of module transcripts, and module joining to mature mRNAs and rRNAs. The mechanism of cognate module recognition and ligation is distinct from known intron splicing and remains to be uncovered. Here, we review the current status of research on mitochondrial genome architecture, as well as gene complement, structure, and expression modes in diplonemids. Further, we discuss the potential molecular mechanisms of posttranscriptional processing, and finally reflect on the evolutionary trajectories and trends of mtDNA evolution as seen in this protist group. © 2018 IUBMB Life, 70(12):1197-1206, 2018.
Collapse
Affiliation(s)
- Gertraud Burger
- Département de Biochimie, Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada
| | - Matus Valach
- Département de Biochimie, Robert Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Goodwin JD, Lee TF, Kugrens P, Simpson AGB. Allobodo chlorophagus n. gen. n. sp., a Kinetoplastid that Infiltrates and Feeds on the Invasive Alga Codium fragile. Protist 2018; 169:911-925. [PMID: 30445354 DOI: 10.1016/j.protis.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 11/24/2022]
Abstract
A novel biflagellate protist that consumed chloroplasts inside material of the invasive marine green alga Codium fragile was reported from the U.S. east coast in 2003. We observed a similar association in C. fragile from five sites in Nova Scotia, Canada during 2013 and 2014. After incubating Codium fragments for 2-3 days, some utricles and filaments contained numerous chloroplast-consuming cells. Transmission electron microscopy (TEM) confirmed that these were kinetoplastids with a pankinetoplast, large electron-dense droplets in the cytoplasm and a connective between the paraxonemal rod bases, but no conspicuous para-cytopharyngeal rod, all consistent with U.S. material observed in 2003. The ITS1-5.8S rRNA-ITS2 sequences from 13 Nova Scotia isolates were identical. SSU rRNA gene phylogenies placed the Codium-associated kinetoplastid in neobodonid clade '1E'. Clade 1E likely contains no previously described species, and branches outside all other major neobodonid groups, either as their sister or as a separate lineage, depending on rooting. These results indicate that the kinetoplastid represents a single species that merits a new genus (and family), and we describe it as Allobodo chlorophagus n. gen., n. sp. The lack of evidence for food sources other than Codium is consistent with a parasitic association, but other possibilities exist (e.g. necrotrophy).
Collapse
Affiliation(s)
- Joshua D Goodwin
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax B3H 4R2, Canada
| | | | | | - Alastair G B Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax B3H 4R2, Canada.
| |
Collapse
|
27
|
Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018; 145:1311-1323. [PMID: 29895336 DOI: 10.1017/s0031182018000781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
Collapse
|
28
|
Shedding light on lipid metabolism in Kinetoplastida: A phylogenetic analysis of phospholipase D protein homologs. Gene 2018; 656:95-105. [PMID: 29501621 DOI: 10.1016/j.gene.2018.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 11/20/2022]
Abstract
Unicellular flagellates that make up the class Kinetoplastida include multiple parasites responsible for public health concerns, including Trypanosoma brucei and T. cruzi (agents of African sleeping sickness and Chagas disease, respectively), and various Leishmania species, which cause leishmaniasis. These diseases are generally difficult to eradicate, with treatments often having lethal side effects and/or being effective only during the acute phase of the diseases, when most patients are still asymptomatic. Phospholipid signaling and metabolism are important in the different life stages of Trypanosoma, including playing a role in transitions between stages and in immune system evasion, thus, making the responsible enzymes into potential therapeutic targets. However, relatively little is understood about how the pathways function in these pathogens. Thus, in this study we examined evolutionary history of proteins from one such signaling pathway, namely phospholipase D (PLD) homologs. PLD is an enzyme responsible for synthesizing phosphatidic acid (PA) from membrane phospholipids. PA is not only utilized for phospholipid synthesis, but is also involved in many other signaling pathways, including biotic and abiotic stress response. 37 different representative Kinetoplastida genomes were used for an exhaustive search to identify putative PLD homologs. The genome of Bodo saltans was the only one of surveyed Kinetoplastida genomes that encoded a protein that clustered with plant PLDs. The representatives from other Kinetoplastida species clustered together in two different clades, thought to be homologous to the PLD superfamily, but with shared sequence similarity with cardiolipin synthases (CLS), and phosphatidylserine synthases (PSS). The protein structure predictions showed that most Kinetoplastida sequences resemble CLS and PSS, with the exception of 5 sequences from Bodo saltans that shared significant structural similarities with the PLD sequences, suggesting the loss of PLD-like sequences during the evolution of parasitism in kinetoplastids. On the other hand, diacylglycerol kinase (DGK) homologs were identified for all species examined in this study, indicating that DGK could be the only pathway for the synthesis of PA involved in lipid signaling in these organisms due to genome streamlining during transition to parasitic lifestyle. Our findings offer insights for development of potential therapeutic and/or intervention approaches, particularly those focused on using PA, PLD and/or DGK related pathways, against trypanosomiasis, leishmaniasis, and Chagas disease.
Collapse
|
29
|
Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. Life Cycle, Ultrastructure, and Phylogeny of New Diplonemids and Their Endosymbiotic Bacteria. mBio 2018; 9:e02447-17. [PMID: 29511084 PMCID: PMC5845003 DOI: 10.1128/mbio.02447-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 11/20/2022] Open
Abstract
Diplonemids represent a hyperdiverse and abundant yet poorly studied group of marine protists. Here we describe two new members of the genus Diplonema (Diplonemea, Euglenozoa), Diplonema japonicum sp. nov. and Diplonema aggregatum sp. nov., based on life cycle, morphology, and 18S rRNA gene sequences. Along with euglenozoan apomorphies, they contain several unique features. Their life cycle is complex, consisting of a trophic stage that is, following the depletion of nutrients, transformed into a sessile stage and subsequently into a swimming stage. The latter two stages are characterized by the presence of tubular extrusomes and the emergence of a paraflagellar rod, the supportive structure of the flagellum, which is prominently lacking in the trophic stage. These two stages also differ dramatically in motility and flagellar size. Both diplonemid species host endosymbiotic bacteria that are closely related to each other and constitute a novel branch within Holosporales, for which a new genus, "Candidatus Cytomitobacter" gen. nov., has been established. Remarkably, the number of endosymbionts in the cytoplasm varies significantly, as does their localization within the cell, where they seem to penetrate the mitochondrion, a rare occurrence.IMPORTANCE We describe the morphology, behavior, and life cycle of two new Diplonema species that established a relationship with two Holospora-like bacteria in the first report of an endosymbiosis in diplonemids. Both endosymbionts reside in the cytoplasm and the mitochondrion, which establishes an extremely rare case. Within their life cycle, the diplonemids undergo transformation from a trophic to a sessile and eventually a highly motile swimming stage. These stages differ in several features, such as the presence or absence of tubular extrusomes and a paraflagellar rod, along with the length of the flagella. These morphological and behavioral interstage differences possibly reflect distinct functions in dispersion and invasion of the host and/or prey and may provide novel insight into the virtually unknown function of diplonemids in the oceanic ecosystem.
Collapse
Affiliation(s)
- Daria Tashyreva
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Galina Prokopchuk
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Akinori Yabuki
- Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
30
|
Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, Kusaka C, Fujikura K, Shiratori T, Ishida KI, Horák A, Lukeš J. Phylogeny and Morphology of New Diplonemids from Japan. Protist 2018; 169:158-179. [PMID: 29604574 DOI: 10.1016/j.protis.2018.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
Diplonemids were recently found to be the most species-rich group of marine planktonic protists. Based on phylogenetic analysis of 18S rRNA gene sequences and morphological observations, we report the description of new members of the genus Rhynchopus - R. humris sp. n. and R. serpens sp. n., and the establishment of two new genera - Lacrimia gen. n. and Sulcionema gen. n., represented by L. lanifica sp. n. and S. specki sp. n., respectively. In addition, we describe the organism formerly designated as Diplonema sp. 2 (ATCC 50224) as Flectonema neradi gen. n., sp. n. The newly described diplonemids share a common set of traits. Cells are sac-like but variable in shape and size, highly metabolic, and surrounded by a naked cell membrane, which is supported by a tightly packed corset of microtubules. They carry a single highly reticulated peripheral mitochondrion containing a large amount of mitochondrial DNA, with lamellar cristae. The cytopharyngeal complex and flagellar pocket are contiguous and have separate openings. Two parallel flagella are inserted sub-apically into a pronounced flagellar pocket. Rhynchopus species have their flagella concealed in trophic stages and fully developed in swimming stages, while they permanently protrude in all other known diplonemid species.
Collapse
Affiliation(s)
- Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Akinori Yabuki
- Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Chiho Kusaka
- Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Katsunori Fujikura
- Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | | | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
31
|
Abstract
Environmental molecular sequence surveys have opened a window on the hidden riches of the microbial biosphere. Recent genetic 'barcoding' and single-cell genomics studies have provided a snapshot of the biology of diplonemids - abundant, diverse, marine heterotrophic protists whose ecological roles are becoming clearer.
Collapse
Affiliation(s)
- Vojtěch David
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Valach M, Moreira S, Hoffmann S, Stadler PF, Burger G. Keeping it complicated: Mitochondrial genome plasticity across diplonemids. Sci Rep 2017; 7:14166. [PMID: 29074957 PMCID: PMC5658414 DOI: 10.1038/s41598-017-14286-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/06/2017] [Indexed: 01/30/2023] Open
Abstract
Chromosome rearrangements are important drivers in genome and gene evolution, with implications ranging from speciation to development to disease. In the flagellate Diplonema papillatum (Euglenozoa), mitochondrial genome rearrangements have resulted in nearly hundred chromosomes and a systematic dispersal of gene fragments across the multipartite genome. Maturation into functional RNAs involves separate transcription of gene pieces, joining of precursor RNAs via trans-splicing, and RNA editing by substitution and uridine additions both reconstituting crucial coding sequence. How widespread these unusual features are across diplonemids is unclear. We have analyzed the mitochondrial genomes and transcriptomes of four species from the Diplonema/Rhynchopus clade, revealing a considerable genomic plasticity. Although gene breakpoints, and thus the total number of gene pieces (~80), are essentially conserved across this group, the number of distinct chromosomes varies by a factor of two, with certain chromosomes combining up to eight unrelated gene fragments. Several internal protein-coding gene pieces overlap substantially, resulting, for example, in a stretch of 22 identical amino acids in cytochrome c oxidase subunit 1 and NADH dehydrogenase subunit 5. Finally, the variation of post-transcriptional editing patterns across diplonemids indicates compensation of two adverse trends: rapid sequence evolution and loss of genetic information through unequal chromosome segregation.
Collapse
Affiliation(s)
- Matus Valach
- Department of biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, 2900 Edouard-Montpetit, Montreal, H3T 1J4, QC, Canada.
| | - Sandrine Moreira
- Department of biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, 2900 Edouard-Montpetit, Montreal, H3T 1J4, QC, Canada.,Department of Biochemistry and Molecular Biophysics, Columbia University, Hammer Health Science Center, 701 W 168th St, New York, NY, 10031, USA
| | - Steve Hoffmann
- Leipzig University, LIFE - Leipzig Research Center for Civilization Diseases, Haertelstrasse 16-18, Leipzig, D-04107, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04107, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103, Leipzig, Germany.,Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, A-1090, Vienna, Austria.,Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Gertraud Burger
- Department of biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, 2900 Edouard-Montpetit, Montreal, H3T 1J4, QC, Canada.
| |
Collapse
|
33
|
Gomaa F, Garcia PA, Delaney J, Girguis PR, Buie CR, Edgcomb VP. Toward establishing model organisms for marine protists: Successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata). Environ Microbiol 2017. [PMID: 28631386 DOI: 10.1111/1462-2920.13830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We developed protocols for, and demonstrated successful transfection of, the free-living kinetoplastid flagellate Parabodo caudatus with three plasmids carrying a fluorescence reporter gene (pEF-GFP with the EF1 alpha promoter, pUB-GFP with Ubiquitin C promoter, and pEYFP-Mitotrap with CMV promoter). We evaluated three electroporation approaches: (1) a square-wave electroporator designed for eukaryotes, (2) a novel microfluidic transfection system employing hydrodynamically-controlled electric field waveforms, and (3) a traditional exponential decay electroporator. We found the microfluidic device provides a simple and efficient platform to quickly test a wide range of electric field parameters to find the optimal set of conditions for electroporation of target species. It also allows for processing large sample volumes (>10 ml) within minutes, increasing throughput 100 times over cuvettes. Fluorescence signal from the reporter gene was detected a few hours after transfection and persisted for 3 days in cells transfected by pEF-GFP and pUB-GFP plasmids and for at least 5 days post-transfection for cells transfected with pEYFP-Mitotrap. Expression of the reporter genes (GFP and YFP) was also confirmed using reverse transcription-PCR (RT-PCR). This work opens the door for further efforts with this taxon and close relatives toward establishing model systems for genome editing.
Collapse
Affiliation(s)
- Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer Delaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
34
|
Ultrastructural and immunocytochemical investigation of paramylon combined with new 18S rDNA-based secondary structure analysis clarifies phylogenetic affiliation of Entosiphon sulcatum (Euglenida: Euglenozoa). ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0330-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Higher classification and phylogeny of Euglenozoa. Eur J Protistol 2016; 56:250-276. [DOI: 10.1016/j.ejop.2016.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022]
|
36
|
New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Entosiphon oblongum), Hsp90 introns, and putative euglenoid Hsp90 pre-mRNA insertional editing. Eur J Protistol 2016; 56:147-170. [DOI: 10.1016/j.ejop.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022]
|
37
|
Cenci U, Moog D, Curtis BA, Tanifuji G, Eme L, Lukeš J, Archibald JM. Heme pathway evolution in kinetoplastid protists. BMC Evol Biol 2016; 16:109. [PMID: 27193376 PMCID: PMC4870792 DOI: 10.1186/s12862-016-0664-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Background Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0664-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budӗjovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
38
|
Tikhonenkov DV, Janouškovec J, Keeling PJ, Mylnikov AP. The Morphology, Ultrastructure and SSU rRNA Gene Sequence of a New Freshwater Flagellate, Neobodo borokensis
n. sp. (Kinetoplastea, Excavata). J Eukaryot Microbiol 2015; 63:220-32. [DOI: 10.1111/jeu.12271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Denis V. Tikhonenkov
- Laboratory of Microbiology; Institute for Biology of Inland Waters; Russian Academy of Sciences; Borok Yaroslavl Region 1527542 Russia
- Department of Botany; University of British Columbia; Vancouver V6T 1Z4 British Columbia Canada
| | - Jan Janouškovec
- Department of Botany; University of British Columbia; Vancouver V6T 1Z4 British Columbia Canada
- Canadian Institute for Advanced Research; CIFAR Program in Integrated Microbial Diversity; Toronto M5G 1Z8 Ontario Canada
| | - Patrick J. Keeling
- Department of Botany; University of British Columbia; Vancouver V6T 1Z4 British Columbia Canada
- Canadian Institute for Advanced Research; CIFAR Program in Integrated Microbial Diversity; Toronto M5G 1Z8 Ontario Canada
| | - Alexander P. Mylnikov
- Laboratory of Microbiology; Institute for Biology of Inland Waters; Russian Academy of Sciences; Borok Yaroslavl Region 1527542 Russia
| |
Collapse
|
39
|
Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa JC, Roux S, Vincent F, Bittner L, Darzi Y, Wang J, Audic S, Berline L, Bontempi G, Cabello AM, Coppola L, Cornejo-Castillo FM, d'Ovidio F, De Meester L, Ferrera I, Garet-Delmas MJ, Guidi L, Lara E, Pesant S, Royo-Llonch M, Salazar G, Sánchez P, Sebastian M, Souffreau C, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Gorsky G, Not F, Ogata H, Speich S, Stemmann L, Weissenbach J, Wincker P, Acinas SG, Sunagawa S, Bork P, Sullivan MB, Karsenti E, Bowler C, de Vargas C, Raes J. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 2015; 348:1262073. [PMID: 25999517 DOI: 10.1126/science.1262073] [Citation(s) in RCA: 505] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.
Collapse
Affiliation(s)
- Gipsi Lima-Mendez
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Karoline Faust
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nicolas Henry
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Johan Decelle
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Sébastien Colin
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France
| | - Fabrizio Carcillo
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. Interuniversity Institute of Bioinformatics in Brussels (IB), ULB Machine Learning Group, Computer Science Department, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Samuel Chaffron
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | - Simon Roux
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Flora Vincent
- VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France
| | - Lucie Bittner
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France. Institut de Biologie Paris-Seine, CNRS FR3631, F-75005, Paris, France
| | - Youssef Darzi
- VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jun Wang
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Stéphane Audic
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Léo Berline
- CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, UPMC Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB), ULB Machine Learning Group, Computer Science Department, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana M Cabello
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Laurent Coppola
- CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, UPMC Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Francesco d'Ovidio
- Sorbonne Universités, UPMC, Université Paris 06, CNRS-Institut pour la Recherche et le Développement-Muséum National d'Histoire Naturelle, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN) Laboratory, 4 Place Jussieu, 75005, Paris, France
| | - Luc De Meester
- KU Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Charles Deberiotstraat 32, 3000 Leuven
| | - Isabel Ferrera
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Marie-José Garet-Delmas
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Lionel Guidi
- CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, UPMC Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Elena Lara
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Stéphane Pesant
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Hochschulring 18, 28359 Bremen, Germany. MARUM, Center for Marine Environmental Sciences, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Guillem Salazar
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Marta Sebastian
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Caroline Souffreau
- KU Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Charles Deberiotstraat 32, 3000 Leuven
| | - Céline Dimier
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France
| | - Marc Picheral
- CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, UPMC Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Sarah Searson
- CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, UPMC Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Stefanie Kandels-Lewis
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Gabriel Gorsky
- CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, UPMC Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Fabrice Not
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan
| | - Sabrina Speich
- Department of Geosciences, Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France. Laboratoire de Physique des Océan, Université de Bretagne Occidentale (UBO)-Institut Universaire Européen de la Mer (IUEM), Palce Copernic, 29820 Polouzané, France
| | - Lars Stemmann
- CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, UPMC Paris 06, UMR 7093, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Jean Weissenbach
- Commissariat à l'Énergie Atomique (CEA), Genoscope, 2 rue Gaston Crémieux, 91000 Evry, France. CNRS, UMR 8030, 2 rue Gaston Crémieux, 91000 Evry, France. Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Patrick Wincker
- Commissariat à l'Énergie Atomique (CEA), Genoscope, 2 rue Gaston Crémieux, 91000 Evry, France. CNRS, UMR 8030, 2 rue Gaston Crémieux, 91000 Evry, France. Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Max-Delbrück-Centre for Molecular Medicine, 13092 Berlin, Germany
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Eric Karsenti
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France. Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Chris Bowler
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005 France.
| | - Colomban de Vargas
- Station Biologique de Roscoff, CNRS, UMR 7144, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute KU Leuven, Herestraat 49, 3000 Leuven, Belgium. VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences (DBIT) Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
40
|
Mukherjee I, Hodoki Y, Nakano SI. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol 2015; 91:fiv083. [PMID: 26187480 DOI: 10.1093/femsec/fiv083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/12/2022] Open
Abstract
Kinetoplastid flagellates, microscopically often detected from various aquatic environments and considered ubiquitous are seldom reported in molecular diversity studies with universal eukaryote DNA primers. To investigate this inconsistency, we examined nanoflagellate diversity in Lake Biwa, Japan by 18S rRNA gene clone libraries using universal eukaryote and kinetoplastid-specific primers. We also examined the abundance of kinetoplastids by Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization. No, kinetoplastid sequences were detected in the universal eukaryote primers library from epilimnion and hypolimnion in different seasons. However, kinetoplastid flagellates were detected with kinetoplastid-specific probe from all of the seasons and contributed up to 11.9 and 36.0% of total eukaryotes in the epilimnion and hypolimnion, respectively. Thus, kinetoplastids probably are a significant, sometimes dominant, group in the hypolimnion, contributing up to 43.7% of the total flagellates. Using group-specific primers, kinetoplastid sequences were also obtained from both epilimnion and hypolimnion library. Therefore, we attributed the inconsistency to the divergent nature of 18S rRNA gene of kinetoplastids, which lead to their undetection in the universal eukaryote primer libraries. This study revealed that kinetoplastids have significant ecological importance in the hypolimnion of Lake Biwa, suggesting that these flagellates have been overlooked in other studies using universal eukaryote primers.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Yoshikuni Hodoki
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
41
|
de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Luke J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D. Eukaryotic plankton diversity in the sunlit ocean. Science 2015; 348:1261605. [DOI: 10.1126/science.1261605] [Citation(s) in RCA: 1138] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Abstract
A decade of genome sequencing has transformed our understanding of how
trypanosomatid parasites have evolved and provided fresh impetus to explaining
the origins of parasitism in the Kinetoplastida. In this review, I will consider
the many ways in which genome sequences have influenced our view of genomic
reduction in trypanosomatids; how species-specific genes, and the genomic
domains they occupy, have illuminated the innovations in trypanosomatid genomes;
and how comparative genomics has exposed the molecular mechanisms responsible
for innovation and adaptation to a parasitic lifestyle.
Collapse
|
43
|
Lee WJ, Simpson AGB. Morphological and Molecular Characterisation of Notosolenus urceolatus
Larsen and Patterson 1990, a Member of an Understudied Deep-branching Euglenid Group (Petalomonads). J Eukaryot Microbiol 2014; 61:463-79. [DOI: 10.1111/jeu.12126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Won Je Lee
- Department of Urban Environmental Engineering; Kyungnam University; Changwon 631-701 Korea
| | - Alastair G. B. Simpson
- Department of Biology; Dalhousie University; Halifax Nova Scotia B3H 4R2 Canada
- Canadian Institute for Advanced Research; Program in Integrated Microbial Biodiversity
| |
Collapse
|
44
|
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 2014; 195:115-22. [PMID: 24893339 DOI: 10.1016/j.molbiopara.2014.05.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 12/01/2022]
Abstract
Kinetoplastid protists offer a unique opportunity for studying the evolution of parasitism. While all their close relatives are either photo- or phagotrophic, a number of kinetoplastid species are facultative or obligatory parasites, supporting a hypothesis that parasitism has emerged within this group of flagellates. In this review we discuss origin and evolution of parasitism in bodonids and trypanosomatids and specific adaptations allowing these protozoa to co-exist with their hosts. We also explore the limits of biodiversity of monoxenous (one host) trypanosomatids and some features distinguishing them from their dixenous (two hosts) relatives.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Tomáš Skalický
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
45
|
Living at the Limits: Evidence for Microbial Eukaryotes Thriving under Pressure in Deep Anoxic, Hypersaline Habitats. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/532687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The advent of molecular tools in microbial ecology paved the way to exploit the diversity of microbes in extreme environments. Here, we review these tools as applied in one of the most polyextreme habitats known on our planet, namely, deep hypersaline anoxic basins (DHABs), located at ca. 3000–3500 m depth in the Eastern Mediterranean Sea. Molecular gene signatures amplified from environmental DHAB samples identified a high degree of genetic novelty, as well as distinct communities in the DHABs. Canonical correspondence analyses provided strong evidence that salinity, ion composition, and anoxia were the strongest selection factors shaping protistan community structures, largely preventing cross-colonization among the individual basins. Thus, each investigated basin represents a unique habitat (“isolated islands of evolution”), making DHABs ideal model sites to test evolutionary hypotheses. Fluorescence in situ hybridization assays using specifically designed probes revealed that the obtained genetic signatures indeed originated from indigenous polyextremophiles. Electron microscopy imaging revealed unknown ciliates densely covered with prokaryote ectosymbionts, which may enable adaptations of eukaryotes to DHAB conditions. The research reviewed here significantly advanced our knowledge on polyextremophile eukaryotes, which are excellent models for a number of biological research areas, including ecology, diversity, biotechnology, evolutionary research, physiology, and astrobiology.
Collapse
|
46
|
Probing why trypanosomes assemble atypical cytochrome c with an AxxCH haem-binding motif instead of CxxCH. Biochem J 2013; 448:253-60. [PMID: 22928879 DOI: 10.1042/bj20120757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial cytochromes c and c1 are core components of the respiratory chain of all oxygen-respiring eukaryotes. These proteins contain haem, covalently bound to the polypeptide in a catalysed post-translational modification. In all eukaryotes, except members of the protist phylum Euglenozoa, haem attachment is to the cysteine residues of a CxxCH haem-binding motif. In the Euglenozoa, which include medically relevant trypanosomatid parasites, haem attachment is to a single cysteine residue in an AxxCH haem-binding motif. Moreover, genes encoding known c-type cytochrome biogenesis machineries are all absent from trypanosomatid genomes, indicating the presence of a novel biosynthetic apparatus. In the present study, we investigate expression and maturation of cytochrome c with a typical CxxCH haem-binding motif in the trypanosomatids Crithidia fasciculata and Trypanosoma brucei. Haem became attached to both cysteine residues of the haem-binding motif, indicating that, in contrast with previous hypotheses, nothing prevents formation of a CxxCH cytochrome c in euglenozoan mitochondria. The cytochrome variant was also able to replace the function of wild-type cytochrome c in T. brucei. However, the haem attachment to protein was not via the stereospecifically conserved linkage universally observed in natural c-type cytochromes, suggesting that the trypanosome cytochrome c biogenesis machinery recognized and processed only the wild-type single-cysteine haem-binding motif. Moreover, the presence of the CxxCH cytochrome c resulted in a fitness cost in respiration. The level of cytochrome c biogenesis in trypanosomatids was also found to be limited, with the cells operating at close to maximum capacity.
Collapse
|
47
|
Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 2012; 49:115-78. [PMID: 23085100 DOI: 10.1016/j.ejop.2012.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.
Collapse
|
48
|
Euglena gracilis and Trypanosomatids Possess Common Patterns in Predicted Mitochondrial Targeting Presequences. J Mol Evol 2012; 75:119-29. [DOI: 10.1007/s00239-012-9523-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
49
|
Drouin G, Tsang C. 5S rRNA Gene Arrangements in Protists: A Case of Nonadaptive Evolution. J Mol Evol 2012; 74:342-51. [DOI: 10.1007/s00239-012-9512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/25/2012] [Indexed: 12/30/2022]
|
50
|
Chan YF, Moestrup Ø, Chang J. On Keelungia pulex nov. gen. et nov. sp., a heterotrophic euglenoid flagellate that lacks pellicular plates (Euglenophyceae, Euglenida). Eur J Protistol 2012; 49:15-31. [PMID: 22698812 DOI: 10.1016/j.ejop.2012.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/26/2012] [Accepted: 04/17/2012] [Indexed: 11/25/2022]
Abstract
Keelungia pulex nov. gen. et nov. sp. is described from coastal waters of NE Taiwan. The new species is heterotrophic and feeds on bacteria. Cells are oblong-ovoid, biflagellate and glide along the sides of the flask. Each cell is approximately 8-11μm long, and one of the smallest euglenoid flagellates presently known. Keelungia lacks pellicular plates and in this respect resembles diplonemids and Symbiontida, which are thought to be among the basal groups of Euglenozoa. SEM showed the presence of 10 evenly spaced longitudinal striae in the cell surface, but the striae are difficult to see in the light microscope. TEM showed each stria to comprise a double set of very low longitudinal ridges separated by a shallow furrow, and supported by ca 5 microtubules beneath the plasmalemma, unlike the situation in diplonemids and Symbiontida. The cell surface was further subtended by an extensive system of rough cisternae of endoplasmic reticulum. Keelungia pulex is phylogenetically related to species of Ploeotia and to Lentomonas applanata, but differs in details of the feeding apparatus and in the absence of pellicular plates. Sequencing of SSU rDNA indicates that Ploeotia, Keelungia and Entosiphon form a clade near the base of the euglenoid phylogenetic tree.
Collapse
Affiliation(s)
- Ya-Fan Chan
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202-24, Taiwan.
| | | | | |
Collapse
|