1
|
Liu Y, Ninomiya A, Yoshinaga T, Itoh N. Identification of glycine betaine as a host-derived molecule required for the vegetative proliferation of the protozoan parasite Perkinsus olseni. Parasitology 2023; 150:939-949. [PMID: 37565486 PMCID: PMC10577664 DOI: 10.1017/s0031182023000768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Perkinsus olseni is an industrially significant protozoan parasite of Manila clam, Ruditapes philippinarum. So far, various media, based on Dulbecco's Modified Eagle Medium and Ham's F-12 nutrient mixture with supplementation of fetal bovine serum (FBS), have been developed to proliferate the parasitizing trophozoite stage of P. olseni. The present study showed that P. olseni did not proliferate in FBS-deficient Perkinsus broth medium (PBMΔF), but proliferated well in PBMΔF supplemented with tissue extract of host Manila clams, indicating that FBS and Manila clam tissue contained molecule(s) required for P. olseni proliferation. Preliminary characterization suggested that the host-derived molecule(s) was a heat-stable molecule(s) with a molecular weight of less than 3 kDa, and finally a single molecule required for the proliferation was purified by high-performance liquid chromatography processes. High-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analyses identified this molecule as glycine betaine (=trimethylglycine), and the requirement of this molecule for P. olsseni proliferation was confirmed by an assay using chemically synthesized, standard glycine betaine. Although glycine betaine was required for the proliferation of all examined Perkinsus species, supplementation of glycine betaine precursors, such as choline and betaine aldehyde, enhanced the proliferation of 4 Perkinsus species (P. marinus, P. chesapeaki, P. mediterraneus and P. honshuensis), but not of 2 others (P. olseni and P. beihaiensis). Thus, it was concluded that the ability to biosynthesise glycine betaine from its precursors varied among Perkinsus species, and that P. olseni and P. beihaiensis lack the ability required to biosynthesize glycine betaine for proliferation.
Collapse
Affiliation(s)
- Yuqi Liu
- Laboratory of Fish Diseases, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Ninomiya
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Yoshinaga
- Laboratory of Fish Diseases, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Itoh
- Laboratory of Fish Diseases, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Murphy C, Fernández Robledo JA, van Walsum GP. Perkinsus marinus in bioreactor: growth and a cost-reduced growth medium. J Ind Microbiol Biotechnol 2023; 50:kuad023. [PMID: 37669897 PMCID: PMC10500546 DOI: 10.1093/jimb/kuad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Perkinsus marinus (Perkinsea) is an osmotrophic facultative intracellular marine protozoan responsible for "Dermo" disease in the eastern oyster, Crassostrea virginica. In 1993 in vitro culture of P. marinus was developed in the absence of host cells. Compared to most intracellular protozoan parasites, the availability of P. marinus to grow in the absence of host cells has provided the basis to explore its use as a heterologous expression system. As the genetic toolbox is becoming available, there is also the need for larger-scale cultivation and lower-cost media formulations. Here, we took an industrial approach to scaled-up growth from a small culture flask to bioreactors, which required developing new cultivation parameters, including aeration, mixing, pH, temperature control, and media formulation. Our approach also enabled more real-time data collection on growth. The bioreactor cultivation method showed similar or accelerated growth rates of P. marinus compared to culture in T-flasks. Redox measurements indicated sufficient oxygen availability throughout the cultivation. Replacing fetal bovine serum with chicken serum showed no differences in the growth rate and a 60% reduction in the medium cost. This study opens the door to furthering P. marinus as a valid heterologous expression system by showing the ability to grow in bioreactors. ONE-SENTENCE SUMMARY Perkinsus marinus, a microbial parasite of oysters that could be useful for developing vaccines for humans, has been shown to grow well in laboratory equipment that can be expanded to commercial scale using a less expensive growth formula than usual laboratory practice.
Collapse
Affiliation(s)
- Caitlin Murphy
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | | | - G Peter van Walsum
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
3
|
Jang SH, Na SI, Lee MJ, Yoo YD. Assessing the utility of mitochondrial gene markers in the family Suessiaceae (Dinophyta) with phylogenomic validation. Mol Phylogenet Evol 2022; 177:107625. [PMID: 36064085 DOI: 10.1016/j.ympev.2022.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
The dinoflagellate family Suessiaceae comprises cosmopolitan species distributed across polar and tropical waters in both marine and freshwater ecosystems, encompassing free-living forms, symbionts, and parasites. Recently, species diversity within the family has rapidly expanded, now including a few species reported to cause red tides. Despite their ecological and evolutionary importance, classifying them within Suessiaceae is difficult due to the limitations of the existing molecular markers-the highly conserved small subunit ribosomal gene (SSU rDNA) and the presence of two indel regions of sequence fragments of the large subunit ribosomal gene (LSU rDNA)-resulting in poorly resolved phylogenetic relationships. We assessed mitochondrial cytochrome b (cob) and cytochrome c oxidase 1 (cox1) genes to develop robust molecular markers that can reveal the genetic diversity of the family Suessiaceae. The divergences of cob and cox1 sequences among the species in the family were greater than the SSU rDNA but less than the LSU rDNA and the ITS region. Moreover, the distinctive topology inferred from the mitochondrial genes provided high resolution among the suessiacean species. We examined the validity of the genetic markers using phylogenomics based on 2,023 core proteins. The divergence of the cob phylogeny was most consistent with that of the phylogenomic results. Taken together, the cob gene can be a novel marker reflecting topology at the genome-scale within the family Suessiaceae.
Collapse
Affiliation(s)
- Se Hyeon Jang
- Department of Oceanography, Chonnam National University, Gwangju 61186, South Korea.
| | - Seong In Na
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 00826, South Korea
| | - Moo Joon Lee
- Department of Marine Biotechnology, Anyang University, Incheon 23038, South Korea
| | - Yeong Du Yoo
- Department of Marine Biotechnology, College of Ocean Sciences, Kunsan National University, Kunsan 54150, South Korea
| |
Collapse
|
4
|
Williams EP, Bachvaroff TR, Place AR. A Global Approach to Estimating the Abundance and Duplication of Polyketide Synthase Domains in Dinoflagellates. Evol Bioinform Online 2021; 17:11769343211031871. [PMID: 34345159 PMCID: PMC8283056 DOI: 10.1177/11769343211031871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Many dinoflagellate species make toxins in a myriad of different molecular configurations but the underlying chemistry in all cases is presumably via modular synthases, primarily polyketide synthases. In many organisms modular synthases occur as discrete synthetic genes or domains within a gene that act in coordination thus forming a module that produces a particular fragment of a natural product. The modules usually occur in tandem as gene clusters with a syntenic arrangement that is often predictive of the resultant structure. Dinoflagellate genomes however are notoriously complex with individual genes present in many tandem repeats and very few synthetic modules occurring as gene clusters, unlike what has been seen in bacteria and fungi. However, modular synthesis in all organisms requires a free thiol group that acts as a carrier for sequential synthesis called a thiolation domain. We scanned 47 dinoflagellate transcriptomes for 23 modular synthase domain models and compared their abundance among 10 orders of dinoflagellates as well as their co-occurrence with thiolation domains. The total count of domain types was quite large with over thirty-thousand identified, 29 000 of which were in the core dinoflagellates. Although there were no specific trends in domain abundance associated with types of toxins, there were readily observable lineage specific differences. The Gymnodiniales, makers of long polyketide toxins such as brevetoxin and karlotoxin had a high relative abundance of thiolation domains as well as multiple thiolation domains within a single transcript. Orders such as the Gonyaulacales, makers of small polyketides such as spirolides, had fewer thiolation domains but a relative increase in the number of acyl transferases. Unique to the core dinoflagellates, however, were thiolation domains occurring alongside tetratricopeptide repeats that facilitate protein-protein interactions, especially hexa and hepta-repeats, that may explain the scaffolding required for synthetic complexes capable of making large toxins. Clustering analysis for each type of domain was also used to discern possible origins of duplication for the multitude of single domain transcripts. Single domain transcripts frequently clustered with synonymous domains from multi-domain transcripts such as the BurA and ZmaK like genes as well as the multi-ketosynthase genes, sometimes with a large degree of apparent gene duplication, while fatty acid synthesis genes formed distinct clusters. Surprisingly the acyl-transferases and ketoreductases involved in fatty acid synthesis (FabD and FabG, respectively) were found in very large clusters indicating an unprecedented degree of gene duplication for these genes. These results demonstrate a complex evolutionary history of core dinoflagellate modular synthases with domain specific duplications throughout the lineage as well as clues to how large protein complexes can be assembled to synthesize the largest natural products known.
Collapse
Affiliation(s)
- Ernest P Williams
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Allen R Place
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| |
Collapse
|
5
|
Yadavalli R, Umeda K, Waugh HA, Tracy AN, Sidhu AV, Hernández DE, Fernández Robledo JA. CRISPR/Cas9 Ribonucleoprotein-Based Genome Editing Methodology in the Marine Protozoan Parasite Perkinsus marinus. Front Bioeng Biotechnol 2021; 9:623278. [PMID: 33898400 PMCID: PMC8062965 DOI: 10.3389/fbioe.2021.623278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/09/2021] [Indexed: 11/15/2022] Open
Abstract
Perkinsus marinus (Perkinsozoa), a close relative of apicomplexans, is an osmotrophic facultative intracellular marine protozoan parasite responsible for "Dermo" disease in oysters and clams. Although there is no clinical evidence of this parasite infecting humans, HLA-DR40 transgenic mice studies strongly suggest the parasite as a natural adjuvant in oral vaccines. P. marinus is being developed as a heterologous gene expression platform for pathogens of medical and veterinary relevance and a novel platform for delivering vaccines. We previously reported the transient expression of two rodent malaria genes Plasmodium berghei HAP2 and MSP8. In this study, we optimized the original electroporation-based protocol to establish a stable heterologous expression method. Using 20 μg of pPmMOE[MOE1]:GFP and 25.0 × 106 P. marinus cells resulted in 98% GFP-positive cells. Furthermore, using the optimized protocol, we report for the first time the successful knock-in of GFP at the C-terminus of the PmMOE1 using ribonucleoprotein (RNP)-based CRISPR/Cas9 gene editing methodology. The GFP was expressed 18 h post-transfection, and expression was observed for 8 months post-transfection, making it a robust and stable knock-in system.
Collapse
Affiliation(s)
| | - Kousuke Umeda
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hannah A. Waugh
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Southern Maine Community College, South Portland, ME, United States
| | - Adrienne N. Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | - Asha V. Sidhu
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | - Derek E. Hernández
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Colby College, Waterville, ME, United States
| | | |
Collapse
|
6
|
Gornik SG, Hu I, Lassadi I, Waller RF. The Biochemistry and Evolution of the Dinoflagellate Nucleus. Microorganisms 2019; 7:microorganisms7080245. [PMID: 31398798 PMCID: PMC6723414 DOI: 10.3390/microorganisms7080245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Dinoflagellates are known to possess a highly aberrant nucleus-the so-called dinokaryon-that exhibits a multitude of exceptional biological features. These include: (1) Permanently condensed chromosomes; (2) DNA in a cholesteric liquid crystalline state, (3) extremely large DNA content (up to 200 pg); and, perhaps most strikingly, (4) a deficit of histones-the canonical building blocks of all eukaryotic chromatin. Dinoflagellates belong to the Alveolata clade (dinoflagellates, apicomplexans, and ciliates) and, therefore, the biological oddities observed in dinoflagellate nuclei are derived character states. Understanding the sequence of changes that led to the dinokaryon has been difficult in the past with poor resolution of dinoflagellate phylogeny. Moreover, lack of knowledge of their molecular composition has constrained our understanding of the molecular properties of these derived nuclei. However, recent advances in the resolution of the phylogeny of dinoflagellates, particularly of the early branching taxa; the realization that divergent histone genes are present; and the discovery of dinoflagellate-specific nuclear proteins that were acquired early in dinoflagellate evolution have all thrown new light nature and evolution of the dinokaryon.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies (COS), Universität Heidelberg, 69120 Heidelberg, Germany.
| | - Ian Hu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
7
|
Schott EJ, Di Lella S, Bachvaroff TR, Amzel LM, Vasta GR. Lacking catalase, a protistan parasite draws on its photosynthetic ancestry to complete an antioxidant repertoire with ascorbate peroxidase. BMC Evol Biol 2019; 19:146. [PMID: 31324143 PMCID: PMC6642578 DOI: 10.1186/s12862-019-1465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/24/2019] [Indexed: 01/06/2023] Open
Abstract
Background Antioxidative enzymes contribute to a parasite’s ability to counteract the host’s intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite’s life history? Results Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. Conclusions PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed. Electronic supplementary material The online version of this article (10.1186/s12862-019-1465-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric J Schott
- Department of Microbiology & Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA.,Present address: University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA
| | - Santiago Di Lella
- Instituto de Química Biológica - Ciencias Exactas y Naturales, IQUIBICEN / CONICET, Departamento de Química Biológica, Fac. de Cs. Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Capital Federal, Argentina
| | - Tsvetan R Bachvaroff
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA
| | - L Mario Amzel
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Gerardo R Vasta
- Department of Microbiology & Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
8
|
Riaz S, Niaz Z, Khan S, Liu Y, Sui Z. Detection, characterization and expression dynamics of histone proteins in the dinoflagellate Alexandrium pacificum during growth regulation. HARMFUL ALGAE 2019; 87:101630. [PMID: 31349883 DOI: 10.1016/j.hal.2019.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Histones are the most abundant proteins associated with eukaryotic nuclear DNA. The exception is dinoflagellates, which have histone protein expression that is mostly reported to be below detectable levels. In this study, we investigated the presence of histone proteins and their functions in the dinoflagellate, Alexandrium pacificum. Histone protein sequences were analyzed, focusing on phylogenetic analysis and histone code. Histone expression was analyzed during the cell cycle and under nutritionally enhanced conditions using quantitative-PCR and western blots. Acid-soluble proteins were subjected to mass spectrometry analysis. To our knowledge, this is the first report of immunological detection of histone proteins (H2B and H4) in any dinoflagellate species. Absolute quantification of histone transcript in activily dividing cells revealed significant transcription in cells. The stable expression of histones during the cell cycle suggested that the histone genes in A. pacificum belonged to a replication-independent class and appeared to have a limited role in DNA packaging. The conservation of numerous post-translationally modified residues of multiple histone variants and differential expression of histones under nutritionally enhanced conditions suggested their functional significance in dinoflagellates. However, we detected histone H2B protein only via mass spectrometry. Histone-like protein was identified as most abundant acid-soluble protein of the cells.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, University of Central Punjab, Lahore, Pakistan
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
9
|
A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum. PLoS One 2019; 14:e0212912. [PMID: 30818350 PMCID: PMC6394959 DOI: 10.1371/journal.pone.0212912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Amoebophrya is part of an enigmatic, diverse, and ubiquitous marine alveolate lineage known almost entirely from anonymous environmental sequencing. Two cultured Amoebophrya strains grown on core dinoflagellate hosts were used for transcriptome sequencing. BLASTx using different genetic codes suggests that Amoebophyra sp. ex Karlodinium veneficum uses the three typical stop codons (UAA, UAG, and UGA) to encode amino acids. When UAA and UAG are translated as glutamine about half of the alignments have better BLASTx scores, and when UGA is translated as tryptophan one fifth have better scores. However, the sole stop codon appears to be UGA based on conserved genes, suggesting contingent translation of UGA. Neither host sequences, nor sequences from the second strain, Amoebophrya sp. ex Akashiwo sanguinea had similar results in BLASTx searches. A genome survey of Amoebophyra sp. ex K. veneficum showed no evidence for transcript editing aside from mitochondrial transcripts. The dynein heavy chain (DHC) gene family was surveyed and of 14 transcripts only two did not use UAA, UAG, or UGA in a coding context. Overall the transcriptome displayed strong bias for A or U in third codon positions, while the tRNA genome survey showed bias against codons ending in U, particularly for amino acids with two codons ending in either C or U. Together these clues suggest contingent translation mechanisms in Amoebophyra sp. ex K. veneficum and a phylogenetically distinct instance of genetic code modification.
Collapse
|
10
|
Liu CL, Place AR, Jagus R. Use of Antibiotics for Maintenance of Axenic Cultures of Amphidinium carterae for the Analysis of Translation. Mar Drugs 2017; 15:E242. [PMID: 28763019 PMCID: PMC5577597 DOI: 10.3390/md15080242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022] Open
Abstract
Most dinoflagellates in culture are bacterized, complicating the quantification of protein synthesis, as well as the analysis of its regulation. In bacterized cultures of Amphidinium carterae Hulbert, up to 80% of protein synthetic activity appears to be predominantly bacterial based on responses to inhibitors of protein synthesis. To circumvent this, axenic cultures of A. carterae were obtained and shown to respond to inhibitors of protein synthesis in a manner characteristic of eukaryotes. However, these responses changed with time in culture correlating with the reappearance of bacteria. Here we show that culture with kanamycin (50 μg/mL), carbenicillin (100 μg/mL), and streptomycin sulfate (50 μg/mL) (KCS), but not 100 units/mL of penicillin and streptomycin (PS), prevents the reappearance of bacteria and allows A. carterae protein synthesis to be quantified without the contribution of an associated bacterial community. We demonstrate that A. carterae can grow in the absence of a bacterial community. Furthermore, maintenance in KCS does not inhibit the growth of A. carterae cultures but slightly extends the growth phase and allows accumulation to somewhat higher saturation densities. We also show that cultures of A. carterae maintained in KCS respond to the eukaryotic protein synthesis inhibitors cycloheximide, emetine, and harringtonine. Establishment of these culture conditions will facilitate our ability to use polysome fractionation and ribosome profiling to study mRNA recruitment. Furthermore, this study shows that a simple and fast appraisal of the presence of a bacterial community in A. carterae cultures can be made by comparing responses to cycloheximide and chloramphenicol rather than depending on lengthier culture-based assessments.
Collapse
Affiliation(s)
- Chieh-Lun Liu
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | - Rosemary Jagus
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
11
|
Haq S, Bachvaroff TR, Place AR. Characterization of Acetyl-CoA Carboxylases in the Basal Dinoflagellate Amphidinium carterae. Mar Drugs 2017; 15:md15060149. [PMID: 28587129 PMCID: PMC5484099 DOI: 10.3390/md15060149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022] Open
Abstract
Dinoflagellates make up a diverse array of fatty acids and polyketides. A necessary precursor for their synthesis is malonyl-CoA formed by carboxylating acetyl CoA using the enzyme acetyl-CoA carboxylase (ACC). To date, information on dinoflagellate ACC is limited. Through transcriptome analysis in Amphidinium carterae, we found three full-length homomeric type ACC sequences; no heteromeric type ACC sequences were found. We assigned the putative cellular location for these ACCs based on transit peptide predictions. Using streptavidin Western blotting along with mass spectrometry proteomics, we validated the presence of ACC proteins. Additional bands showing other biotinylated proteins were also observed. Transcript abundance for these ACCs follow the global pattern of expression for dinoflagellate mRNA messages over a diel cycle. This is one of the few descriptions at the transcriptomic and protein level of ACCs in dinoflagellates. This work provides insight into the enzymes which make the CoA precursors needed for fatty acid and toxin synthesis in dinoflagellates.
Collapse
Affiliation(s)
- Saddef Haq
- Graduate Program in Life Sciences, University of Maryland, Baltimore, MD 21201, USA.
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21201, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Morse D, Daoust P, Benribague S. A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates. Protist 2016; 167:610-621. [PMID: 27816812 DOI: 10.1016/j.protis.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/29/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a group of unicellular and generally marine protists, of interest to many because of their ability to form the large algal blooms commonly called "red tides". The large algal concentrations in these blooms require sustained cell replication, yet to date little is known about cell cycle regulation in these organisms. To address this issue, we have screened the transcriptomes of two dinoflagellates, Lingulodinium polyedrum and Symbiodinium sp., with budding yeast cell cycle pathway components. We find most yeast cell cycle regulators have homologs in these dinoflagellates, suggesting that the yeast model is appropriate for understanding regulation of the dinoflagellate cell cycle. The dinoflagellates are lacking several components essential in yeast, but a comparison with a broader phylogenetic range of protists reveals these components are usually also missing in other organisms. Lastly, phylogenetic analyses show that the dinoflagellates contain at least three cyclin-dependent kinase (CDK) homologs (belonging to the CDK1, CDK5 and CDK8 families), and that the dinoflagellate cyclins belong exclusively to the A/B type. This suggests that dinoflagellate CDKs likely play a limited role outside regulation of the cell cycle.
Collapse
Affiliation(s)
- David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2.
| | - Philip Daoust
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2
| | - Siham Benribague
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2
| |
Collapse
|
13
|
Rubanov LI, Seliverstov AV, Zverkov OA, Lyubetsky VA. A method for identification of highly conserved elements and evolutionary analysis of superphylum Alveolata. BMC Bioinformatics 2016; 17:385. [PMID: 27645252 PMCID: PMC5028923 DOI: 10.1186/s12859-016-1257-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/13/2016] [Indexed: 01/24/2023] Open
Abstract
Background Perfectly or highly conserved DNA elements were found in vertebrates, invertebrates, and plants by various methods. However, little is known about such elements in protists. The evolutionary distance between apicomplexans can be very high, in particular, due to the positive selection pressure on them. This complicates the identification of highly conserved elements in alveolates, which is overcome by the proposed algorithm. Results A novel algorithm is developed to identify highly conserved DNA elements. It is based on the identification of dense subgraphs in a specially built multipartite graph (whose parts correspond to genomes). Specifically, the algorithm does not rely on genome alignments, nor pre-identified perfectly conserved elements; instead, it performs a fast search for pairs of words (in different genomes) of maximum length with the difference below the specified edit distance. Such pair defines an edge whose weight equals the maximum (or total) length of words assigned to its ends. The graph composed of these edges is then compacted by merging some of its edges and vertices. The dense subgraphs are identified by a cellular automaton-like algorithm; each subgraph defines a cluster composed of similar inextensible words from different genomes. Almost all clusters are considered as predicted highly conserved elements. The algorithm is applied to the nuclear genomes of the superphylum Alveolata, and the corresponding phylogenetic tree is built and discussed. Conclusion We proposed an algorithm for the identification of highly conserved elements. The multitude of identified elements was used to infer the phylogeny of Alveolata. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1257-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lev I Rubanov
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bolshoi Karetnyi per. 19, Building 1, Moscow, 127051, Russia.
| | - Alexandr V Seliverstov
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bolshoi Karetnyi per. 19, Building 1, Moscow, 127051, Russia
| | - Oleg A Zverkov
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bolshoi Karetnyi per. 19, Building 1, Moscow, 127051, Russia
| | - Vassily A Lyubetsky
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bolshoi Karetnyi per. 19, Building 1, Moscow, 127051, Russia
| |
Collapse
|
14
|
Bromberg R, Grishin NV, Otwinowski Z. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer. PLoS Comput Biol 2016; 12:e1004985. [PMID: 27336403 PMCID: PMC4918981 DOI: 10.1371/journal.pcbi.1004985] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/10/2016] [Indexed: 01/20/2023] Open
Abstract
Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. Due to their lack of distinct morphological features, bacteria and archaea were extremely difficult to classify until technology was developed to obtain their DNA sequences; these sequences could then be compared to estimate evolutionary relationships. Now, due to technological advances, there is a flood of available sequences from a wide variety of organisms. These advances have spurred the development of algorithms which can estimate evolutionary relationships using whole genomes, in contrast to the more traditional methods which used single genes earlier and now typically use groups of conserved genes. However, there are many challenges when attempting to infer evolutionary relationships, in particular horizontal gene transfer, where DNA is transferred from one organism to another, resulting in an organism’s genome containing DNA that does not reflect its evolution by descent. We developed a new whole-genome method for estimating evolutionary distances which identifies and corrects for horizontal transfer. We found that for SlopeTree and all other whole-genome methods we applied, horizontal transfer causes some evolutionary distances to be grossly underestimated, and that our correction corrects for this.
Collapse
Affiliation(s)
- Raquel Bromberg
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Bentlage B, Rogers TS, Bachvaroff TR, Delwiche CF. Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates. J Eukaryot Microbiol 2015; 63:123-37. [PMID: 26291956 DOI: 10.1111/jeu.12261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
Abstract
Isoprenoid metabolism occupies a central position in the anabolic metabolism of all living cells. In plastid-bearing organisms, two pathways may be present for de novo isoprenoid synthesis, the cytosolic mevalonate pathway (MVA) and nuclear-encoded, plastid-targeted nonmevalonate pathway (DOXP). Using transcriptomic data we find that dinoflagellates apparently make exclusive use of the DOXP pathway. Using phylogenetic analyses of all DOXP genes we inferred the evolutionary origins of DOXP genes in dinoflagellates. Plastid replacements led to a DOXP pathway of multiple evolutionary origins. Dinoflagellates commonly referred to as dinotoms due to their relatively recent acquisition of a diatom plastid, express two completely redundant DOXP pathways. Dinoflagellates with a tertiary plastid of haptophyte origin, by contrast, express a hybrid pathway of dual evolutionary origin. Here, changes in the targeting motif of signal/transit peptide likely allow for targeting the new plastid by the proteins of core isoprenoid metabolism proteins. Parasitic dinoflagellates of the Amoebophyra species complex appear to have lost the DOXP pathway, suggesting that they may rely on their host for sterol synthesis.
Collapse
Affiliation(s)
- Bastian Bentlage
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Travis S Rogers
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E Pratt St., Baltimore, Maryland, 21202
| | - Charles F Delwiche
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742.,Maryland Agricultural Experiment Station, AGNR, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
16
|
Abstract
All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.
Collapse
Affiliation(s)
- Philippe Fort
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| | - Andrey V Kajava
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France Institut de Biologie Computationnelle, Montpellier, France
| | - Fredéric Delsuc
- Université de Montpellier, France CNRS, IRD, Institut des Sciences de l'Evolution, UMR 5554, Montpellier, France
| | - Olivier Coux
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| |
Collapse
|
17
|
Fernández-Boo S, Villalba A, Cao A. Cell proteome variability of protistan mollusc parasite Perkinsus olseni among regions of the Spanish coast. DISEASES OF AQUATIC ORGANISMS 2015; 113:245-256. [PMID: 25850402 DOI: 10.3354/dao02835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We evaluated the proteome variability of in vitro-cultured Perkinsus olseni cells deriving from 4 regions of the Spanish coast: the rías of Arousa and Pontevedra (Galicia, NW Spain), Carreras River in Huelva (Andalusia, SW Spain) and Delta de l'Ebre (Catalonia, NE Spain). P. olseni in vitro clonal cultures were produced starting from parasite isolates from 4 individual clams from each region. Those clonal cultures were used to extract cell proteins, which were separated by 2-dimensional (2D) electrophoresis. Qualitative comparison of P. olseni protein expression profiles among regions was performed with PD Quest software. Around 700 protein spots from parasites derived from each region were considered, from which 141 spots were shared by all the regions. Various spots were found to be exclusive to each region. Higher similarity was found among the proteomes of P. olseni from the Atlantic regions than between those from the Mediterranean and the Atlantic. A total of 54 spots were excised from the gels and sequenced. Nineteen proteins were annotated after searching in databases, 13 being shared by all the regions and 6 exclusive to 1 region. Most of the identified proteins were involved in glycolysis, oxidation/reduction, metabolism and response to stress. No direct evidence of P. olseni variability associated with virulence was found within the protein set analysed, although the differences in metabolic adaptation and stress response could be connected to pathogenicity.
Collapse
Affiliation(s)
- Sergio Fernández-Boo
- Centro de Investigacións Mariñas, Consellería do Medio Rural e do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | | | | |
Collapse
|
18
|
Jones GD, Williams EP, Place AR, Jagus R, Bachvaroff TR. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates. BMC Evol Biol 2015; 15:14. [PMID: 25886308 PMCID: PMC4330643 DOI: 10.1186/s12862-015-0301-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/29/2015] [Indexed: 01/27/2023] Open
Abstract
Background Dinoflagellates are eukaryotes with unusual cell biology and appear to rely on translational rather than transcriptional control of gene expression. The eukaryotic translation initiation factor 4E (eIF4E) plays an important role in regulating gene expression because eIF4E binding to the mRNA cap is a control point for translation. eIF4E is part of an extended, eukaryote-specific family with different members having specific functions, based on studies of model organisms. Dinoflagellate eIF4E diversity could provide a mechanism for dinoflagellates to regulate gene expression in a post-transcriptional manner. Accordingly, eIF4E family members from eleven core dinoflagellate transcriptomes were surveyed to determine the diversity and phylogeny of the eIF4E family in dinoflagellates and related lineages including apicomplexans, ciliates and heterokonts. Results The survey uncovered eight to fifteen (on average eleven) different eIF4E family members in each core dinoflagellate species. The eIF4E family members from heterokonts and dinoflagellates segregated into three clades, suggesting at least three eIF4E cognates were present in their common ancestor. However, these three clades are distinct from the three previously described eIF4E classes, reflecting diverse approaches to a central eukaryotic function. Heterokonts contain four clades, ciliates two and apicomplexans only a single recognizable eIF4E clade. In the core dinoflagellates, the three clades were further divided into nine sub-clades based on the phylogenetic analysis and species representation. Six of the sub-clades included at least one member from all eleven core dinoflagellate species, suggesting duplication in their shared ancestor. Conservation within sub-clades varied, suggesting different selection pressures. Conclusions Phylogenetic analysis of eIF4E in core dinoflagellates revealed complex layering of duplication and conservation when compared to other eukaryotes. Our results suggest that the diverse eIF4E family in core dinoflagellates may provide a toolkit to enable selective translation as a strategy for controlling gene expression in these enigmatic eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0301-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Grant D Jones
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA. .,University of Maryland, Baltimore, Graduate School, Baltimore, USA.
| | - Ernest P Williams
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Rosemary Jagus
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| |
Collapse
|
19
|
Abstract
Apicomplexan parasites include some of the most prevalent and deadly human pathogens. Novel antiparasitic drugs are urgently needed. Synthesis and metabolism of isoprenoids may present multiple targets for therapeutic intervention. The apicoplast-localized methylerythritol phosphate (MEP) pathway for isoprenoid precursor biosynthesis is distinct from the mevalonate (MVA) pathway used by the mammalian host, and this pathway is apparently essential in most Apicomplexa. In this review, we discuss the current field of research on production and metabolic fates of isoprenoids in apicomplexan parasites, including the acquisition of host isoprenoid precursors and downstream products. We describe recent work identifying the first MEP pathway regulator in apicomplexan parasites, and introduce several promising areas for ongoing research into this well-validated antiparasitic target.
Collapse
Affiliation(s)
- Leah Imlay
- Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| | - Audrey R Odom
- Department of Pediatrics Washington University School of Medicine St. Louis, MO 63110 USA & Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| |
Collapse
|
20
|
Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Mol Phylogenet Evol 2014; 78:36-42. [DOI: 10.1016/j.ympev.2014.04.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/18/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022]
|
21
|
Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus. Int J Parasitol 2014; 44:305-17. [DOI: 10.1016/j.ijpara.2014.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/10/2014] [Accepted: 01/15/2014] [Indexed: 01/11/2023]
|
22
|
Why do malaria parasites increase host erythrocyte permeability? Trends Parasitol 2014; 30:151-9. [PMID: 24507014 DOI: 10.1016/j.pt.2014.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
Abstract
Malaria parasites increase erythrocyte permeability to diverse solutes including anions, some cations, and organic solutes, as characterized with several independent methods. Over the past decade, patch-clamp studies have determined that the permeability results from one or more ion channels on the infected erythrocyte host membrane. However, the biological role(s) served by these channels, if any, remain controversial. Recent studies implicate the plasmodial surface anion channel (PSAC) and a role in parasite nutrient acquisition. A debated alternative role in remodeling host ion composition for the benefit of the parasite appears to be nonessential. Because both channel activity and the associated clag3 genes are strictly conserved in malaria parasites, channel-mediated permeability is an attractive target for development of new therapies.
Collapse
|
23
|
Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo) do not develop noticeable pathology but elicit systemic immunity. PLoS One 2014; 9:e87435. [PMID: 24498105 PMCID: PMC3909113 DOI: 10.1371/journal.pone.0087435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/23/2013] [Indexed: 12/02/2022] Open
Abstract
Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA0) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA0 mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.
Collapse
|
24
|
Fernández Robledo JA, Vasta GR, Record NR. Protozoan parasites of bivalve molluscs: literature follows culture. PLoS One 2014; 9:e100872. [PMID: 24955977 PMCID: PMC4067406 DOI: 10.1371/journal.pone.0100872] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
Bivalve molluscs are key components of the estuarine environments as contributors to the trophic chain, and as filter -feeders, for maintaining ecosystem integrity. Further, clams, oysters, and scallops are commercially exploited around the world both as traditional local shellfisheries, and as intensive or semi-intensive farming systems. During the past decades, populations of those species deemed of environmental or commercial interest have been subject to close monitoring given the realization that these can suffer significant decline, sometimes irreversible, due to overharvesting, environmental pollution, or disease. Protozoans of the genera Perkinsus, Haplosporidium, Marteilia, and Bonamia are currently recognized as major threats for natural and farmed bivalve populations. Since their identification, however, the variable publication rates of research studies addressing these parasitic diseases do not always appear to reflect their highly significant environmental and economic impact. Here we analyzed the peer- reviewed literature since the initial description of these parasites with the goal of identifying potential milestone discoveries or achievements that may have driven the intensity of the research in subsequent years, and significantly increased publication rates. Our analysis revealed that after initial description of the parasite as the etiological agent of a given disease, there is a time lag before a maximal number of yearly publications are reached. This has already taken place for most of them and has been followed by a decrease in publication rates over the last decade (20- to 30- year lifetime in the literature). Autocorrelation analyses, however, suggested that advances in parasite purification and culture methodologies positively drive publication rates, most likely because they usually lead to novel molecular tools and resources, promoting mechanistic studies. Understanding these trends should help researchers in prioritizing research efforts for these and other protozoan parasites, together with their development as model systems for further basic and translational research in parasitic diseases.
Collapse
Affiliation(s)
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, University of Maryland Baltimore, School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, United States of America
| | - Nicholas R. Record
- Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America
| |
Collapse
|
25
|
Bachvaroff TR, Gornik SG, Concepcion GT, Waller RF, Mendez GS, Lippmeier JC, Delwiche CF. Dinoflagellate phylogeny revisited: using ribosomal proteins to resolve deep branching dinoflagellate clades. Mol Phylogenet Evol 2013; 70:314-22. [PMID: 24135237 DOI: 10.1016/j.ympev.2013.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
The alveolates are composed of three major lineages, the ciliates, dinoflagellates, and apicomplexans. Together these 'protist' taxa play key roles in primary production and ecology, as well as in illness of humans and other animals. The interface between the dinoflagellate and apicomplexan clades has been an area of recent discovery, blurring the distinction between these two clades. Moreover, phylogenetic analysis has yet to determine the position of basal dinoflagellate clades hence the deepest branches of the dinoflagellate tree currently remain unresolved. Large-scale mRNA sequencing was applied to 11 species of dinoflagellates, including strains of the syndinean genera Hematodinium and Amoebophrya, parasites of crustaceans and dinoflagellates, respectively, to optimize and update the dinoflagellate tree. From the transcriptome-scale data a total of 73 ribosomal protein-coding genes were selected for phylogeny. After individual gene orthology assessment, the genes were concatenated into a >15,000 amino acid alignment with 76 taxa from dinoflagellates, apicomplexans, ciliates, and the outgroup heterokonts. Overall the tree was well resolved and supported, when the data was subsampled with gblocks or constraint trees were tested with the approximately unbiased test. The deepest branches of the dinoflagellate tree can now be resolved with strong support, and provides a clearer view of the evolution of the distinctive traits of dinoflagellates.
Collapse
Affiliation(s)
- Tsvetan R Bachvaroff
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States.
| | | | | | | | | | | | | |
Collapse
|
26
|
Host–parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species. J Invertebr Pathol 2013; 114:196-216. [DOI: 10.1016/j.jip.2013.06.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/05/2013] [Accepted: 06/09/2013] [Indexed: 01/08/2023]
|
27
|
Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS One 2013; 8:e76278. [PMID: 24086721 PMCID: PMC3785458 DOI: 10.1371/journal.pone.0076278] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs), factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during, and possibly pre-dating, the move from free-living marine algae to deadly human parasites.
Collapse
|
28
|
Effects of taxon sampling in reconstructions of intron evolution. Int J Genomics 2013; 2013:671316. [PMID: 23671844 PMCID: PMC3647540 DOI: 10.1155/2013/671316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/02/2013] [Indexed: 11/26/2022] Open
Abstract
Introns comprise a considerable portion of eukaryotic genomes; however, their evolution is understudied. Numerous works of the last years largely disagree on many aspects of intron evolution. Interpretation of these differences is hindered because different algorithms and taxon sampling strategies were used. Here, we present the first attempt of a systematic evaluation of the effects of taxon sampling on popular intron evolution estimation algorithms. Using the “taxon jackknife” method, we compared the effect of taxon sampling on the behavior of intron evolution inferring algorithms. We show that taxon sampling can dramatically affect the inferences and identify conditions where algorithms are prone to systematic errors. Presence or absence of some key species is often more important than the taxon sampling size alone. Criteria of representativeness of the taxonomic sampling for reliable reconstructions are outlined. Presence of the deep-branching species with relatively high intron density is more important than sheer number of species. According to these criteria, currently available genomic databases are representative enough to provide reliable inferences of the intron evolution in animals, land plants, and fungi, but they underrepresent many groups of unicellular eukaryotes, including the well-studied Alveolata.
Collapse
|
29
|
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Shadwick L, Schoch CL, Smirnov A, Spiegel FW. The revised classification of eukaryotes. J Eukaryot Microbiol 2013; 59:429-93. [PMID: 23020233 DOI: 10.1111/j.1550-7408.2012.00644.x] [Citation(s) in RCA: 912] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.
Collapse
Affiliation(s)
- Sina M Adl
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Loss of Nucleosomal DNA Condensation Coincides with Appearance of a Novel Nuclear Protein in Dinoflagellates. Curr Biol 2012; 22:2303-12. [PMID: 23159597 DOI: 10.1016/j.cub.2012.10.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
|
31
|
Orr RJS, Murray SA, Stüken A, Rhodes L, Jakobsen KS. When naked became armored: an eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates. PLoS One 2012. [PMID: 23185516 PMCID: PMC3501488 DOI: 10.1371/journal.pone.0050004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.
Collapse
Affiliation(s)
- Russell J. S. Orr
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, Oslo, Norway
| | - Shauna A. Murray
- Ecology and Evolution Research Centre and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Sydney Institute of Marine Sciences, Mosman, New South Wales, Australia
| | - Anke Stüken
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, Oslo, Norway
| | | | - Kjetill S. Jakobsen
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
32
|
Danne JC, Gornik SG, Macrae JI, McConville MJ, Waller RF. Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. Mol Biol Evol 2012; 30:123-39. [PMID: 22923466 DOI: 10.1093/molbev/mss205] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial metabolism is central to the supply of ATP and numerous essential metabolites in most eukaryotic cells. Across eukaryotic diversity, however, there is evidence of much adaptation of the function of this organelle according to specific metabolic requirements and/or demands imposed by different environmental niches. This includes substantial loss or retailoring of mitochondrial function in many parasitic groups that occupy potentially nutrient-rich environments in their metazoan hosts. Infrakingdom Alveolata comprises a well-supported alliance of three disparate eukaryotic phyla-dinoflagellates, apicomplexans, and ciliates. These major taxa represent diverse lifestyles of free-living phototrophs, parasites, and predators and offer fertile territory for exploring character evolution in mitochondria. The mitochondria of apicomplexan parasites provide much evidence of loss or change of function from analysis of mitochondrial protein genes. Much less, however, is known of mitochondrial function in their closest relatives, the dinoflagellate algae. In this study, we have developed new models of mitochondrial metabolism in dinoflagellates based on gene predictions and stable isotope labeling experiments. These data show that many changes in mitochondrial gene content previously only known from apicomplexans are found in dinoflagellates also. For example, loss of the pyruvate dehydrogenase complex and changes in tricarboxylic acid (TCA) cycle enzyme complement are shared by both groups and, therefore, represent ancestral character states. Significantly, we show that these changes do not result in loss of typical TCA cycle activity fueled by pyruvate. Thus, dinoflagellate data show that many changes in alveolate mitochondrial metabolism are independent of the major lifestyle changes seen in these lineages and provide a revised view of mitochondria character evolution during evolution of parasitism in apicomplexans.
Collapse
Affiliation(s)
- Jillian C Danne
- School of Botany, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
33
|
Drouin G, Tsang C. 5S rRNA Gene Arrangements in Protists: A Case of Nonadaptive Evolution. J Mol Evol 2012; 74:342-51. [DOI: 10.1007/s00239-012-9512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/25/2012] [Indexed: 12/30/2022]
|
34
|
Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists. Comp Funct Genomics 2012; 2012:134839. [PMID: 22778692 PMCID: PMC3388326 DOI: 10.1155/2012/134839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/09/2012] [Indexed: 01/01/2023] Open
Abstract
The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in “text-book” model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.
Collapse
|
35
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jackson CJ, Gornik SG, Waller RF. The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol Evol 2011; 4:59-72. [PMID: 22113794 PMCID: PMC3268668 DOI: 10.1093/gbe/evr122] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA.
Collapse
Affiliation(s)
- C J Jackson
- School of Botany, University of Melbourne, Australia
| | | | | |
Collapse
|
37
|
Fernández Robledo JA, Caler E, Matsuzaki M, Keeling PJ, Shanmugam D, Roos DS, Vasta GR. The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol 2011; 41:1217-29. [PMID: 21889509 DOI: 10.1016/j.ijpara.2011.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/11/2022]
Abstract
Perkinsus marinus (Phylum Perkinsozoa) is a protozoan parasite that has devastated natural and farmed oyster populations in the USA, significantly affecting the shellfish industry and the estuarine environment. The other two genera in the phylum, Parvilucifera and Rastrimonas, are parasites of microeukaryotes. The Perkinsozoa occupies a key position at the base of the dinoflagellate branch, close to its divergence from the Apicomplexa, a clade that includes parasitic protista, many harbouring a relic plastid. Thus, as a taxon that has also evolved toward parasitism, the Perkinsozoa has attracted the attention of biologists interested in the evolution of this organelle, both in its ultrastructure and the conservation, loss or transfer of its genes. A review of the recent literature reveals mounting evidence in support of the presence of a relic plastid in P. marinus, including the presence of multimembrane structures, characteristic metabolic pathways and proteins with a bipartite N-terminal extension. Further, these findings raise intriguing questions regarding the potential functions and unique adaptation of the putative plastid and/or plastid genes in the Perkinsozoa. In this review we analyse the above-mentioned evidence and evaluate the potential future directions and expected benefits of addressing such questions. Given the rapidly expanding molecular/genetic resources and methodological toolbox for Perkinsus spp., these organisms should complement the currently established models for investigating plastid evolution within the Chromalveolata.
Collapse
Affiliation(s)
- José A Fernández Robledo
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, IMET, Baltimore, MD 21202-3101, USA.
| | | | | | | | | | | | | |
Collapse
|