1
|
Arai H, Ueda M, Hirano T, Akizuki N, Lin S, Hanh DK, Widada J, Rohman MS, Nakai M, Kunimi Y, Vang LV, Wijonarko A, Inoue MN. Conserved infections and reproductive phenotypes of Wolbachia symbionts in Asian tortrix moths. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13219. [PMID: 38070178 PMCID: PMC10866051 DOI: 10.1111/1758-2229.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/13/2023] [Indexed: 02/15/2024]
Abstract
Wolbachia is a ubiquitous endosymbiotic bacterium that manipulates insect reproduction. A notable feature of Wolbachia is male killing (MK), whereby sons of infected females are killed during development; however, the evolutionary processes by which Wolbachia acquired the MK ability remain unclear. The tea tortrix moth Homona magnanima (Tortricidae) harbours three non-MK Wolbachia strains (wHm-a, wHm-b and wHm-c) and an MK strain wHm-t. Although wHm-t and wHm-c are closely related, only wHm-t has an MK-associated prophage region. To understand the evolutionary processes underlying the emergence of MK wHm-t, we examined Wolbachia infections and phenotypes in 62 tortricid species collected from 39 localities across Japan, Taiwan, Vietnam and Indonesia. PCR assays detected wHm-c relatives in 51 species and triple infection of wHm-a, wHm-b and wHm-c in 31 species. Apart from Taiwanese H. magnanima, no species exhibited the MK phenotype and were positive for the wHm-t-specific prophage. While wHm-t infection was dominant in Taiwanese H. magnanima, wHm-a, wHm-b and wHm-c were dominant in Japanese H. magnanima populations. These results suggest that wHm-a, wHm-b and wHm-c strains descended from a common ancestor with repeated infection loss and that wHm-t evolved from the wHm-c acquiring MK ability in allopatric populations of H. magnanima.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Masatoshi Ueda
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Tatsuya Hirano
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Naoya Akizuki
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Shiou‐Ruei Lin
- Crop Environment SectionTea and Beverage Research Station, Ministry of AgricultureTaoyuan CityTaiwan
| | | | - Jaka Widada
- Department of Agricultural Microbiology, Faculty of AgricultureUniversitas Gadjah MadaYogyakartaIndonesia
| | - Muhammad Saifur Rohman
- Department of Agricultural Microbiology, Faculty of AgricultureUniversitas Gadjah MadaYogyakartaIndonesia
| | - Madoka Nakai
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Yasuhisa Kunimi
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| | - Le Van Vang
- College of AgricultureCan Tho UniversityCan Tho CityVietnam
| | - Arman Wijonarko
- Department of Plant Protection, Faculty of AgricultureUniversitas Gadjah MadaYogyakartaIndonesia
| | - Maki N. Inoue
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyTokyoJapan
| |
Collapse
|
2
|
Lau MJ, Schmidt TL, Yang Q, Chung J, Sankey L, Ross PA, Hoffmann AA. Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia. BMC Genomics 2021; 22:894. [PMID: 34906084 PMCID: PMC8670162 DOI: 10.1186/s12864-021-08200-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Wolbachia wMel is the most commonly used strain in rear and release strategies for Aedes aegypti mosquitoes that aim to inhibit the transmission of arboviruses such as dengue, Zika, Chikungunya and yellow fever. However, the long-term establishment of wMel in natural Ae. aegypti populations raises concerns that interactions between Wolbachia wMel and Ae. aegypti may lead to changes in the host genome, which could affect useful attributes of Wolbachia that allow it to invade and suppress disease transmission. Results We applied an evolve-and-resequence approach to study genome-wide genetic changes in Ae. aegypti from the Cairns region, Australia, where Wolbachia wMel was first introduced more than 10 years ago. Mosquito samples were collected at three different time points in Gordonvale, Australia, covering the phase before (2010) and after (2013 and 2018) Wolbachia releases. An additional three locations where Wolbachia replacement happened at different times across the last decade were also sampled in 2018. We found that the genomes of mosquito populations mostly remained stable after Wolbachia release, with population differences tending to reflect the geographic location of the populations rather than Wolbachia infection status. However, outlier analysis suggests that Wolbachia may have had an influence on some genes related to immune response, development, recognition and behavior. Conclusions Ae. aegypti populations remained geographically distinct after Wolbachia wMel releases in North Australia despite their Wolbachia infection status. At some specific genomic loci, we found signs of selection associated with Wolbachia, suggesting potential evolutionary impacts can happen in the future and further monitoring is warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08200-1.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Thomas L Schmidt
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucien Sankey
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Tuda M, Iwase SI, Kébé K, Haran J, Skuhrovec J, Sanaei E, Tsuji N, Podlussány A, Merkl O, El-Heneidy AH, Morimoto K. Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia. Sci Rep 2021; 11:9664. [PMID: 33958611 PMCID: PMC8102540 DOI: 10.1038/s41598-021-88770-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
The alfalfa weevil Hypera postica, native to the Western Palearctic, is an invasive legume pest with two divergent mitochondrial clades in its invading regions, the Western clade and the Eastern/Egyptian clade. However, knowledge regarding the native populations is limited. The Western clade is infected with the endosymbiotic bacteria Wolbachia that cause cytoplasmic incompatibility in host weevils. Our aim was to elucidate the spatial genetic structure of this insect and the effect of Wolbachia on its population diversity. We analyzed two mitochondrial and two nuclear genes of the weevil from its native ranges. The Western clade was distributed in western/central Europe, whereas the Eastern/Egyptian clade was distributed from the Mediterranean basin to central Asia. Intermediate mitotypes were found from the Balkans to central Asia. Most Western clade individuals in western Europe were infected with an identical Wolbachia strain. Mitochondrial genetic diversity of the infected individuals was minimal. The infected clades demonstrated a higher nonsynonymous/synonymous substitution rate ratio than the uninfected clades, suggesting a higher fixation of nonsynonymous mutations due to a selective sweep by Wolbachia. Trans-Mediterranean and within-European dispersal routes were supported. We suggest that the ancestral populations diversified by geographic isolation due to glaciations and that the diversity was reduced in the west by a recent Wolbachia-driven sweep(s). The intermediate clade exhibited a body size and host plant that differed from the other clades. Pros and cons of the possible use of infected-clade males to control uninfected populations are discussed.
Collapse
Affiliation(s)
- Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan. .,Laboratory of Insect Natural Enemies, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Shun-Ichiro Iwase
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.,Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Japan
| | - Khadim Kébé
- GRBA-BE, LE3PI Laboratory, Department of Chemical Engineering and Applied Biology, Polytechnic Higher School of Dakar, Dakar, Senegal
| | - Julien Haran
- CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier, Montpellier, France
| | - Jiri Skuhrovec
- Group Function of Invertebrate and Plant Biodiversity in Agro-Ecosystems, Crop Research Institute, Drnovska, Praha, Czech Republic
| | - Ehsan Sanaei
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Naomichi Tsuji
- Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ottó Merkl
- Hungarian Natural History Museum, Budapest, Hungary
| | - Ahmed H El-Heneidy
- Department of Biological Control, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | | |
Collapse
|
4
|
Guo H, Wang N, Niu H, Zhao D, Zhang Z. Interaction of Arsenophonus with Wolbachia in Nilaparvata lugens. BMC Ecol Evol 2021; 21:31. [PMID: 33610188 PMCID: PMC7896400 DOI: 10.1186/s12862-021-01766-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Co-infection of endosymbionts in the same host is ubiquitous, and the interactions of the most common symbiont Wolbachia with other symbionts, including Spiroplasma, in invertebrate organisms have received increasing attention. However, the interactions between Wolbachia and Arsenophonus, another widely distributed symbiont in nature, are poorly understood. We tested the co-infection of Wolbachia and Arsenophonus in different populations of Nilaparvata lugens and investigated whether co-infection affected the population size of the symbionts in their host. Results A significant difference was observed in the co-infection incidence of Wolbachia and Arsenophonus among 5 populations of N. lugens from China, with nearly half of the individuals in the Zhenjiang population harbouring the two symbionts simultaneously, and the rate of occurrence was significantly higher than that of the other 4 populations. The Arsenophonus density in the superinfection line was significantly higher only in the Maanshan population compared with that of the single-infection line. Differences in the density of Wolbachia and Arsenophonus were found in all the tested double-infection lines, and the dominant symbiont species varied with the population only in the Nanjing population, with Arsenophonus the overall dominant symbiont. Conclusions Wolbachia and Arsenophonus could coexist in N. lugens, and the co-infection incidence varied with the geographic populations. Antagonistic interactions were not observed between Arsenophonus and Wolbachia, and the latter was the dominant symbiont in most populations.
Collapse
Affiliation(s)
- Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China.
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| |
Collapse
|
5
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
6
|
Wolbachia Genome Stability and mtDNA Variants in Aedes aegypti Field Populations Eight Years after Release. iScience 2020; 23:101572. [PMID: 33083739 PMCID: PMC7527712 DOI: 10.1016/j.isci.2020.101572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022] Open
Abstract
A dengue suppression strategy based on release of Aedes aegypti mosquitoes infected with the bacterium Wolbachia pipientis is being trialed in many countries. Wolbachia inhibits replication and transmission of dengue viruses. Questions remain regarding the long-term stability of virus-suppressive effects. We sequenced the Wolbachia genome and analyzed Ae. aegypti mitochondrial DNA markers isolated from mosquitoes sampled 2-8 years after releases in the greater Cairns region, Australia. Few changes were detected when Wolbachia genomes of field mosquitoes were compared with Wolbachia genomes of mosquitoes obtained soon after initial releases. Mitochondrial variants associated with the initial Wolbachia release stock are now the only variants found in release sites, highlighting maternal leakage as a possible explanation for rare Wolbachia-negative mosquitoes and not migration from non-release areas. There is no evidence of changes in the Wolbachia genome that indicate selection against its viral-suppressive effects or other phenotypes attributable to infection with the bacterium.
Collapse
|
7
|
Duan XZ, Sun JT, Wang LT, Shu XH, Guo Y, Keiichiro M, Zhu YX, Bing XL, Hoffmann AA, Hong XY. Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. MICROBIOME 2020; 8:104. [PMID: 32616041 PMCID: PMC7333401 DOI: 10.1186/s40168-020-00878-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Host-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including genetic background, ecological factors, and interactions among microbial species, remain largely unknown. RESULTS Here, we surveyed microbial communities of the small brown planthopper (SBPH, Laodelphax striatellus) across 17 geographical populations in China and Japan by using 16S rRNA amplicon sequencing. Using structural equation models (SEM) and Mantel analyses, we show that variation in microbial community structure is likely associated with longitude, annual mean precipitation (Bio12), and mitochondrial DNA variation. However, a Wolbachia infection, which is spreading to northern populations of SBPH, seems to have a relatively greater role than abiotic factors in shaping microbial community structure, leading to sharp decreases in bacterial taxon diversity and abundance in host-associated microbial communities. Comparative RNA-Seq analyses between Wolbachia-infected and -uninfected strains indicate that the Wolbachia do not seem to alter the immune reaction of SBPH, although Wolbachia affected expression of metabolism genes. CONCLUSION Together, our results identify potential factors and interactions among different microbial species in the microbial communities of SBPH, which can have effects on insect physiology, ecology, and evolution. Video Abstract.
Collapse
Affiliation(s)
- Xing-Zhi Duan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lin-Ting Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Han Shu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Matsukura Keiichiro
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto, 861-1192, Japan
| | - Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
8
|
Li Y, Liu X, Wang N, Zhang Y, Hoffmann AA, Guo H. Background-dependent Wolbachia-mediated insecticide resistance in Laodelphax striatellus. Environ Microbiol 2020; 22:2653-2663. [PMID: 32128956 DOI: 10.1111/1462-2920.14974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/29/2022]
Abstract
Although facultative endosymbionts are now known to protect insect hosts against pathogens and parasitoids, the effects of endosymbionts on insecticide resistance are still unclear. Here we show that Wolbachia are associated with increased resistance to the commonly used insecticide, buprofezin, in the small brown planthopper (Laodelphax striatellus) in some genetic backgrounds while having no effect in other backgrounds. In three Wolbachia-infected lines from experimental buprofezin-resistant strains and one line from a buprofezin-susceptible line established from Chuxiong, Yunnan province, China, susceptibility to buprofezin increased after removal of Wolbachia. An increase in susceptibility was also evident in a Wolbachia-infected line established from a field population in Rugao, Jiangsu province. However, no increase was evident in two field populations from Nanjing and Fengxian, Jiangsu province, China. When Wolbachia was introgressed into different genetic backgrounds, followed by Wolbachia removal, the data pointed to Wolbachia effects that depend on the nuclear background as well as on the Wolbachia strain. However, there was no relationship between Wolbachia density and the component of buprofezin resistance associated with the symbiont. The results suggest that Wolbachia effects associated with chemical resistance are complex and unpredictable, but also that they can be substantial.
Collapse
Affiliation(s)
- Yongteng Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Xiangdong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yueliang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Abstract
Wolbachia is an endosymbiotic Alphaproteobacteria that can suppress insect-borne diseases through decreasing host virus transmission (population replacement) or through decreasing host population density (population suppression). We contrast natural Wolbachia infections in insect populations with Wolbachia transinfections in mosquitoes to gain insights into factors potentially affecting the long-term success of Wolbachia releases. Natural Wolbachia infections can spread rapidly, whereas the slow spread of transinfections is governed by deleterious effects on host fitness and demographic factors. Cytoplasmic incompatibility (CI) generated by Wolbachia is central to both population replacement and suppression programs, but CI in nature can be variable and evolve, as can Wolbachia fitness effects and virus blocking. Wolbachia spread is also influenced by environmental factors that decrease Wolbachia titer and reduce maternal Wolbachia transmission frequency. More information is needed on the interactions between Wolbachia and host nuclear/mitochondrial genomes, the interaction between invasion success and local ecological factors, and the long-term stability of Wolbachia-mediated virus blocking.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA;
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|
10
|
Sanaei E, Husemann M, Seiedy M, Rethwisch M, Tuda M, Toshova TB, Kim MJ, Atanasova D, Kim I. Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol Evol 2019; 9:9546-9563. [PMID: 31534674 PMCID: PMC6745856 DOI: 10.1002/ece3.5474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
- School of Biological ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Marjan Seiedy
- School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | | | - Midori Tuda
- Faculty of AgricultureInstitute of Biological ControlKyushu UniversityFukuokaJapan
- Laboratory of Insect Natural EnemiesDepartment of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Teodora B. Toshova
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Min Jee Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| | - Daniela Atanasova
- Department of EntomologyFaculty of Plant Protection and AgroecologyAgricultural UniversityPlovdivBulgaria
| | - Iksoo Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| |
Collapse
|
11
|
Jiang W, Zhu J, Wu Y, Li L, Li Y, Ge C, Wang Y, Endersby NM, Hoffmann AA, Yu W. Influence of Wolbachia infection on mitochondrial DNA variation in the genus Polytremis (Lepidoptera: Hesperiidae). Mol Phylogenet Evol 2018; 129:158-170. [PMID: 30092356 DOI: 10.1016/j.ympev.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/21/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
The maternally inherited obligate bacteria Wolbachia is known for infecting the reproductive tissues of a wide range of arthropods and can contribute to phylogenetically discordant patterns between mtDNA and nDNA. In this study, we tested for an association between mito-nuclear discordance in Polytremis and Wolbachia infection. Six of the 17 species of Polytremis were found to be infected with Wolbachia. Overall, 34% (70/204) of Polytremis specimens were Wolbachia positive and three strains of Wolbachia identified using a wsp marker were further characterized as six strains based on MLST markers. Wolbachia acquisition in Polytremis appears to occur mainly through horizontal transmission rather than codivergence based on comparison of the divergence times of Wolbachia and Polytremis species. At the intraspecific level, one of the Wolbachia infections (wNas1) is associated with reduced mtDNA polymorphism in the infected Polytremis population. At the interspecific level, there is one case of mito-nuclear discordance likely caused by introgression of P. fukia mtDNA into P. nascens driven by another Wolbachia strain (wNas3). Based on an absence of infected males, we suspect that one Wolbachia strain (wNas2) affects sex ratio, but the phenotypic effects of the other strains are unclear. These data reveal a dynamic interaction between Polytremis and Wolbachia endosymbionts affecting patterns of mtDNA variation.
Collapse
Affiliation(s)
- Weibin Jiang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China; School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Rd., Parkville, Victoria 3052, Australia
| | - Jianqing Zhu
- Shanghai Zoological Park, 2381 Hongqiao Rd., Shanghai 200335, People's Republic of China
| | - Yajuan Wu
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Lizhen Li
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Yuanyuan Li
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Chen Ge
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Ying Wang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Nancy M Endersby
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Rd., Parkville, Victoria 3052, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Rd., Parkville, Victoria 3052, Australia.
| | - Weidong Yu
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China.
| |
Collapse
|
12
|
Miyata M, Konagaya T, Yukuhiro K, Nomura M, Kageyama D. Wolbachia-induced meiotic drive and feminization is associated with an independent occurrence of selective mitochondrial sweep in a butterfly. Biol Lett 2017; 13:rsbl.2017.0153. [PMID: 28566542 DOI: 10.1098/rsbl.2017.0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Maternally inherited Wolbachia endosymbionts manipulate arthropod reproduction in various ways. In the butterfly Eurema mandarina, a cytoplasmic incompatibility-inducing Wolbachia strain wCI and the associated mtDNA haplotypes are known to originate from the sister species Eurema hecabe, which offered a good case study for microbe-mediated hybrid introgression. Besides wCI, some females with the Z0 karyotype harbour a distinct Wolbachia strain wFem, which causes all-female production by meiotic drive and feminization. We report that a considerable proportion of E. mandarina females (65.7%) were infected with both wCI and wFem (CF) on Tanegashima Island. While females singly infected with wCI (C) produced offspring at a 1 : 1 sex ratio, CF females produced only females. Although Z-linked sequence polymorphism showed no signs of divergence between C and CF females, mtDNA split into two discrete clades; one consisted of C females and the other CF females, both of which formed a clade with E. hecabe but not with uninfected E. mandarina This suggests that CF matrilines also, but independently, experienced a selective sweep after hybrid introgression from E. hecabe Distinct evolutionary forces were suggested to have caused C and CF matrilines to diverge, which would be irreversible because of the particular phenotype of wFem.
Collapse
Affiliation(s)
- Mai Miyata
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Tatsuro Konagaya
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Yukuhiro
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Masashi Nomura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-0851, Japan
| |
Collapse
|
13
|
Poinsot D, Merçot H. WOLBACHIA INFECTION IN DROSOPHILA SIMULANS: DOES THE FEMALE HOST BEAR A PHYSIOLOGICAL COST? Evolution 2017; 51:180-186. [PMID: 28568785 DOI: 10.1111/j.1558-5646.1997.tb02399.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1996] [Accepted: 07/30/1996] [Indexed: 11/28/2022]
Abstract
Fitness traits of three Drosophila simulans strains infected by endocellular bacteria belonging to the genus Wolbachia have been compared with those of replicate stocks previously cured from the infection by an antibiotic treatment. The traits measured were development time, egg-to-adult viability, egg hatch, productivity, fecundity, and the number of functional ovarioles. Individuals of the first strain were bi-infected by two Wolbachia variants, wHa and wNo. The second strain was infected by wHa, the third one by wNo. The Wolbachia studied here cause cytoplasmic incompatibility (CI), a high embryonic mortality (70% to > 90%) when an infected male is crossed with an uninfected female. Three generations after antibiotic treatment, we observed in all strains a significant drop in productivity in the cured stocks. This drop was not due to antibiotic toxicity and was associated with the loss of the Wolbachia. However the effect had disappeared in two of the three strains five generations after treatment, and could not be found in the third strain in a third measurement carried out 14 generations after treatment. The temporary nature of the productivity difference indicates that Wolbachia do not enhance productivity in infected strains. On the other hand, in all traits measured, our results show the absence of any negative effects of the Wolbachia on their host. This could be explained when considering Wolbachia evolution, as maternally transmitted parasites bear a strong selective pressure not to harm their female host. However, CI would allow the bacteria to be maintained even when harming the female. The apparent absence of deleterious effects caused by these Wolbachia might result from a trade-off, where a relatively low bacteria density would advantage the Wolbachia by suppressing any deleterious effects on the female host, at the cost of a weaker maternal transmission rate of the infection.
Collapse
Affiliation(s)
- Denis Poinsot
- Institut Jacques Monod, CNRSIUniversités Paris 6/7, laboratoire de Dynamique du Génome et Evolution, 2 place Jussieu, 75251 Paris Cedex 05, France
| | - Herve Merçot
- Institut Jacques Monod, CNRSIUniversités Paris 6/7, laboratoire de Dynamique du Génome et Evolution, 2 place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
14
|
Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations. Heredity (Edinb) 2015; 116:265-76. [PMID: 26531251 PMCID: PMC4806576 DOI: 10.1038/hdy.2015.97] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023] Open
Abstract
Wolbachia is the most widespread endosymbiotic bacterium of insects and other arthropods that can rapidly invade host populations. Deliberate releases of Wolbachia into natural populations of the dengue fever mosquito, Aedes aegypti, are used as a novel biocontrol strategy for dengue suppression. Invasion of Wolbachia through the host population relies on factors such as high fidelity of the endosymbiont transmission and limited immigration of uninfected individuals, but these factors can be difficult to measure. One way of acquiring relevant information is to consider mitochondrial DNA (mtDNA) variation alongside Wolbachia in field-caught mosquitoes. Here we used diagnostic mtDNA markers to differentiate infection-associated mtDNA haplotypes from those of the uninfected mosquitoes at release sites. Unique haplotypes associated with Wolbachia were found at locations outside Australia. We also performed mathematical and qualitative analyses including modelling the expected dynamics of the Wolbachia and mtDNA variants during and after a release. Our analyses identified key features in haplotype frequency patterns to infer the presence of imperfect maternal transmission of Wolbachia, presence of immigration and possibly incomplete cytoplasmic incompatibility. We demonstrate that ongoing screening of the mtDNA variants should provide information on maternal leakage and immigration, particularly in releases outside Australia. As we demonstrate in a case study, our models to track the Wolbachia dynamics can be successfully applied to temporal studies in natural populations or Wolbachia release programs, as long as there is co-occurring mtDNA variation that differentiates infected and uninfected populations.
Collapse
|
15
|
Choi JY, Aquadro CF. The coevolutionary period of Wolbachia pipientis infecting Drosophila ananassae and its impact on the evolution of the host germline stem cell regulating genes. Mol Biol Evol 2014; 31:2457-71. [PMID: 24974378 DOI: 10.1093/molbev/msu204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The endosymbiotic bacteria Wolbachia pipientis is known to infect a wide range of arthropod species yet less is known about the coevolutionary history it has with its hosts. Evidence of highly identical W. pipientis strains in evolutionary divergent hosts suggests horizontal transfer between hosts. For example, Drosophila ananassae is infected with a W. pipientis strain that is nearly identical in sequence to a strain that infects both D. simulans and D. suzukii, suggesting recent horizontal transfer among these three species. However, it is unknown whether the W. pipientis strain had recently invaded all three species or a more complex infectious dynamic underlies the horizontal transfers. Here, we have examined the coevolutionary history of D. ananassae and its resident W. pipientis to infer its period of infection. Phylogenetic analysis of D. ananassae mitochondrial DNA and W. pipientis DNA sequence diversity revealed the current W. pipientis infection is not recent. In addition, we examined the population genetics and molecular evolution of several germline stem cell (GSC) regulating genes of D. ananassae. These studies reveal significant evidence of recent and long-term positive selection at stonewall in D. ananassae, whereas pumillio showed patterns of variation consistent with only recent positive selection. Previous studies had found evidence for adaptive evolution of two key germline differentiation genes, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), in D. melanogaster and D. simulans and proposed that the adaptive evolution at these two genes was driven by arms race between the host GSC and W. pipientis. However, we did not find any statistical departures from a neutral model of evolution for bam and bgcn in D. ananassae despite our new evidence that this species has been infected with W. pipientis for a period longer than the most recent infection in D. melanogaster. In the end, analyzing the GSC regulating genes individually showed two of the seven genes to have evidence of selection. However, combining the data set and fitting a specific population genetic model significant proportion of the nonsynonymous sites across the GSC regulating genes were driven to fixation by positive selection. Clearly the GSC system is under rapid evolution and potentially multiple drivers are causing the rapid evolution.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Molecular Biology and Genetics, Cornell University
| | | |
Collapse
|
16
|
Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 2013; 9:e1003607. [PMID: 24068927 PMCID: PMC3771877 DOI: 10.1371/journal.ppat.1003607] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
The maternally inherited intracellular bacteria Wolbachia can manipulate host reproduction in various ways that foster frequency increases within and among host populations. Manipulations involving cytoplasmic incompatibility (CI), where matings between infected males and uninfected females produce non-viable embryos, are common in arthropods and produce a reproductive advantage for infected females. CI was associated with the spread of Wolbachia variant wRi in Californian populations of Drosophila simulans, which was interpreted as a bistable wave, in which local infection frequencies tend to increase only once the infection becomes sufficiently common to offset imperfect maternal transmission and infection costs. However, maternally inherited Wolbachia are expected to evolve towards mutualism, and they are known to increase host fitness by protecting against infectious microbes or increasing fecundity. We describe the sequential spread over approximately 20 years in natural populations of D. simulans on the east coast of Australia of two Wolbachia variants (wAu and wRi), only one of which causes significant CI, with wRi displacing wAu since 2004. Wolbachia and mtDNA frequency data and analyses suggest that these dynamics, as well as the earlier spread in California, are best understood as Fisherian waves of favourable variants, in which local spread tends to occur from arbitrarily low frequencies. We discuss implications for Wolbachia-host dynamics and coevolution and for applications of Wolbachia to disease control. Wolbachia are bacteria that live within the cells of arthropod hosts and are widespread in many groups of insects. These bacteria can rapidly spread through a population through a process of cytoplasmic incompatibility whereby females uninfected by Wolbachia show embryo death when they mate with males carrying the bacteria. Because the infected females pass on Wolbachia to their offspring, this places them at a reproductive advantage, ensuring that the infection spreads through insect populations once it reaches a high enough frequency to overcome any negative fitness effects on its host. Yet while such a rapid spread has been predicted, it has rarely been observed in nature. Here we show that a Wolbachia infection of Drosophila simulans flies has spread very rapidly in eastern Australia, replacing another Wolbachia infection that has also spread in recent years. These invasions appear to have taken place from a very low frequency, implying that both infections are likely to have had a benefit to their hosts rather than a cost. These results have implications for the spread of Wolbachia infections currently being introduced into populations of mosquitoes and other insects for disease suppression.
Collapse
Affiliation(s)
- Peter Kriesner
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Siu F. Lee
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Turelli
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis, California, United States of America
| | - Andrew R. Weeks
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet 2012; 8:e1003129. [PMID: 23284297 PMCID: PMC3527207 DOI: 10.1371/journal.pgen.1003129] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/02/2012] [Indexed: 11/23/2022] Open
Abstract
Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogaster–Wolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology. Host–microbe interactions play important roles in the physiology, development, and ecology of many organisms. Studying how hosts and their microbial symbionts evolve together over time is crucial for understanding the impact that microbes have on host biology. With the advent of high-throughput sequencing technologies, it is now possible to obtain complete genomic information for hosts and their associated microbes. Here we use whole-genome sequences from ∼300 strains of the fruitfly Drosophila melanogaster to reveal the evolutionary history of this model species and its intracellular bacterial symbiont Wolbachia. The major findings of this study are that Wolbachia in D. melanogaster is inherited strictly through the egg with no evidence of horizontal transfer from other species, that the genealogies of Wolbachia and mitochondrial genomes are virtually the same, and that both Wolbachia and mitochondrial genomes show evidence for a recent incomplete global replacement event, which has left remnant lineages in North America, Europe, and Africa. We also use the fact that Wolbachia and mitochondrial genomes have the same genealogy to estimate the rate of molecular evolution for Wolbachia, which allows us to put dates on key events in the history of this important host–microbe model system.
Collapse
|
18
|
Azpurua J, De La Cruz D, Valderama A, Windsor D. Lutzomyia sand fly diversity and rates of infection by Wolbachia and an exotic Leishmania species on Barro Colorado Island, Panama. PLoS Negl Trop Dis 2010; 4:e627. [PMID: 20231892 PMCID: PMC2834748 DOI: 10.1371/journal.pntd.0000627] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/25/2010] [Indexed: 12/03/2022] Open
Abstract
Background Sand flies (Diptera, Psychodidae, Phlebotominae) in the genus Lutzomyia are the predominant vectors of the protozoan disease leishmaniasis in the New World. Within the watershed of the Panama Canal, the cutaneous form of leishmaniasis is a continuous health threat for residents, tourists and members of an international research community. Here we report the results of screening a tropical forest assemblage of sand fly species for infection by both Leishmania and a microbe that can potentially serve in vector population control, the cytoplasmically transmitted rickettsia, Wolbachia pipientis. Knowing accurately which Lutzomyia species are present, what their evolutionary relationships are, and how they are infected by strains of both Leishmania and Wolbachia is of critical value for building strategies to mitigate the impact of this disease in humans. Methodology and Findings We collected, sorted and then used DNA sequences to determine the diversity and probable phylogenetic relationships of the Phlebotominae occurring in the understory of Barro Colorado Island in the Republic of Panama. Sequence from CO1, the DNA barcoding gene, supported 18 morphology-based species determinations while revealing the presence of two possible “cryptic” species, one (Lu. sp. nr vespertilionis) within the Vespertilionis group, the other (Lu. gomezi) within the Lutzomyia-cruciata series. Using ITS-1 and “minicircle” primers we detected Leishmania DNA in 43.3% of Lu. trapidoi, 26.3% of Lu. gomezi individuals and in 0% of the other 18 sand fly species. Identical ITS-1 sequence was obtained from the Leishmania infecting Lu. trapidoi and Lu. gomezi, sequence which was 93% similar to Leishmania (viannia) naiffi in GenBank, a species previously unknown in Panama, but recognized as a type of cutaneous leishmaniasis vectored broadly across northern and central South America. Distinct strains of the intracellular bacterium Wolbachia were detected in three of 20 sand fly species, including Lu. trapidoi, in which it frequently co-occurred with Leishmania. Conclusions Both morphological and molecular methods were used to examine an assemblage of 20 sand fly species occurring in the forests of the Panama Canal area. Two of these species, members of separate clades, were found to carry Leishmania at high frequency and hence are likely vectors of leishmaniasis to humans or other mammal species. A single Leishmania species, identified with high confidence as Le. naiffi, was carried by both species. That Le. naiffi is known to cause cutaneous lesions in South America but has hitherto not been reported or implicated in Panama opens the possibility that its range has recently expanded to include the Isthmus or that it occurs as a recent introduction. The occurrence of Leishmania and Wolbachia in Lu. trapidoi identifies one important vector of the disease as a potential target for gene introductions using Wolbachia population sweeps. Certain sand fly species living inside or on the edge of tropical forests are well known to transmit a protozoan to humans, which in lowland Panama develops into a cutaneous form of leishmaniasis; open, itching sores on the face and extremities requiring aggressive treatment with antimonial compounds. Morphological characters and DNA sequence from mitochondrial and nuclear gene fragments permitted us to identify and then establish historical relationships among 20 common sand fly species occurring in the understory of Barro Colorado Island, a forested preserve in the middle of the Panama Canal. Individuals in three of these sand fly species were found to be 26–43% infected by Leishmania naiffi, a species hitherto known only from the Amazonian region and the Caribbean. We then screened the same 20 sand fly species for the cytoplasmically transmitted bacteria Wolbachia pipientis, finding three infected at high rates, each by a distinct strain. Lutzomyia trapidoi, the most likely transmitter of Leishmania to humans in Panama, was among the Wolbachia-infected species, thus marking it as a possible high-value target for future biocontrol studies using the bacteria either to induce mating incompatabilities or to drive selected genes into the population.
Collapse
Affiliation(s)
- Jorge Azpurua
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Dianne De La Cruz
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Anayansi Valderama
- Instituto Conmemorativo Gorgas de Estúdios para la Salud, Panamá, República de Panamá
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- * E-mail:
| |
Collapse
|
19
|
Ilinsky YY, Zakharov IK. The endosymbiont Wolbachia in Eurasian populations of Drosophila melanogaster. RUSS J GENET+ 2007. [DOI: 10.1134/s102279540707006x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Dean MD, Ballard KJ, Glass A, Ballard JWO. Influence of Two Wolbachia Strains on Population Structure of East AfricanDrosophila simulans. Genetics 2003; 165:1959-69. [PMID: 14704179 PMCID: PMC1462921 DOI: 10.1093/genetics/165.4.1959] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractDrosophila simulans is hypothesized to have originated in continental East Africa or Madagascar. In this study, we investigated evolutionary forces operating on mitochondrial DNA (mtDNA) in populations of D. simulans from Zimbabwe, Malawi, Tanzania, and Kenya. Variation in mtDNA may be affected by positive selection, background selection, demographic history, and/or any maternally inherited factor such as the bacterial symbiont Wolbachia. In East Africa, the wRi and wMa Wolbachia strains associate with the siII or siIII mitochondrial haplogroups, respectively. To ask how polymorphism relates to Wolbachia infection status, we sequenced 1776 bp of mitochondrial DNA and 1029 bp of the X-linked per locus from 79 lines. The two southern populations were infected with wRi and exhibited significantly reduced mtDNA variation, while Wolbachia-uninfected siII flies from Tanzania and Kenya showed high levels of mtDNA polymorphism. These are the first known populations of D. simulans that do not exhibit reduced mtDNA variation. We observed no mitochondrial variation in the siIII haplogroup regardless of Wolbachia infection status, suggesting positive or background selection. These populations offer a unique opportunity to monitor evolutionary dynamics in ancestral populations that harbor multiple strains of Wolbachia.
Collapse
Affiliation(s)
- Matthew D Dean
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | | | |
Collapse
|
21
|
Kang L, Ma X, Cai L, Liao S, Sun L, Zhu H, Chen X, Shen D, Zhao S, Li C. Superinfection of Laodelphax striatellus with Wolbachia from Drosophila simulans. Heredity (Edinb) 2003; 90:71-6. [PMID: 12522428 DOI: 10.1038/sj.hdy.6800180] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Wolbachia are maternally inherited, intracellular alpha-proteobacteria that infect a wide range of arthropods. They manipulate the reproduction of hosts to facilitate their spread into host populations, through ways such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. The influence of Wolbachia infection on host populations has attracted considerable interest in their possible role in speciation and as a potential agent of biological control. In this study, we used both microinjection and nested PCR to show that the Wolbachia naturally infecting Drosophila simulans can be transferred into a naturally Wolbachia-infected strain of the small brown planthopper Laodelphax striatellus, with up to 30% superinfection frequency in the F(12) generation. The superinfected males of L. striatellus showed unidirectional CI when mated with the original single-infected females, while superinfected females of L. striatellus were compatible with superinfected or single-infected males. These results are, to our knowledge, the first to establish a superinfected horizontal transfer route for Wolbachia between phylogenetically distant insects. The segregation of Wolbachia from superinfected L. striatellus was observed during the spreading process, which suggests that Wolbachia could adapt to a phylogenetically distant host with increased infection frequency in the new host population; however, it would take a long time to establish a high-frequency superinfection line. This study implies a novel way to generate insect lines capable of driving desired genes into Wolbachia-infected populations to start population replacement.
Collapse
Affiliation(s)
- L Kang
- Institute of Genetics, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Charlat S, Le Chat L, Merçot H. Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans. Heredity (Edinb) 2003; 90:49-55. [PMID: 12522425 DOI: 10.1038/sj.hdy.6800177] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Wolbachia is an endocellular bacterium infecting arthropods and nematodes. In arthropods, it invades host populations through various mechanisms, affecting host reproduction, the most common of which being cytoplasmic incompatibility (CI). CI is an embryonic mortality occurring when infected males mate with uninfected females or females infected by a different Wolbachia strain. This phenomenon is observed in Drosophila simulans, an intensively studied Wolbachia host, harbouring at least five distinct bacterial strains. In this study, we investigate various aspects of the Wolbachia infections occurring in two continental African populations of D. simulans: CI phenotype, phylogenetic position based on the wsp gene and associated mitochondrial haplotype. From the East African population (Tanzania), we show that (i) the siIII mitochondrial haplotype occurs in continental populations, which was unexpected based on the current views of D. simulans biogeography, (ii) the wKi strain (that rescues from CI while being unable to induce it) is very closely related to the CI-inducing strain wNo, (iii) wKi and wNo might not derive from a unique infection event, and (iv) wKi is likely to represent the same entity as the previously described wMa variant. In the West African population (Cameroon), the Wolbachia infection was found identical to the previously described wAu, which does not induce CI. This finding supports the view that wAu might be an ancient infection in D. simulans.
Collapse
Affiliation(s)
- S Charlat
- Laboratoire Dymanique du Génome et Evolution, Institut Jacques Monod, CNRS-Université Paris 6 & 7, France.
| | | | | |
Collapse
|
23
|
Ballard JWO, Chernoff B, James AC. Divergence of mitochondrial dna is not corroborated by nuclear dna, morphology, or behavior in Drosophila simulans. Evolution 2002; 56:527-45. [PMID: 11989683 DOI: 10.1111/j.0014-3820.2002.tb01364.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We ask whether the observed mitochondrial DNA (mtDNA) population subdivision of Drosophila simulans is indicative of organismal structure or of specific processes acting on the mitochondrial genome. Factors either intrinsic or extrinsic to the host genome may influence the evolutionary dynamics of mtDNA. Potential intrinsic factors include adaptation of the mitochondrial genome and of nucleomitochondrial gene complexes specific to the local environment. An extrinsic force that has been shown to influence mtDNA evolution in invertebrates is the bacterial endosymbiont Wolbachia. Evidence presented in this study suggests that mtDNA is not a good indicator of organismal subdivision in D. simulans. Furthermore, there is no evidence to suggest that Wolbachia causes any reduction in nuclear gene flow in this species. The observed differentiation in mtDNA is not corroborated by data from NADH: ubiquinone reductase 75kD subunit precursor or the Alcohol dehydrogenase-related loci, from the shape or size of the male genital arch, or from assortative premating behavior. We discuss these results in relation to a mitochondrial genetic species concept and the potential for Wolbachia-induced incompatibility to be a mechanism of speciation in insects. We conclude with an iterated appeal to include phylogenetic and statistical tests of neutrality as a supplement to phylogenetic and population genetic analyses when using mtDNA as an evolutionary marker.
Collapse
Affiliation(s)
- J William O Ballard
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA.
| | | | | |
Collapse
|
24
|
Ballard JWO, Chernoff B, James AC. DIVERGENCE OF MITOCHONDRIAL DNA IS NOT CORROBORATED BY NUCLEAR DNA, MORPHOLOGY, OR BEHAVIOR IN DROSOPHILA SIMULANS. Evolution 2002. [DOI: 10.1554/0014-3820(2002)056[0527:domdin]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Sánchez MS, Arnold J, Asmussen MA. Symbiont survival and host-symbiont disequilibria under differential vertical transmission. Genetics 2000; 154:1347-65. [PMID: 10757775 PMCID: PMC1460980 DOI: 10.1093/genetics/154.3.1347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interspecific genetic interactions in host-symbiont systems raise intriguing coevolutionary questions and may influence the effectiveness of public health and management policies. Here we present an analytical and numerical investigation of the effects of host genetic heterogeneity in the rate of vertical transmission of a symbiont. We consider the baseline case with a monomorphic symbiont and a single diallelic locus in its diploid host, where vertical transmission is the sole force. Our analysis introduces interspecific disequilibria to quantify nonrandom associations between host genotypes and alleles and symbiont presence/absence. The transient and equilibrium behavior is examined in simulations with randomly generated initial conditions and transmission parameters. Compared to the case where vertical transmission rates are uniform across host genotypes, differential transmission (i) increases average symbiont survival from 50% to almost 60%, (ii) dramatically reduces the minimum average transmission rate for symbiont survival from 0.5 to 0.008, and (iii) readily creates permanent host-symbiont disequilibria de novo, whereas uniform transmission can neither create nor maintain such associations. On average, heterozygotes are slightly more likely to carry and maintain the symbiont in the population and are more randomly associated with the symbiont. Results show that simple evolutionary forces can create substantial nonrandom associations between two species.
Collapse
Affiliation(s)
- M S Sánchez
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
26
|
Rousset F, Braig HR, O'Neill SL. A stable triple Wolbachia infection in Drosophila with nearly additive incompatibility effects. Heredity (Edinb) 1999; 82 ( Pt 6):620-7. [PMID: 10383683 DOI: 10.1046/j.1365-2540.1999.00501.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila simulans strains infected with three different Wolbachia strains were generated by experimental injection of a third symbiont into a naturally double-infected strain. This transfer led to a substantial increase in total Wolbachia density in the host strain. Each of the three symbionts was stably transmitted in the presence of the other two. Triple-infected males were incompatible with double-infected females. No evidence was obtained for interference between modification effects of the different Wolbachia strains in males. Some incompatibility was observed between triple-infected males and females. However, this incompatibility reaction is not a specific property of triple-infected flies, because it was also observed in double-infected strains.
Collapse
Affiliation(s)
- F Rousset
- Section of Vector Biology, Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College St., New Haven, CT 06510, USA.
| | | | | |
Collapse
|
27
|
Grandjean F, Rigaud T, Raimond R, Juchault P, Souty-Grosset C. Mitochondrial DNA polymorphism and feminizing sex factors dynamics in a natural population of Armadillidium vulgare (Crustacea, Isopoda). Genetica 1993; 92:55-60. [PMID: 8163156 DOI: 10.1007/bf00057507] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sex determination in Armadillidium vulgare may be under the control of two parasitic sex factors that reverse genetic males into functional neo-females. The first feminizing factor (F) is a Wolbachia and the other (f) is probably a sequence of the F bacterial DNA unstably integrated into the host genome. Both of these feminizing factors are mainly maternally transmitted. Here we investigate the mitochondrial DNA polymorphism of wild iso-female lineages harbouring either F or f. Among the four haplotypes present in the population, two were the f-harbouring lineages, while two were common to the F- and f-harbouring lineages. This result suggests that there has been an introgression of the f factor into lineages infected by F Wolbachia. Based on previous data, we propose two different ways to account for such introgression. Given the particular dynamics of feminizing factors (f-harbouring lineages increase in populations at the expense of F-harbouring lineages), such an introgression should prevent the replacement of F-linked mitochondrial types by f-linked mitochondrial types in wild populations.
Collapse
Affiliation(s)
- F Grandjean
- Université de Poitiers, Laboratoire de Biologie Animale, URA CNRS n. 1452, France
| | | | | | | | | |
Collapse
|
28
|
Rousset F, Vautrin D, Solignac M. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc Biol Sci 1992; 247:163-8. [PMID: 1350096 DOI: 10.1098/rspb.1992.0023] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sequences of a segment of the 16S ribosomal DNA of Wolbachia, a rickettsia-like microorganism responsible for cytoplasmic incompatibility in Drosophila simulans, have been obtained after polymerase chain reaction (PCR) amplification. Their comparison with other eubacterial sequences allows us to assign these endosymbionts to the alpha subdivision of purple bacteria. Four related sequences have been obtained for microorganisms carried by eight isofemale lines representative of the three mitochondrial types of D. simulans. Their phylogeny and level of divergence do not parallel that of the mitochondrial DNA, suggesting that several independent infections occurred. There is no direct relation between bacterial phylogeny and formerly identified incompatibility types.
Collapse
Affiliation(s)
- F Rousset
- Laboratoire de Biologie et Génétique évolutives, C.N.R.S., Gif-sur-Yvette, France
| | | | | |
Collapse
|
29
|
Turelli M, Hoffmann AA. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 1991; 353:440-2. [PMID: 1896086 DOI: 10.1038/353440a0] [Citation(s) in RCA: 442] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Drosophila simulans in California, an inherited cytoplasmic incompatibility factor reduces egg hatch when infected males mate with uninfected females. The infection is spreading at a rate of more than 100 km per year; populations in which the infection was rare have become almost completely infected within three years. Analyses of the spread using estimates of selection in the field suggest dispersal distances far higher than those found by direct observation of flies. Hence, occasional long-distance dispersal, possibly coupled with local extinction and recolonization, may be important to the dynamics. Incompatibility factors that can readily spread through natural populations may be useful for population manipulation and important as a post-mating isolating mechanism.
Collapse
Affiliation(s)
- M Turelli
- Department of Genetics, University of California, Davis 95616
| | | |
Collapse
|
30
|
Contrasting patterns of genetic structure and evolutionary history as revealed by rnitochondrial DNA and nuclear gene-enzyme variation betweenDrosophila melanogaster andDrosophila simulans. J Genet 1991. [DOI: 10.1007/bf02927808] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|