1
|
Butterworth NJ, Benbow ME, Barton PS. The ephemeral resource patch concept. Biol Rev Camb Philos Soc 2022; 98:697-726. [PMID: 36517934 DOI: 10.1111/brv.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Ephemeral resource patches (ERPs) - short lived resources including dung, carrion, temporary pools, rotting vegetation, decaying wood, and fungi - are found throughout every ecosystem. Their short-lived dynamics greatly enhance ecosystem heterogeneity and have shaped the evolutionary trajectories of a wide range of organisms - from bacteria to insects and amphibians. Despite this, there has been no attempt to distinguish ERPs clearly from other resource types, to identify their shared spatiotemporal characteristics, or to articulate their broad ecological and evolutionary influences on biotic communities. Here, we define ERPs as any distinct consumable resources which (i) are homogeneous (genetically, chemically, or structurally) relative to the surrounding matrix, (ii) host a discrete multitrophic community consisting of species that cannot replicate solely in any of the surrounding matrix, and (iii) cannot maintain a balance between depletion and renewal, which in turn, prevents multiple generations of consumers/users or reaching a community equilibrium. We outline the wide range of ERPs that fit these criteria, propose 12 spatiotemporal characteristics along which ERPs can vary, and synthesise a large body of literature that relates ERP dynamics to ecological and evolutionary theory. We draw this knowledge together and present a new unifying conceptual framework that incorporates how ERPs have shaped the adaptive trajectories of organisms, the structure of ecosystems, and how they can be integrated into biodiversity management and conservation. Future research should focus on how inter- and intra-resource variation occurs in nature - with a particular focus on resource × environment × genotype interactions. This will likely reveal novel adaptive strategies, aid the development of new eco-evolutionary theory, and greatly improve our understanding of the form and function of organisms and ecosystems.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University Wellington Road Clayton VIC 3800 Australia
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia
| | - M. Eric Benbow
- Department of Entomology, Department of Osteopathic Medical Specialties, and Ecology, Evolution and Behavior Program Michigan State University 220 Trowbridge Rd East Lansing MI 48824 USA
| | - Philip S. Barton
- Future Regions Research Centre, Federation University University Drive, Mount Helen VIC 3350 Australia
| |
Collapse
|
2
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, González-Tokman D. Contamination effects on sexual selection in wild dung beetles. J Evol Biol 2022; 35:905-918. [PMID: 35647730 DOI: 10.1111/jeb.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Sexual selection influences the expression of secondary sexual traits, which are costly to produce and maintain and are thus considered honest indicators of individual condition. Therefore, sexual selection could select for high-quality individuals able to respond to stressful conditions, with impacts on population-level fitness. We sampled dung beetles from 19 pastures and investigated if contamination by herbicides and veterinary drugs modifies male investment in sexually selected traits and has associated population-level effects. We measured horn size, condition dependence (i.e. size-corrected body mass) and allometry, besides abundance and sexual size dimorphism in three species: Copris incertus, Euoniticellus intermedius and Digitonthophagus gazella. In contrary to our expectations, horn size was independent of contamination and individual condition. However, strong positive allometric relationships were reduced by herbicide contamination for C. incertus and D. gazella and were increased by ivermectin for C. incertus, revealing differential investment in horn production according to body size in contaminated habitats. At the population level, large-horned C. incertus males were more abundant in contaminated pastures, potentially revealing a case of evolutionary rescue by sexual selection or a plastic response to higher population densities. Finally, chemical compounds affected the sexual size dimorphism of all three species, with potential effects on female fecundity or intrasexual selection. Together, our findings indicate that contamination interferes with sexual selection processes in the wild, opening new questions regarding the role of sexual selection in favouring species persistence in contaminated environments.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología A.C, Xalapa, Mexico.,CONACYT, Mexico City, Mexico
| |
Collapse
|
3
|
Walters RJ, Berger D, Blanckenhorn WU, Bussière LF, Rohner PT, Jochmann R, Thüler K, Schäfer MA. Growth rate mediates hidden developmental plasticity of female yellow dung fly reproductive morphology in response to environmental stressors. Evol Dev 2022; 24:3-15. [PMID: 35072984 PMCID: PMC9285807 DOI: 10.1111/ede.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023]
Abstract
Understanding how environmental variation influences even cryptic traits is important to clarify the roles of selection and developmental constraints in past evolutionary divergence and to predict future adaptation under environmental change. Female yellow dung flies (Scathophaga stercoraria) typically have three sperm storage compartments (3S), but occasionally four (4S). More spermathecae are thought to be a female adaptation facilitating sperm sorting after mating, but the phenotype is very rare in nature. We manipulated the flies' developmental environment by food restriction, pesticides, and hot temperatures to investigate the nature and extent of developmental plasticity of this trait, and whether spermatheca expression correlates with measures of performance and developmental stability, as would be expected if 4S expression is a developmental aberration. The spermathecal polymorphism of yellow dung fly females is heritable, but also highly developmentally plastic, varying strongly with rearing conditions. 4S expression is tightly linked to growth rate, and weakly positively correlated with fluctuating asymmetry of wings and legs, suggesting that the production of a fourth spermatheca could be a nonadaptive developmental aberration. However, spermathecal plasticity is opposite in the closely related and ecologically similar Scathophaga suilla, demonstrating that overexpression of spermathecae under developmental stress is not universal. At the same time, we found overall mortality costs as well as benefits of 4S pheno‐ and genotypes (also affecting male siblings), suggesting that a life history trade‐off may potentially moderate 4S expression. We conclude that the release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits (here reproductive morphology) to natural selection (here under climate warming or food augmentation). Once exposed, hidden traits can potentially undergo rapid genetic assimilation, even in cases when trait changes are first triggered by random errors that destabilize developmental processes. Female yellow dung flies naturally vary in number of sperm storage compartments (3S or 4S). This spermathecal polymorphism is strongly heritable but also developmentally plastic. 4S expression is linked to growth rate and weakly correlated with fluctuating asymmetry, so potentially a developmental aberration. There are mortality costs as well as benefits for 4S phenotypes, suggesting adaptive life‐history trade‐offs. Spermathecal plasticity differs in the closely related and ecologically similar Scathophaga suilla. Environmental changes can expose hidden traits with initially no function to natural selection.
Collapse
Affiliation(s)
- Richard J. Walters
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Evolutionary Biology Centre University of Uppsala Uppsala Sweden
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Luc F. Bussière
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Biological and Environmental Sciences University of Stirling Stirling Scotland UK
- Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Patrick T. Rohner
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Biology Indiana University Bloomington Indiana USA
| | - Ralf Jochmann
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Karin Thüler
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
4
|
Rohner PT, Moczek AP. Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles. Ecol Evol 2021; 11:15098-15110. [PMID: 34765163 PMCID: PMC8571579 DOI: 10.1002/ece3.8192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
Age and size at maturity are key life-history components, yet the proximate underpinnings that mediate intra- and interspecific variation in life history remain poorly understood. We studied the proximate underpinnings of species differences and nutritionally plastic variation in adult size and development time in four species of dung beetles. Specifically, we investigated how variation in insect growth mediates adult size variation, tested whether fast juvenile growth trades-off with developmental stability in adult morphology and quantified plastic responses of digestive systems to variation in food quality. Contrary to the common size-development time trade-off, the largest species exhibited by far the shortest development time. Correspondingly, species diverged strongly in the shape of growth trajectories. Nutritionally plastic adjustments to growth were qualitatively similar between species but differed in magnitude. Although we expected rapid growth to induce developmental costs, neither instantaneous growth rates nor the duration of larval growth were related to developmental stability in the adult. This renders the putative costs of rapid growth enigmatic. We further found that larvae that encounter a challenging diet develop a larger midgut and digest more slowly than animals reared on a more nutritious diet. These data are consistent with the hypothesis that larvae invest into a more effective digestive system when exposed to low-quality nutrition, but suggest that species may diverge readily in their reliance on these mechanisms. More generally, our data highlight the complex, and often hidden, relationships between immature growth and age and size at maturation even in ecologically similar species.
Collapse
Affiliation(s)
| | - Armin P. Moczek
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
5
|
Blanckenhorn WU, Berger D, Rohner PT, Schäfer MA, Akashi H, Walters RJ. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. J Therm Biol 2021; 100:103069. [PMID: 34503806 DOI: 10.1016/j.jtherbio.2021.103069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not display the idealized, intuitive dome-shaped TPC, and in practice assessments often do not cover the entire realistic or natural temperature range of an organism. We here illustrate this by presenting comprehensive sex-specific TPCs for the major (juvenile) life history traits of yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae). This concerns estimation of prominent biogeographic rules, such as the temperature-size-rule (TSR), the common phenomenon in ectothermic organisms that body size decreases as temperature increases. S. stercoraria shows an untypical asymptotic TPC of continuous body size increase with decreasing temperature without a peak (optimum), thus following the TSR throughout their entire thermal range (unlike several other insects presented here). Egg-to-adult mortality (our best fitness estimator) also shows no intermediate maximum. Both may relate to this fly entering pupal winter diapause below 12 °C. While development time presents a negative exponential relationship with temperature, development rate and growth rate typify the classic TPC form for this fly. The hitherto largely unexplored close relative S. suilla with an even more arctic distribution showed very similar responses, demonstrating large overlap among two ecologically similar, coexisting dung fly species, thus implying limited utility of even complete TPCs for predicting species distribution and coexistence.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Evolutionary Biology Centre, University of Uppsala, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hiroshi Akashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biological Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Centre for Environmental and Climate Research, Lund University, Sweden
| |
Collapse
|
6
|
García-Robledo C, Baer CS. Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming. J Evol Biol 2021; 34:1432-1446. [PMID: 34265126 DOI: 10.1111/jeb.13905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
Tropical ectotherms are particularly vulnerable to global warming because their physiologies are assumed to be adapted to narrow temperature ranges. This study explores three mechanisms potentially constraining thermal adaptation to global warming in tropical insects: (a) Trade-offs in genotypic performance at different temperatures (the jack-of-all-trades hypothesis), (b) positive genetic covariance in performance, with some genotypes performing better than others at viable temperatures (the 'winner' and 'loser' genotypes hypothesis), or (c) limited genetic variation as the potential result of relaxed selection and the loss of genes associated with responses to extreme temperatures (the gene decay hypothesis). We estimated changes in growth and survival rates at multiple temperatures for three tropical rain forest insect herbivores (Cephaloleia rolled-leaf beetles, Chrysomelidae). We reared 2,746 individuals in a full sibling experimental design, at temperatures known to be experienced by this genus of beetles in nature (i.e. 10-35°C). Significant genetic covariance was positive for 16 traits, supporting the 'winner' and 'loser' genotypes hypothesis. Only two traits displayed negative cross-temperature performance correlations. We detected a substantial contribution of genetic variance in traits associated with size and mass (0%-44%), but low heritability in plastic traits such as development time (0%-6%) or survival (0%-4%). Lowland insect populations will most likely decline if current temperatures increase between 2 and 5°C. It is concerning that local adaption is already lagging behind current temperatures. The consequences of maintaining the current global warming trajectory would be devastating for tropical insects. However, if humans can limit or slow warming, many tropical ectotherms might persist in their current locations and potentially adapt to warmer temperatures.
Collapse
Affiliation(s)
- Carlos García-Robledo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Christina S Baer
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Sawyer SJ, Rusch TW, Tarone AM, Tomberlin JK. Wing buzzing as a potential antipredator defense against an invasive predator. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Kemp DJ. Genotype-environment interaction reveals varied developmental responses to unpredictable host phenology in a tropical insect. Evolution 2021; 75:1537-1551. [PMID: 33749853 DOI: 10.1111/evo.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
Understanding the genetic architecture of life history plasticity may inform resilience under environmental change, but relatively little is known for the inhabitants of unpredictable wet-dry tropical environments. Here, I explore the quantitative genetics of juvenile growth and development relative to hostplant phenology in the butterfly Eurema hecabe. Wet season generations of this species breed explosively on leguminous annuals whereas dry season generations subsist at low density upon an alternative perennial host. The wet-to-dry season transition is temporally unpredictable and marked by widespread host defoliation, forcing a large cohort of stranded larvae to either pupate prematurely or prolong development in the hope of renewed foliage production. A split-brood experiment demonstrated greater performance on high quality annual as opposed to perennial host foliage and a marked decline under the stressed conditions faced by stranded wet season larvae. Genetic variances for rates of growth and development were equivalent among high quality treatments but strikingly elevated under resource stress, and the associated cross-environment genetic correlations were indistinguishable from zero. The results demonstrate genotype-environment interaction involving both rank order and variance scale, thereby revealing genetic variance for norms of reaction that may reflect variable risk aversion given an unpredictable tropical host phenology.
Collapse
Affiliation(s)
- Darrell J Kemp
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
9
|
Kelly PW, Pfennig DW, Pfennig KS. Adaptive Plasticity as a Fitness Benefit of Mate Choice. Trends Ecol Evol 2021; 36:294-307. [PMID: 33546877 DOI: 10.1016/j.tree.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity and sexual selection can each promote adaptation in variable environments, but their combined influence on adaptive evolution is not well understood. We propose that sexual selection can facilitate adaptation in variable environments when individuals prefer mates that produce adaptively plastic offspring. We develop this hypothesis and review existing studies showing that diverse groups display both sexual selection and plasticity in nonsexual traits. Thus, plasticity could be a widespread but unappreciated benefit of mate choice. We describe methods and opportunities to test this hypothesis and describe how sexual selection might foster the evolution of phenotypic plasticity. Understanding this interplay between sexual selection and phenotypic plasticity might help predict which species will adapt to a rapidly changing world.
Collapse
Affiliation(s)
- Patrick W Kelly
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - David W Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Karin S Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
10
|
Singh P, Mishra G. Are the effects of hunger stage-specific? A case study in an aphidophagous ladybird beetle. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:66-72. [PMID: 32539897 DOI: 10.1017/s0007485320000309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food availability is a fundamental factor determining an animal's potential fitness. Carry-over effects of food limitation from development to adulthood are known to influence reproduction, ageing, and tolerance to stress. We have examined the effect of stage-specific variation (before adult emergence or pre-emergence, post-emergence and post-mating) in food availability in Propylea dissecta (Mulsant). Larvae were reared separately on two different pre-emergence food regimes (abundant or restricted) until pupation. Newly emerged adults were further split into two groups and placed on abundant or restricted post-emergence regimes. After mating, females were split and reared on any one of two post-mating regimes. The results revealed that: (i) time to commence mating declined with increased food availability in pre- and post-emergence stages, (ii) mating duration increased with food availability post-emergence, (iii) highest reproduction output was observed in individuals who had abundant food pre- and post-emergence. However, food availability at the time of oviposition also had a strong influence on fecundity. Solo bouts of scarcity, regardless of which stage suffered them, were effectively managed in at least two of the three stages (pre-emergence, post-emergence, post-mating) had abundant food.
Collapse
Affiliation(s)
- Priya Singh
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India
| | - Geetanjali Mishra
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India
| |
Collapse
|
11
|
Morphological correlates of invasion in Florida cane toad (Rhinella marina) populations: Shortening of legs and reduction in leg asymmetry as populations become established. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2020.103652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
12
|
Mahdjoub H, Blanckenhorn WU, Lüpold S, Roy J, Gourgoulianni N, Khelifa R. Fitness consequences of the combined effects of veterinary and agricultural pesticides on a non-target insect. CHEMOSPHERE 2020; 250:126271. [PMID: 32114345 DOI: 10.1016/j.chemosphere.2020.126271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Pesticides and veterinary products that are globally used in farming against pests and parasites are known to impact non-target beneficial organisms. While most studies have tested the lethal and sub-lethal effects of single chemicals, species are exposed to multiple contaminants that might interact and exacerbate the toxic responses of life-history fitness components. Here we experimentally tested an ecotoxicological scenario that is likely to be widespread in nature, with non-target dung communities being exposed both to cattle parasiticides during the larval stage and to agricultural insecticides during their adult life. We assessed the independent and combined consumptive effects of varying ivermectin and spinosad concentration on juvenile life-history and adult reproductive traits of the widespread yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Larval exposure to ivermectin prolonged development time and reduced egg-to-adult survival, body size, and the magnitude of the male-biased sexual size dimorphism. The consumption by the predatory adult flies of spinosad-contaminated prey showed an additional, independent (from ivermectin) negative effect on female clutch size, and subsequent egg hatching success, but not on the body size and sexual size dimorphism of their surviving offspring. However, there were interactive synergistic effects of both contaminants on offspring emergence and body size. Our results document adverse effects of the combination of different chemicals on fitness components of a dung insect, highlighting transgenerational effects of adult exposure to contaminants for their offspring. These findings suggest that ecotoxicological tests should consider the combination of different contaminants for more accurate eco-assessments.
Collapse
Affiliation(s)
- Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Department of Botany, 2212 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; Biodiversity Research Centre, 2212 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
13
|
Rádai Z, Kiss J, Babczyńska A, Kardos G, Báthori F, Samu F, Barta Z. Consequences of rapid development owing to cohort splitting: just how costly is it to hurry? J Exp Biol 2020; 223:jeb219659. [PMID: 32098878 DOI: 10.1242/jeb.219659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 12/27/2022]
Abstract
In cohort splitting, diverging sub-cohorts may show substantial differences in their growth and developmental rates. Although in the past, causes and adaptive value of cohort splitting were studied in detail, individual-level consequences of cohort splitting are still rather overlooked. Life history theory predicts that considerably increased growth and developmental rates should be traded off against other costly life history traits. However, it is not clear whether one should expect such associations in adaptive developmental plasticity scenarios, because natural selection might have promoted genotypes that mitigate those potential costs of rapid development. To address these contrasting propositions, we assessed life history traits in the wolf spider Pardosa agrestis, both collected from natural habitat and reared in laboratory. We found that some traits are negatively associated with developmental rates in spiders collected from the wild, but these associations were relaxed to a considerable extent in laboratory-reared specimens. In general, we observed no consistent trend for the presence of developmental costs, although some results might suggest higher relative fecundity costs in rapidly developing females. Our study provides a detailed approach to the understanding of individual-level consequences of cohort splitting, and to the associations between key life history traits in adaptive developmental plasticity scenarios.
Collapse
Affiliation(s)
- Zoltán Rádai
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Johanna Kiss
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Gábor Kardos
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Báthori
- Department of Ecology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Samu
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1029 Budapest, Hungary
| | - Zoltán Barta
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
14
|
Barrett M, Fiocca K, Waddell EA, McNair C, O'Donnell S, Marenda DR. Larval mannitol diets increase mortality, prolong development and decrease adult body sizes in fruit flies ( Drosophila melanogaster). Biol Open 2020; 8:bio.047084. [PMID: 31822472 PMCID: PMC6955208 DOI: 10.1242/bio.047084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of polyols to disrupt holometabolous insect development has not been studied and identifying compounds in food that affect insect development can further our understanding of the pathways that connect growth rate, developmental timing and body size in insects. High-sugar diets prolong development and generate smaller adult body sizes in Drosophila melanogaster We tested for concentration-dependent effects on development when D. melanogaster larvae are fed mannitol, a polyalcohol sweetener. We also tested for amelioration of developmental effects if introduction to mannitol media is delayed past the third instar, as expected if there is a developmental sensitive-period for mannitol effects. Both male and female larvae had prolonged development and smaller adult body sizes when fed increasing concentrations of mannitol. Mannitol-induced increases in mortality were concentration dependent in 0 M to 0.8 M treatments with mortality effects beginning as early as 48 h post-hatching. Larval survival, pupariation and eclosion times were unaffected in 0.4 M mannitol treatments when larvae were first introduced to mannitol 72 h post-hatching (the beginning of the third instar); 72 h delay of 0.8 M mannitol introduction reduced the adverse mannitol effects. The developmental effects of a larval mannitol diet closely resemble those of high-sugar larval diets.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Katherine Fiocca
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Edward A Waddell
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Cheyenne McNair
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA 19104
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104.,Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA 19104
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104 .,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA, 19104
| |
Collapse
|
15
|
Holmes LA, Nelson WA, Lougheed SC. Food quality effects on instar-specific life histories of a holometabolous insect. Ecol Evol 2020; 10:626-637. [PMID: 32015831 PMCID: PMC6988550 DOI: 10.1002/ece3.5790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 11/10/2022] Open
Abstract
It is a long-standing challenge to understand how changes in food resources impact consumer life history traits and, in turn, impact how organisms interact with their environment. To characterize food quality effects on life history, most studies follow organisms throughout their life cycle and quantify major life events, such as age at maturity or fecundity. From these studies, we know that food quality generally impacts body size, juvenile development, and life span. Importantly, throughout juvenile development, many organisms develop through several stages of growth that can have different interactions with their environment. For example, some parasitoids typically attack larger instars, whereas larval insect predators typically attack smaller instars. Interestingly, most studies lump all juvenile stages together, which ignores these ecological changes over juvenile development.We combine a cross-sectional experimental approach with a stage-structured population model to estimate instar-specific vital rates in the bean weevil, Callosobruchus maculatus across a food quality gradient. We characterize food quality effects on the bean weevil's life history traits throughout its juvenile ontogeny to test how food quality impacts instar-specific vital rates.Vital rates differed across food quality treatments within each instar; however, their effect differed with instar. Weevils consuming low-quality food spent 38%, 37%, and 18% more time, and were 34%, 53%, and 63% smaller than weevils consuming high-quality food in the second, third, and fourth instars, respectively. Overall, our results show that consuming poor food quality means slower growth, but that food quality effects on vital rates, growth and development are not equal across instars. Differences in life history traits over juvenile ontogeny in response to food quality may impact how organisms interact with their environment, including how susceptible they are to predation, parasitism, and their competitive ability.
Collapse
|
16
|
Frankino WA, Bakota E, Dworkin I, Wilkinson GS, Wolf JB, Shingleton AW. Individual Cryptic Scaling Relationships and the Evolution of Animal Form. Integr Comp Biol 2019; 59:1411-1428. [PMID: 31364716 PMCID: PMC6863759 DOI: 10.1093/icb/icz135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Artificial selection offers a powerful tool for the exploration of how selection and development shape the evolution of morphological scaling relationships. An emerging approach models the expression and evolution of morphological scaling relationships as a function of variation among individuals in the developmental mechanisms that regulate trait growth. These models posit the existence of genotype-specific morphological scaling relationships that are unseen or "cryptic." Within-population allelic variation at growth-regulating loci determines how these individual cryptic scaling relationships are distributed, and exposure to environmental factors that affect growth determines the size phenotype expressed by each individual on their cryptic, genotype-specific scaling relationship. These models reveal that evolution of the intercept and slope of the population-level static allometry is determined, often in counterintuitive ways, largely by the shape of the distribution of these underlying individual-level scaling relationships. Here we review this modeling framework and present the wing-body size individual cryptic scaling relationships from a population of Drosophila melanogaster. To determine how these models might inform interpretation of published work on scaling relationship evolution, we review studies where artificial selection was applied to alter the parameters of population-level static allometries. Finally, motivated by our review, we outline areas in need of empirical work and describe a research program to address these topics; the approach includes describing the distribution of individual cryptic scaling relationships across populations and environments, empirical testing of the model's predictions, and determining the effects of environmental heterogeneity on realized trait distributions and how this affects allometry evolution.
Collapse
Affiliation(s)
- W Anthony Frankino
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Eric Bakota
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L9H 6X9
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
17
|
Carter SK, Rudolf VHW. Shifts in phenological mean and synchrony interact to shape competitive outcomes. Ecology 2019; 100:e02826. [PMID: 31325374 DOI: 10.1002/ecy.2826] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022]
Abstract
Climate change-induced phenological shifts are ubiquitous and have the potential to disrupt natural communities by changing the timing of species interactions. Shifts in first and/or mean phenological date are well documented, but recent studies indicate that shifts in synchrony (individual variation around these metrics) can be just as common. However, we know little about how both types of phenological shifts interact to affect species interactions and communities. Here, we experimentally manipulated the hatching phenologies of two competing species of larval amphibians to address this conceptual gap. Specifically, we manipulated the relative mean hatching time (early, same, or late relative to competitor) and population synchrony (high, medium, or low levels of variation around the mean) in a full 3 × 3 factorial design to measure independent and interactive effects of phenological mean and population phenological synchrony on competitive outcomes. Our results indicate that phenological synchrony within a population strongly influences intraspecific competition by changing the density of individuals and relative strength of early- vs. late-arriving individuals. Individuals from high-synchrony populations competed symmetrically, whereas individuals from low-synchrony populations competed asymmetrically. At the community scale, shifts in population phenological synchrony interact with shifts in phenological mean to affect key demographic rates (survival, biomass export, per capita mass, and emergence timing) strongly. Furthermore, changes in mean timing of species interactions altered phenological synchrony within a population at the next life stage, and phenological synchrony at one life stage altered the mean timing of the next life stage. Thus, shifts in phenological synchrony within populations cannot only alter species interactions, but species interactions in turn can also drive shifts in phenology.
Collapse
Affiliation(s)
- Shannon K Carter
- Department of Biosciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, MS-170, Houston, Texas, 77005-1892, USA
| | - Volker H W Rudolf
- Department of Biosciences, Program in Ecology and Evolutionary Biology, Rice University, 6100 Main Street, MS-170, Houston, Texas, 77005-1892, USA
| |
Collapse
|
18
|
Lackey ACR, Moore MP, Doyle J, Gerlanc N, Hagan A, Geile M, Eden C, Whiteman HH. Lifetime Fitness, Sex-Specific Life History, and the Maintenance of a Polyphenism. Am Nat 2019; 194:230-245. [DOI: 10.1086/704156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Khelifa R, Zebsa R, Amari H, Mellal MK, Mahdjoub H. Field estimates of fitness costs of the pace-of-life in an endangered damselfly. J Evol Biol 2019; 32:943-954. [PMID: 31144357 DOI: 10.1111/jeb.13493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022]
Abstract
Theory predicts that within-population differences in the pace-of-life can lead to cohort splitting and produce marked intraspecific variation in body size. Although many studies showed that body size is positively correlated with fitness, many argue that selection for the larger body is counterbalanced by opposing physiological and ecological selective mechanisms that favour smaller body. When a population split into cohorts with different paces of life (slow or fast cohort), one would expect to detect the fitness-size relationship among and within cohorts, that is, (a) slower-developing cohort has larger body size and higher fitness than faster-developing cohort, and (b) larger individuals within each cohort show higher fitness than smaller individuals. Here, we test these hypotheses in capture-mark-recapture field surveys that assess body size, lifespan, survival and lifetime mating success in two consecutive generations of a partially bivoltine aquatic insect, Coenagrion mercuriale, where the spring cohort is slower-developing than the autumn cohort. As expected, body size was larger in the slow-developing cohort, which is consistent with the temperature-size rule and also with the duration of development. Body size seasonal variation was greater in slow-developing cohort most likely because of the higher variation in age at maturity. Concordant with theory, survival probability, lifespan and lifetime mating success were higher in the slow-developing cohort. Moreover, individual body size was positively correlated with survival and mating success in both cohorts. Our study confirms the fitness costs of fast pace-of-life and the benefits of larger body size to adult fitness.
Collapse
Affiliation(s)
- Rassim Khelifa
- Biodiversity Research Center, University of British Columbia, Vancouver, British Columbia, Canada.,Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rabah Zebsa
- Laboratoire Biologie, Eau et Environnement (LBEE), Université 8 Mai 1945 Guelma, Guelma, Algeria
| | - Hichem Amari
- Laboratoire Biologie, Eau et Environnement (LBEE), Université 8 Mai 1945 Guelma, Guelma, Algeria
| | - Mohammed Khalil Mellal
- Laboratoire Biologie, Eau et Environnement (LBEE), Université 8 Mai 1945 Guelma, Guelma, Algeria
| | - Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Acasuso-Rivero C, Murren CJ, Schlichting CD, Steiner UK. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc Biol Sci 2019; 286:20190653. [PMID: 31185861 PMCID: PMC6571476 DOI: 10.1098/rspb.2019.0653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/12/2019] [Indexed: 12/25/2022] Open
Abstract
Organisms are faced with variable environments and one of the most common solutions to cope with such variability is phenotypic plasticity, a modification of the phenotype to the environment. These modifications are commonly modelled in evolutionary theories as adaptive, influencing ecological and evolutionary processes. If plasticity is adaptive, we would predict that the closer to fitness a trait is, the less plastic it would be. To test this hypothesis, we conducted a meta-analysis of 213 studies and measured the plasticity of each reported trait as a coefficient of variation. Traits were categorized as closer to fitness-life-history traits including reproduction and survival related traits, and farther from fitness-non-life-history traits including traits related to development, metabolism and physiology, morphology and behaviour. Our results showed, unexpectedly, that although traits differed in their amounts of plasticity, trait plasticity was not related to its proximity to fitness. These findings were independent of taxonomic groups or environmental types assessed. We caution against general expectations that plasticity is adaptive, as assumed by many models of its evolution. More studies are needed that test the adaptive nature of plasticity, and additional theoretical explorations on adaptive and non-adaptive plasticity are encouraged.
Collapse
Affiliation(s)
- Cristina Acasuso-Rivero
- INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté Cochin, 75014 Paris, France
| | | | - Carl D. Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Ulrich K. Steiner
- INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté Cochin, 75014 Paris, France
- Department of Biology, Center of Population Dynamics, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
21
|
Zhou Y, Wu Q, Zhao S, Guo J, Wyckhuys KAG, Wu K. Migratory Helicoverpa armigera (Lepidoptera: Noctuidae) Exhibits Marked Seasonal Variation in Morphology and Fitness. ENVIRONMENTAL ENTOMOLOGY 2019; 48:755-763. [PMID: 31095286 DOI: 10.1093/ee/nvz049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Many insects adopt seasonal, trans-latitudinal migration in response to altering climatic conditions, resource availability or reproductive requirements. Though the migration behavior of the cotton bollworm, Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae), has been well-studied, little is known about the extent of intra-specific variation between northward- and southward-migrating individuals. In this study, we captured H. armigera adults along the species' migration route during 2017-2018 to determine seasonal variability in their morphology, flight capability, and reproductive performance. Northward migrants have broader, longer bodies and are 1.33 times heavier than southward migrants, hinting at a comparatively higher allocation of resources in the abdomen. Accordingly, the former migrants engaged in longer flights, had greater reproductive capacity and a longer lifespan than southward ones. As northward migrants originate from favorable environmental conditions, their fitness is higher than that of the southward cohorts that develop on less favorable host plants and in perhaps more adverse climatic or ecological conditions. Northward H. armigera migrants thus possess an advantageous morphology that benefits habitat colonization and resource exploitation. Our work offers a novel perspective on the ecological and reproductive benefits of long-distance migration and can aid the development of population monitoring and forecasting methods for this globally important agricultural pest.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiulin Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jianglong Guo
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, P. R. China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
22
|
Nguyen B, Ponton F, Than A, Taylor PW, Chapman T, Morimoto J. Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecol Evol 2019; 9:6342-6352. [PMID: 31236225 PMCID: PMC6580268 DOI: 10.1002/ece3.5206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023] Open
Abstract
In holometabolous insects, adult fitness depends on the quantity and quality of resource acquired at the larval stage. Diverse ecological factors can influence larval resource acquisition, but little is known about how these factors in the larval environment interact to modulate larval development and adult traits.Here, we addressed this gap by considering how key ecological factors of larval density, diet nutritional composition, and microbial growth interact to modulate pupal and adult traits in a polyphagous tephritid fruit fly, Bactrocera tryoni (aka "Queensland fruit fly").Larvae were allowed to develop at two larval densities (low and high), on diets that were protein-rich, standard, or sugar-rich and prepared with or without preservatives to inhibit or encourage microbial growth, respectively.Percentage of adult emergence and adult sex ratio were not affected by the interaction between diet composition, larval density, and preservative treatments, although low preservative content increased adult emergence in sugar-rich diets but decreased adult emergence in protein-rich and standard diets.Pupal weight, male and female adult dry weight, and female (but not male) body energetic reserves were affected by a strong three-way interaction between diet composition, larval density, and preservative treatment, whereby in general, low preservative content increased pupal weight and female lipid storage in sugar-rich diets particularly at low-larval density and differentially modulated the decrease in adult body weight caused by larval density across diets.Our findings provide insights into the ecological factors modulating larval development of a polyphagous fly species and shed light into the ecological complexity of the larval developmental environment in frugivorous insects.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Fleur Ponton
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Anh Than
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of EntomologyVietnam National University of AgricultureHanoiVietnam
| | - Phillip W. Taylor
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Toni Chapman
- New South Wales Department of Primary IndustriesThe Elizabeth Macarthur Agricultural InstituteMeneagleNew South WalesAustralia
| | - Juliano Morimoto
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
23
|
Komo L, Scanvion Q, Hedouin V, Charabidze D. Facing death together: heterospecific aggregations of blowfly larvae evince mutual benefits. Behav Ecol 2019. [DOI: 10.1093/beheco/arz059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractHeterospecific aggregations and foraging associations have been observed between different species, from apes to birds to insects. Such associations are hypothesized to result in a mutually beneficial relationship entailing benefits that are not apparent in conspecific groupings. Therefore, the objectives of the present study were to investigate 1) how 3 blowfly species, namely, Calliphora vicina, Calliphora vomitoria, and Lucilia sericata, aggregate according to species, and 2) if developmental benefits are linked to heterospecific aggregation. For objective (1), larvae of 2 species were placed between 2 conspecific aggregates, each with a different species (i.e., a binary choice test). After 20 h, the positions of all larvae were determined. On average, 98% of the maggots added later settled together on one of the 2 pre-existing aggregations, demonstrating a collective choice. The aggregation spot with C. vicina was preferred against others, indicating different attractiveness of different species. To relate this behavior to its benefits (objective ii), C. vicina and L. sericata larvae were raised from first instar to adult in con- and heterospecific conditions, and their development time, mortality rates, and morphometrics were measured. Thereby, mutual and asymmetric consequences were observed: specifically, there were significant increases in size and survival for L. sericata and faster development for C. vicina in heterospecific groups. These results indicate that the predilection for heterospecific association leads to mutual developmental benefits. This heterospecific aggregation behavior may be a resource-management strategy of blowflies to face carrion-based selection pressure.
Collapse
Affiliation(s)
- Larissa Komo
- CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, University of Lille, Lille, France
| | - Quentin Scanvion
- CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, University of Lille, Lille, France
| | - Valéry Hedouin
- CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, University of Lille, Lille, France
| | - Damien Charabidze
- CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, University of Lille, Lille, France
| |
Collapse
|
24
|
Morimoto J, Tabrizi ST, Lundbäck I, Mainali B, Taylor PW, Ponton F. Larval foraging decisions in competitive heterogeneous environments accommodate diets that support egg-to-adult development in a polyphagous fly. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190090. [PMID: 31183148 PMCID: PMC6502372 DOI: 10.1098/rsos.190090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In holometabolous insects, larval nutrition is a key factor underpinning development and fitness. Heterogeneity in the nutritional environment and larval competition can force larvae to forage in suboptimal diets, with potential downstream fitness effects. Little is known about how larvae respond to competitive heterogeneous environments, and whether variation in these responses affects current and next generations. Here, we designed nutritionally heterogeneous foraging arenas by modifying nutrient concentration, where groups of the polyphagous fruit fly Bactrocera tryoni could forage freely at various levels of larval competition. Larval foraging preferences were highly consistent and independent of larval competition, with greatest foraging propensity for high (100%) followed by intermediate (80% and 60%) nutrient concentration diets, and avoidance of lower concentration diets (less than 60%). We then used these larval preferences (i.e. 100%, 80% and 60% diets) in fitness assays in which larvae competition was maintained constant, and showed that nutrient concentrations selected by the larvae in the foraging trials had no effect on fitness-related traits such as egg hatching and pupation success, adult flight ability, sex ratio, percentage of emergence, nor on adult cold tolerance, fecundity and next-generation pupal weight. These results support the idea that polyphagous species can exploit diverse hosts and nutritional conditions with minimal fitness costs to thrive in new environments.
Collapse
Affiliation(s)
- Juliano Morimoto
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
- Programa de Pós-Graduação em Ecologia e Conservação, Federal University of Paraná, Curitiba 19031, CEP: 81531-990, Brazil
| | - Shabnam Tarahi Tabrizi
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Ida Lundbäck
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Bishwo Mainali
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Phillip W. Taylor
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
25
|
Morimoto J, Nguyen B, Dinh H, Than AT, Taylor PW, Ponton F. Crowded developmental environment promotes adult sex-specific nutrient consumption in a polyphagous fly. Front Zool 2019; 16:4. [PMID: 30820236 PMCID: PMC6379967 DOI: 10.1186/s12983-019-0302-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Background The fitness of holometabolous insects depends largely on resources acquired at the larval stage. Larval density is an important factor modulating larval resource-acquisition, influencing adult survival, reproduction, and population maintenance. To date, however, our understanding of how larval crowding affects adult physiology and behaviour is limited, and little is known about how larval crowding affects adult non-reproductive ecological traits. Here, larval density in the rearing environment of the polyphagous fruit fly Bactrocera tryoni (‘Queensland fruit-fly’) was manipulated to generate crowded and uncrowded larval treatments. The effects of larval crowding on pupal weight, adult emergence, adult body weight, energetic reserves, fecundity, feeding patterns, flight ability, as well as adult predation risk were investigated. Results Adults from the crowded larval treatment had lower adult emergence, body weight, energetic reserves, flight ability and fecundity compared to adults from the uncrowded larval treatment. Adults from the crowded larval treatment had greater total food consumption (i.e., consumption of yeast plus sucrose) relative to body weight for both sexes compared to adults from the uncrowded treatment. Furthermore, males from the crowded treatment consumed more yeast relative to their body weight than males from the uncrowded treatment, while females from the crowded treatment consumed more sucrose relative to their body weight than females from the uncrowded treatment. Importantly, an interaction between the relative consumptions of sucrose and yeast and sex revealed that the density of conspecifics in the developmental environment differentially affects feeding of adult males and females. We found no effect of larval treatment on adult predation probability. However, males were significantly more likely to be captured by ants than females. Conclusion We show that larvae crowding can have important implications to ecological traits in a polyphagous fly, including traits such as adult energetic reserve, flight ability, and adult sex-specific nutrient intake. Our findings contextualise the effects of larval developmental conditions into a broad ecological framework, hence providing a better understanding of their significance to adult behaviour and fitness. Furthermore, the knowledge presented here can help us better understanding downstream density-dependent effects of mass rearing conditions of this species, with potential relevance to Sterile Insect Technique. Electronic supplementary material The online version of this article (10.1186/s12983-019-0302-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliano Morimoto
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Binh Nguyen
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Hue Dinh
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Anh The Than
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia.,2Department of Entomology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Phillip W Taylor
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Fleur Ponton
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| |
Collapse
|
26
|
Chaudhary DD, Mishra G. Influence of food availability on mate-guarding behaviour of ladybirds. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:800-806. [PMID: 29415777 DOI: 10.1017/s0007485318000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A recent study on ladybird, Menochilus sexmaculatus (Fabricius) demonstrates that males perform post-copulatory mate guarding in the form of prolonged mating durations. We investigated whether food resource fluctuation affects pre- and post-copulatory behaviour of M. sexmaculatus. It has not been studied before in ladybirds. For this, adults were subjected to prey resource fluctuations sequentially at three levels: post-emergence (Poe; 10 days), pre-mating (Prm; 24 h) and post-mating (Pom; 5 days; only female). The food resource conditions at each level could be any one of scarce, optimal or abundant. Pre-copulatory and post-copulatory behaviour, and reproductive output were assessed. Post-emergence and pre-mating nutrient conditions significantly influenced the pre-copulatory behaviour. Males reared on scarce post-emergence conditions were found to require significantly higher number of mating attempts to establish mating unlike males in the other two food conditions. Under scarce post-emergence and pre-mating conditions, time to commencement of mating and latent period were high but opposite result was obtained for mate-guarding duration. Fecundity and per cent egg viability were more influenced by post-mating conditions, with scarce conditions stopping oviposition regardless of pre-mating and post-emergence conditions. Present results indicate that pre- and post-copulatory behaviour of ladybird is plastic in nature in response to food resource fluctuations.
Collapse
Affiliation(s)
- D D Chaudhary
- Department of Zoology,Indira Gandhi National Tribal University,Amarkantak,Madhya Pradesh-484887,India
| | - G Mishra
- Department of Zoology,Ladybird Research Laboratory,University of Lucknow,Lucknow,Uttar Pradesh-226007,India
| |
Collapse
|
27
|
Huang X, Xiao L, He H, Xue F. Effect of rearing conditions on the correlation between larval development time and pupal weight of the rice stem borer, Chilo suppressalis. Ecol Evol 2018; 8:12694-12701. [PMID: 30619574 PMCID: PMC6308898 DOI: 10.1002/ece3.4697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022] Open
Abstract
A strong positive correlation between development time and body size is commonly assumed. However, the evidence is increasing that the correlation between the two traits can be positive, zero or negative, depending on whether the two traits are under antagonistic or synergistic selection. In the present study, we examined the relation between larval development time and pupal weight of the rice stem borer Chilo suppressalis under laboratory and field conditions. For individuals reared at constant temperatures (22, 25, 28 and 31°C), a longer larval period tended to result in larger pupae, showing a positive correlation between larval development time and pupal weight; whereas for those reared under field conditions, a longer larval period tended to result in smaller pupae at 23.5 and 29.8°C, showing a negative correlation between the two traits. There was no correlation between the two traits at the mean daily temperature of 31°C. At constant temperatures, larval development time shortened significantly as rearing temperature increased, whereas pupae tended to become larger at higher temperatures, although no significant difference was detected among temperatures for pupal weight. Under field conditions, larval development time decreased significantly as the mean daily temperature increased, whereas pupal weight of females increased significantly with the increase in the mean daily temperature, which is an example of the reverse temperature-size rule. Feeding method significantly affected larval development time and pupal weight. For individuals fed on live rice plants, larval development time shortened significantly and pupal weight increased significantly compared with those reared on fresh rice stems.
Collapse
Affiliation(s)
- Xiao‐Long Huang
- Institute of EntomologyJiangxi Agricultural UniversityNanchangChina
| | - Lan Xiao
- Foreign Language SchoolJiangxi Agricultural UniversityNanchangChina
| | - Hai‐Min He
- Institute of EntomologyJiangxi Agricultural UniversityNanchangChina
| | - Fang‐Sen Xue
- Institute of EntomologyJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
28
|
Feddern N, Amendt J, Schyma C, Jackowski C, Tschui J. A preliminary study about the spatiotemporal distribution of forensically important blow flies (Diptera: Calliphoridae) in the area of Bern, Switzerland. Forensic Sci Int 2018; 289:57-66. [DOI: 10.1016/j.forsciint.2018.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 11/25/2022]
|
29
|
Horne CR, Hirst AG, Atkinson D. Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Curtis R. Horne
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
- Centre for Ocean LifeNational Institute for Aquatic ResourcesTechnical University of Denmark Charlottenlund Denmark
| | - David Atkinson
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
| |
Collapse
|
30
|
Estlander S, Kahilainen KK, Horppila J, Olin M, Rask M, Kubečka J, Peterka J, Říha M, Huuskonen H, Nurminen L. Latitudinal variation in sexual dimorphism in life-history traits of a freshwater fish. Ecol Evol 2017; 7:665-673. [PMID: 28116061 PMCID: PMC5243782 DOI: 10.1002/ece3.2658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/24/2016] [Accepted: 11/05/2016] [Indexed: 01/22/2023] Open
Abstract
Sexual dimorphism is common across the animal kingdom, but the contribution of environmental factors shaping differences between the sexes remains controversial. In ectotherms, life‐history traits are known to correlate with latitude, but sex‐specific responses are not well understood. We analyzed life‐history trait variation between the sexes of European perch (Perca fluviatilis L.), a common freshwater fish displaying larger female size, by employing a wide latitudinal gradient. We expected to find sex‐dependent latitudinal variation in life‐history variables: length at age, length increment, and size at maturity, with females showing consistently higher values than males at all latitudes. We further anticipated that this gender difference would progressively decrease with the increasingly harsh environmental conditions toward higher latitude. We hypothesized that growth and length increment would decrease and size/age at maturity would increase at higher latitudes. Our results confirmed female‐biased sexual size dimorphism at all latitudes and the magnitude of sexual dimorphism diminished with increase in latitude. Growth of both sexes decreased with increase in latitude, and the female latitudinal clines were steeper than those of males. Hence, we challenge two predominant ecological rules (Rensch's and Bergmann's rules) that describe common large‐scale patterns of body size variation. Our data demonstrate that these two rules are not universally applicable in ectotherms or female‐biased species. Our study highlights the importance of sex‐specific differences in life‐history traits along a latitudinal gradient, with evident implications for a wide range of studies from individual to ecosystems level.
Collapse
Affiliation(s)
- Satu Estlander
- Department of Environmental Sciences/Aquatic Sciences University of Helsinki Helsinki Finland
| | - Kimmo K Kahilainen
- Department of Environmental Sciences/Aquatic Sciences University of Helsinki Helsinki Finland
| | - Jukka Horppila
- Department of Environmental Sciences/Aquatic Sciences University of Helsinki Helsinki Finland
| | - Mikko Olin
- Department of Environmental Sciences/Aquatic Sciences University of Helsinki Helsinki Finland
| | - Martti Rask
- Natural Resources Institute Finland Jyväskylä Finland
| | - Jan Kubečka
- Biological Centre Academy of Sciences of the Czech Republic Hydrobiological Institute České Budějovice Czech Republic
| | - Jiří Peterka
- Biological Centre Academy of Sciences of the Czech Republic Hydrobiological Institute České Budějovice Czech Republic
| | - Milan Říha
- Biological Centre Academy of Sciences of the Czech Republic Hydrobiological Institute České Budějovice Czech Republic
| | - Hannu Huuskonen
- Department of Biology University of Eastern Finland Joensuu Finland
| | - Leena Nurminen
- Department of Environmental Sciences/Aquatic Sciences University of Helsinki Helsinki Finland
| |
Collapse
|
31
|
San-Jose LM, Peñalver-Alcázar M, Huyghe K, Breedveld MC, Fitze PS. Inter-class competition in stage-structured populations: effects of adult density on life-history traits of adult and juvenile common lizards. Oecologia 2016; 182:1063-1074. [PMID: 27655331 DOI: 10.1007/s00442-016-3738-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
Abstract
Ecological and evolutionary processes in natural populations are largely influenced by the population's stage-structure. Commonly, different classes have different competitive abilities, e.g., due to differences in body size, suggesting that inter-class competition may be important and largely asymmetric. However, experimental evidence states that inter-class competition, which is important, is rare and restricted to marine fish. Here, we manipulated the adult density in six semi-natural populations of the European common lizard, Zootoca vivipara, while holding juvenile density constant. Adult density affected juveniles, but not adults, in line with inter-class competition. High adult density led to lower juvenile survival and growth before hibernation. In contrast, juvenile survival after hibernation was higher in populations with high adult density, pointing to relaxed inter-class competition. As a result, annual survival was not affected by adult density, showing that differences in pre- and post-hibernation survival balanced each other out. The intensity of inter-class competition affected reproduction, performance, and body size in juveniles. Path analyses unravelled direct treatment effects on early growth (pre-hibernation) and no direct treatment effects on the parameters measured after hibernation. This points to allometry of treatment-induced differences in early growth, and it suggests that inter-class competition mainly affects the early growth of the competitively inferior class and thereby their future performance and reproduction. These results are in contrast with previous findings and, together with results in marine fish, suggest that the strength and direction of density dependence may depend on the degree of inter-class competition, and thus on the availability of resources used by the competing classes.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, 1015, Lausanne, Switzerland.
| | - Miguel Peñalver-Alcázar
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN, CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Katleen Huyghe
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Merel C Breedveld
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN, CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
- Instituto Pirenaico de Ecología (MNCN, CSIC), Ntra. Señora de la Victoria, 22700, Jaca, Spain
| | - Patrick S Fitze
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, 1015, Lausanne, Switzerland
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN, CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
- Instituto Pirenaico de Ecología (MNCN, CSIC), Ntra. Señora de la Victoria, 22700, Jaca, Spain
- Fundación Araid, Edificio CEEI Aragón, María de Luna 11, 50018, Zaragoza, Spain
| |
Collapse
|
32
|
Ahola V, Koskinen P, Wong SC, Kvist J, Paulin L, Auvinen P, Saastamoinen M, Frilander MJ, Lehtonen R, Hanski I. Temperature- and sex-related effects of serine protease alleles on larval development in the Glanville fritillary butterfly. J Evol Biol 2015; 28:2224-35. [PMID: 26337146 DOI: 10.1111/jeb.12745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/30/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
The body reserves of adult Lepidoptera are accumulated during larval development. In the Glanville fritillary butterfly, larger body size increases female fecundity, but in males fast larval development and early eclosion, rather than large body size, increase mating success and hence fitness. Larval growth rate is highly heritable, but genetic variation associated with larval development is largely unknown. By comparing the Glanville fritillary population living in the Åland Islands in northern Europe with a population in Nantaizi in China, within the source of the post-glacial range expansion, we identified candidate genes with reduced variation in Åland, potentially affected by selection under cooler climatic conditions than in Nantaizi. We conducted an association study of larval growth traits by genotyping the extremes of phenotypic trait distributions for 23 SNPs in 10 genes. Three genes in clip-domain serine protease family were associated with larval growth rate, development time and pupal weight. Additive effects of two SNPs in the prophenoloxidase-activating proteinase-3 (ProPO3) gene, related to melanization, showed elevated growth rate in high temperature but reduced growth rate in moderate temperature. The allelic effects of the vitellin-degrading protease precursor gene on development time were opposite in the two sexes, one genotype being associated with long development time and heavy larvae in females but short development time in males. Sexually antagonistic selection is here evident in spite of sexual size dimorphism.
Collapse
Affiliation(s)
- V Ahola
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - P Koskinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - S C Wong
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - J Kvist
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - P Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - M Saastamoinen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - M J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - R Lehtonen
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program & Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - I Hanski
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Vijendravarma RK, Kawecki TJ. Idiosyncratic evolution of maternal effects in response to juvenile malnutrition in Drosophila. J Evol Biol 2015; 28:876-84. [PMID: 25716891 DOI: 10.1111/jeb.12611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/30/2022]
Abstract
Maternal effects often affect fitness traits, but there is little experimental evidence pertaining to their contribution to response to selection imposed by novel environments. We studied the evolution of maternal effects in Drosophila populations selected for tolerance to chronic larval malnutrition. To this end, we performed pairwise reciprocal F1 crosses between six selected (malnutrition tolerant) populations and six unselected control populations and assessed the effect of cross direction on larval growth and developmental rate, adult weight and egg-to-adult viability expressed under the malnutrition regime. Each pair of reciprocal crosses revealed large maternal effects (possibly including cytoplasmic genetic effects) on at least one trait, but the magnitude, sign and which traits were affected varied among populations. Thus, maternal effects contributed significantly to the response to selection imposed by the malnutrition regime, but these changes were idiosyncratic, suggesting a rugged adaptive landscape. Furthermore, although the selected populations evolved both faster growth and higher viability, the maternal effects on growth rate and viability were negatively correlated across populations. Thus, genes mediating maternal effects can evolve to partially counteract the response to selection mediated by the effects of alleles on their own carriers' phenotype, and maternal effects may contribute to evolutionary trade-offs between components of offspring fitness.
Collapse
Affiliation(s)
- R K Vijendravarma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
34
|
Cabrera-Guzmán E, Crossland MR, Brown GP, Shine R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS One 2013; 8:e70121. [PMID: 23922930 PMCID: PMC3726449 DOI: 10.1371/journal.pone.0070121] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Body size at metamorphosis is a key trait in species (such as many anurans) with biphasic life-histories. Experimental studies have shown that metamorph size is highly plastic, depending upon larval density and environmental conditions (e.g. temperature, food supply, water quality, chemical cues from conspecifics, predators and competitors). To test the hypothesis that this developmental plasticity is adaptive, or to determine if inducing plasticity can be used to control an invasive species, we need to know whether or not a metamorphosing anuran's body size influences its subsequent viability. For logistical reasons, there are few data on this topic under field conditions. We studied cane toads (Rhinella marina) within their invasive Australian range. Metamorph body size is highly plastic in this species, and our laboratory studies showed that larger metamorphs had better locomotor performance (both on land and in the water), and were more adept at catching and consuming prey. In mark-recapture trials in outdoor enclosures, larger body size enhanced metamorph survival and growth rate under some seasonal conditions. Larger metamorphs maintained their size advantage over smaller siblings for at least a month. Our data support the critical but rarely-tested assumption that all else being equal, larger body size at metamorphosis is likely to enhance an individual's long term viability. Thus, manipulations to reduce body size at metamorphosis in cane toads may help to reduce the ecological impact of this invasive species.
Collapse
Affiliation(s)
- Elisa Cabrera-Guzmán
- School of Biological Sciences A08, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
35
|
Temperature during the free-living phase of an ectoparasite influences the emergence pattern of the infective phase. Parasitology 2013; 140:1357-67. [PMID: 23870073 DOI: 10.1017/s0031182013000929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding the population dynamics and co-evolution of host–parasite systems requires detailed knowledge of their phenology which, in turn, requires a deep knowledge of the effect of abiotic factors on the life cycles of organisms. Temperature is known to be a key environmental influence that participates in the regulation of diapause. Yet, not much is known about the effect of temperature on the free-living stages of true parasites and how it may influence host–parasite interactions. Here we experimentally study the effect of ambient temperature on overwintering pupae of Carnus hemapterus (Diptera, Carnidae), an ectoparasitic fly of various bird species. We also test whether chilling is a prerequisite for completion of diapause in this species. In the course of three winter seasons we experimentally exposed carnid pupae from nests of various host species to spring temperatures with and without chilling and recorded the emergence patterns in experimental and control groups. Experimental groups showed an advanced emergence date, a lower emergence rate and, consequently, a protracted emergence period. Chilling had no obvious effect on the start of emergence but it did advance the mean emergence date, shortened the length of the emergence period when compared with the control treatment and increased the emergence rate when compared with the spring treatment. This study identifies an environmental cue, namely temperature during the free-living stage, affecting the emergence of a widespread parasite and demonstrates the plasticity of diapause in this parasite. Our findings are of potential significance in understanding host–parasite interactions.
Collapse
|
36
|
Blanckenhorn WU, Puniamoorthy N, Scheffczyk A, Römbke J. Evaluation of eco-toxicological effects of the parasiticide moxidectin in comparison to ivermectin in 11 species of dung flies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:15-20. [PMID: 23273869 DOI: 10.1016/j.ecoenv.2012.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 06/01/2023]
Abstract
A standardized bioassay previously developed with ivermectin for the yellow dung fly (Scathophagidae) and the face fly (Muscidae) was applied to test the response of 11 dung fly species to the presumably less toxic parasiticide moxidectin. The results were compared to existing data for the same species tested with ivermectin, albeit two new species (Scathophaga suilla and Musca domestica) were tested here with both the substances. Estimated lethal effect concentrations LC50 at which 50% of the flies died ranged more than tenfold from 0.012 mg moxidectin/kg fresh dung for Sepsis neocynipsea (Sepsidae) to 0.140 mg moxidectin/kg fresh dung for the house fly Musca domestica (Muscidae). In most of the species, we additionally revealed sub-lethal effects at lower moxidectin concentrations in terms of retarded growth and development and reduced body size. Mortality thresholds were about ten times higher for moxidectin than for ivermectin, hence moxidectin is indeed less toxic than ivermectin in absolute terms. Crucially, we obtained strong correlations among the 11 tested fly species in both lethal and sub-lethal responses to the two substances, such that species relatively sensitive to ivermectin were also relatively sensitive to moxidectin. Such correlations are expected if the two substances are structurally related and function in the same manner by disturbing ion channel transport. Methodologically speaking, all species used proved suitable for toxicological testing of parasiticides.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Institut für Evolutionsbiologie & Umweltwissenschaften, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
37
|
Morehouse NI, Mandon N, Christides JP, Body M, Bimbard G, Casas J. Seasonal selection and resource dynamics in a seasonally polyphenic butterfly. J Evol Biol 2012. [DOI: 10.1111/jeb.12051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N. I. Morehouse
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh PA USA
| | - N. Mandon
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - J.-P. Christides
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - M. Body
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - G. Bimbard
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| | - J. Casas
- Institut de Recherche sur la Biologie de l'Insecte; UMR CNRS 7261; Université de Tours; Tours France
| |
Collapse
|
38
|
Chauvaud L, Patry Y, Jolivet A, Cam E, Le Goff C, Strand Ø, Charrier G, Thébault J, Lazure P, Gotthard K, Clavier J. Variation in size and growth of the great scallop Pecten maximus along a latitudinal gradient. PLoS One 2012; 7:e37717. [PMID: 22649553 PMCID: PMC3359342 DOI: 10.1371/journal.pone.0037717] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/27/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding the relationship between growth and temperature will aid in the evaluation of thermal stress and threats to ectotherms in the context of anticipated climate changes. Most Pecten maximus scallops living at high latitudes in the northern hemisphere have a larger maximum body size than individuals further south, a common pattern among many ectotherms. We investigated differences in daily shell growth among scallop populations along the Northeast Atlantic coast from Spain to Norway. This study design allowed us to address precisely whether the asymptotic size observed along a latitudinal gradient, mainly defined by a temperature gradient, results from differences in annual or daily growth rates, or a difference in the length of the growing season. We found that low annual growth rates in northern populations are not due to low daily growth values, but to the smaller number of days available each year to achieve growth compared to the south. We documented a decrease in the annual number of growth days with age regardless of latitude. However, despite initially lower annual growth performances in terms of growing season length and growth rate, differences in asymptotic size as a function of latitude resulted from persistent annual growth performances in the north and sharp declines in the south. Our measurements of daily growth rates throughout life in a long-lived ectothermic species provide new insight into spatio-temporal variations in growth dynamics and growing season length that cannot be accounted for by classical growth models that only address asymptotic size and annual growth rate.
Collapse
Affiliation(s)
- Laurent Chauvaud
- Université de Bretagne Occidentale; Institut Universitaire Européen de la Mer, Laboratoire des Sciences de L'Environnement Marin (UMR CNRS 6539), Technopôle Brest Iroise, Plouzané, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Walzer A, Schausberger P. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress. Biol J Linn Soc Lond 2011; 102:650-660. [PMID: 22003259 PMCID: PMC3191859 DOI: 10.1111/j.1095-8312.2010.01593.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 650–660.
Collapse
Affiliation(s)
- Andreas Walzer
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, 1190 Vienna, Austria
| | | |
Collapse
|
40
|
Blamires SJ. Plasticity in extended phenotypes: orb web architectural responses to variations in prey parameters. ACTA ACUST UNITED AC 2010; 213:3207-12. [PMID: 20802123 DOI: 10.1242/jeb.045583] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A spider orb web is an extended phenotype; it modifies and interacts with the environment, influencing spider physiology. Orb webs are plastic, responding to variations in prey parameters. Studies attempting to understand how nutrients influence spider orb-web plasticity have been hampered by the inability to decouple prey nutrients from other, highly correlated, prey factors and the intrinsic link between prey protein and prey energy concentration. I analyzed the nutrient concentrations of cockroaches, and adult and juvenile crickets to devise experiments that controlled prey protein concentration while varying prey size, ingested mass, energy concentration and feeding frequency of the orb web spider Argiope keyserlingi. I found that A. keyserlingi alters overall architecture according to feeding frequency. Decoration length was inversely related to ingested prey mass and/or energy density in one experiment but directly related to ingested prey mass in another. These contradictory results suggest that factors not examined in this study have a confounding influence on decoration plasticity. As decorations attract prey as well as predators decreasing decoration investment may, in some instances, be attributable to benefits no longer outweighing the risks. Web area was altered according to feeding frequency, and mesh size altered according to feeding frequency and prey length. The number of radii in orb webs was unaffected by prey parameters. A finite amount of silk can be invested in the orb web, so spiders trade-off smaller mesh size with larger web capture area, explaining why feeding frequency influenced both web area and mesh size. Mesh size is additionally responsive to prey size via sensory cues, with spiders constructing webs suitable for catching the most common or most profitable prey.
Collapse
Affiliation(s)
- Sean J Blamires
- School of Biological Science, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
41
|
King EG, Roff DA. Modeling the evolution of phenotypic plasticity in resource allocation in wing-dimorphic insects. Am Nat 2010; 175:702-16. [PMID: 20397908 DOI: 10.1086/652434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In nature, resource availability varies spatially and temporally both within and across generations, leading to variation in the amount of energy available to individuals. The optimal allocation strategy can change, depending on the amount of resources available to allocate to life-history functions. If so, selection should favor the evolution of allocation strategies that can respond to variation in environmental resource levels. We address this issue by using two quantitative genetic simulation models in a model system for studying trade-offs, wing-dimorphic insects. Wing dimorphic insects typically exhibit a trade-off in the allocation of resources between migratory ability and reproduction. In our models, we focus on allocation as a genetic trait and model the evolution of phenotypic plasticity in this trait in response to spatiotemporal variation in resource availability. We show that the evolved allocation strategy depends on the predictability of resource levels across time. Specifically, selection favors higher investment in flight under poor conditions in predictable environments and lower investment in unpredictable environments.
Collapse
Affiliation(s)
- Elizabeth G King
- Department of Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
42
|
Johnson JC, Kitchen K, Andrade MCB. Family Affects Sibling Cannibalism in the Black Widow Spider, Latrodectus hesperus. Ethology 2010. [DOI: 10.1111/j.1439-0310.2010.01792.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Seasonal changes in body size, sexual size dimorphism and sex ratio in relation to mating system in an adult odonate community. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9379-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Laparie M, Lebouvier M, Lalouette L, Renault D. Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9739-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Barrett ELB, Hunt J, Moore AJ, Moore PJ. Separate and combined effects of nutrition during juvenile and sexual development on female life-history trajectories: the thrifty phenotype in a cockroach. Proc Biol Sci 2009; 276:3257-64. [PMID: 19553255 DOI: 10.1098/rspb.2009.0725] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have yet to understand fully how conditions during different periods of development interact to influence life-history structure. Can the negative effects of poor juvenile nutrition be overcome by a good adult diet, or are life-history strategies set by early experience? Here, we tested the influence and interaction of different nutritional quality during juvenile and sexual development on female resource allocation physiology, life history and courtship behaviour in the cockroach, Nauphoeta cinerea. Nymphs were raised on either a good-quality or poor-quality diet. After adult eclosion, females were either switched to the opposite diet or remained on their original diet. We assessed mating behaviour and lifetime reproductive success for half of the females from each treatment. We evaluated reproductive investment, somatic investment and resource reallocation from reproduction to the soma via oocyte apoptosis in the remaining females. We found that poor juvenile conditions resulted in a fat phenotype with slow juvenile growth and short reproductive lifespan that could not be retrieved with a change in diet. Good juvenile conditions resulted in the converse, but again fixed, phenotype in adulthood. Thus, juvenile nutrition sets adult patterns of resource allocation.
Collapse
Affiliation(s)
- Emma L B Barrett
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK
| | | | | | | |
Collapse
|
46
|
Pitnick S, Henn KRH, Maheux SD, Higginson DM, Hurtado-Gonzales JL, Manier MK, Berben KS, Guptill C, Uy JAC. Size-dependent alternative male mating tactics in the yellow dung fly, Scathophaga stercoraria. Proc Biol Sci 2009; 276:3229-37. [PMID: 19553251 DOI: 10.1098/rspb.2009.0632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whenever males can monopolize females and/or resources used by females, the opportunity for sexual selection will be great. The greater the variation among males in reproductive success, the greater the intensity of selection on less competitive males to gain matings through alternative tactics. In the yellow dung fly, Scathophaga stercoraria, males aggressively compete for access to receptive, gravid females on fresh dung. Larger males are better able to acquire mates and to complete copulation successfully and guard the female throughout oviposition. Here we demonstrate that when an alternative resource is present where females aggregate (i.e. apple pomace, where both sexes come to feed), smaller males will redirect their searching for females from dung to the new substrate. In addition, we identify a class of particularly small males on the alternative substrate that appears never to be present searching for females on or around dung. Smaller males were found to have a mating 'advantage' on pomace, in striking contrast to the pattern observed on dung, providing further support for the existence of an alternative male reproductive tactic in this species.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Holmes TH, McCormick MI. Influence of prey body characteristics and performance on predator selection. Oecologia 2008; 159:401-13. [PMID: 19018572 DOI: 10.1007/s00442-008-1220-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 10/19/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and the action of external environmental characteristics, may all influence which individuals survive.
Collapse
Affiliation(s)
- Thomas H Holmes
- ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia.
| | | |
Collapse
|
48
|
VÄLIMÄKI P, KIVELÄ SM, JÄÄSKELÄINEN L, KAITALA A, KAITALA V, OKSANEN J. Divergent timing of egg-laying may maintain life history polymorphism in potentially multivoltine insects in seasonal environments. J Evol Biol 2008; 21:1711-23. [DOI: 10.1111/j.1420-9101.2008.01597.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Demont M, Blanckenhorn WU, Hosken DJ, Garner TWJ. Molecular and quantitative genetic differentiation across Europe in yellow dung flies. J Evol Biol 2008; 21:1492-503. [PMID: 18800996 DOI: 10.1111/j.1420-9101.2008.01615.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.
Collapse
Affiliation(s)
- M Demont
- Zoological Museum, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
50
|
Day T, Rowe L. Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. Am Nat 2008; 159:338-50. [PMID: 18707419 DOI: 10.1086/338989] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is quite common in studies of life-history plasticity to find a negative relationship between the age at which various life-history transitions occur and the growth conditions under which individuals develop. In particular, high growth typically results in earlier transitions, often at a larger size. Here, we use a relatively general optimization model for age and size at life-history transitions to argue that current life-history theory cannot adequately explain these results. Specifically, most such theory requires key assumptions that are unlikely to be generally met. This suggests that some important component of the biology of many organisms must be missing from many of the models in life-history theory. We suggest that this missing component might be the phenomenon of developmental thresholds. There are at least two different types of developmental thresholds possible, and we incorporate these into our general optimality model to demonstrate how they can cause a negative relationship between growth conditions and age at a transition. If developmental thresholds are common throughout taxa, then this might explain the empirical results. Our model formulation and analysis also formalizes the popular Wilbur-Collins hypothesis for age and size at metamorphosis in amphibians. The results demonstrate that optimal combinations of age and size, and the slope of the reaction norm connecting them, depend on the existence and type of threshold assumed. Our results also provide an evolutionary framework that can be used to view the data and many of the proximate submodels derived from the Wilbur-Collins hypothesis.
Collapse
Affiliation(s)
- Troy Day
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | | |
Collapse
|