1
|
Deng Q, Guo T, Qiu Z, Chen Y. A mathematical model for HIV dynamics with multiple infections: implications for immune escape. J Math Biol 2024; 89:6. [PMID: 38762831 DOI: 10.1007/s00285-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/15/2023] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Multiple infections enable the recombination of different strains, which may contribute to viral diversity. How multiple infections affect the competition dynamics between the two types of strains, the wild and the immune escape mutant, remains poorly understood. This study develops a novel mathematical model that includes the two strains, two modes of viral infection, and multiple infections. For the representative double-infection case, the reproductive numbers are derived and global stabilities of equilibria are obtained via the Lyapunov direct method and theory of limiting systems. Numerical simulations indicate similar viral dynamics regardless of multiplicities of infections though the competition between the two strains would be the fiercest in the case of quadruple infections. Through sensitivity analysis, we evaluate the effect of parameters on the set-point viral loads in the presence and absence of multiple infections. The model with multiple infections predict that there exists a threshold for cytotoxic T lymphocytes (CTLs) to minimize the overall viral load. Weak or strong CTLs immune response can result in high overall viral load. If the strength of CTLs maintains at an intermediate level, the fitness cost of the mutant is likely to have a significant impact on the evolutionary dynamics of mutant viruses. We further investigate how multiple infections alter the viral dynamics during the combination antiretroviral therapy (cART). The results show that viral loads may be underestimated during cART if multiple-infection is not taken into account.
Collapse
Affiliation(s)
- Qi Deng
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
- Department of Mathematics, Wilfrid Laurier University, Waterloo, N2L 3C5, Canada
| | - Ting Guo
- Aliyun School of Big Data, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zhipeng Qiu
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yuming Chen
- Department of Mathematics, Wilfrid Laurier University, Waterloo, N2L 3C5, Canada.
| |
Collapse
|
2
|
Ciupe SM, Conway JM. Incorporating Intracellular Processes in Virus Dynamics Models. Microorganisms 2024; 12:900. [PMID: 38792730 PMCID: PMC11124127 DOI: 10.3390/microorganisms12050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
| |
Collapse
|
3
|
Koelle K, Farrell AP, Brooke CB, Ke R. Within-host infectious disease models accommodating cellular coinfection, with an application to influenza. Virus Evol 2019; 5:vez018. [PMID: 31304043 PMCID: PMC6613536 DOI: 10.1093/ve/vez018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Within-host models are useful tools for understanding the processes regulating viral load dynamics. While existing models have considered a wide range of within-host processes, at their core these models have shown remarkable structural similarity. Specifically, the structure of these models generally consider target cells to be either uninfected or infected, with the possibility of accommodating further resolution (e.g. cells that are in an eclipse phase). Recent findings, however, indicate that cellular coinfection is the norm rather than the exception for many viral infectious diseases, and that cells with high multiplicity of infection are present over at least some duration of an infection. The reality of these cellular coinfection dynamics is not accommodated in current within-host models although it may be critical for understanding within-host dynamics. This is particularly the case if multiplicity of infection impacts infected cell phenotypes such as their death rate and their viral production rates. Here, we present a new class of within-host disease models that allow for cellular coinfection in a scalable manner by retaining the low-dimensionality that is a desirable feature of many current within-host models. The models we propose adopt the general structure of epidemiological ‘macroparasite’ models that allow hosts to be variably infected by parasites such as nematodes and host phenotypes to flexibly depend on parasite burden. Specifically, our within-host models consider target cells as ‘hosts’ and viral particles as ‘macroparasites’, and allow viral output and infected cell lifespans, among other phenotypes, to depend on a cell’s multiplicity of infection. We show with an application to influenza that these models can be statistically fit to viral load and other within-host data, and demonstrate using model selection approaches that they have the ability to outperform traditional within-host viral dynamic models. Important in vivo quantities such as the mean multiplicity of cellular infection and time-evolving reassortant frequencies can also be quantified in a straightforward manner once these macroparasite models have been parameterized. The within-host model structure we develop here provides a mathematical way forward to address questions related to the roles of cellular coinfection, collective viral interactions, and viral complementation in within-host viral dynamics and evolution.
Collapse
Affiliation(s)
- Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA, USA
| | - Alex P Farrell
- Department of Mathematics, North Carolina State University, 2311 Stinson Dr, Raleigh, NC, USA.,Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, IL, USA
| | - Ruian Ke
- Department of Mathematics, North Carolina State University, 2311 Stinson Dr, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Nurtay A, Hennessy MG, Sardanyés J, Alsedà L, Elena SF. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181179. [PMID: 30800366 PMCID: PMC6366233 DOI: 10.1098/rsos.181179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov-Takens and zero-Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
Collapse
Affiliation(s)
- Anel Nurtay
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Parc Científic UV, Paterna, València 46980, Spain
| | - Matthew G. Hennessy
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Lluís Alsedà
- Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Parc Científic UV, Paterna, València 46980, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
5
|
Phan D, Wodarz D. Modeling multiple infection of cells by viruses: Challenges and insights. Math Biosci 2015; 264:21-8. [PMID: 25770053 DOI: 10.1016/j.mbs.2015.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/17/2022]
Abstract
The multiple infection of cells with several copies of a given virus has been demonstrated in experimental systems, and has been subject to previous mathematical modeling approaches. Such models, especially those based on ordinary differential equations, can be characterized by difficulties and pitfalls. One such difficulty arises from what we refer to as multiple infection cascades. That is, such models subdivide the infected cell population into sub-populations that are carry i viruses, and each sub-population can in principle always be further infected to contain i + 1 viruses. In order to study the model with numerical simulations, the infection cascade needs to be cut artificially, and this can influence the results. This is shown here in the context of the simplest setting that involves a single, homogeneous virus population. If the viral replication rate is sufficiently fast, then most infected cells will accumulate in the last member of the infection cascade, leading to incorrect numerical results. This can be observed even with relatively long infection cascades, and in this case computational costs associated with a sufficiently long infection cascade can render this approach impractical. We subsequently examine a more complex scenario where two virus types/strains with different fitness are allowed to compete. Again, we find that the length of the infection cascade can have a crucial influence on the results. Competitive exclusion can be observed for shorter infection cascades, while coexistence can be observed for longer infection cascades. More subtly, the length of the infection cascade can influence the equilibrium level of the populations in numerical simulations. Studying the model in a parameter regime where an increase in the infection cascade length does not influence the results, we examine the effect of multiple infection on the outcome of competition. We find that multiple infection can promote coexistence of virus types if there is a degree of intracellular niche separation. If this is not the case, the only outcome is competitive exclusion, similar to equivalent models that do not take into account multiple infection of cells. We further find that multiple infection has a reduced ability to allow coexistence if virus spread is spatially restricted compared to a well-mixed system. These results provide important insights when analyzing and interpreting multiple infection models.
Collapse
Affiliation(s)
- Dustin Phan
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92617, United States
| | - Dominik Wodarz
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92617, United States.
| |
Collapse
|
6
|
Abstract
This review outlines how mathematical models have been helpful, and continue to be so, for obtaining insights into the in vivo dynamics of HIV infection. The review starts with a discussion of a basic mathematical model that has been frequently used to study HIV dynamics. Some crucial results are described, including the estimation of key parameters that characterize the infection, and the generation of influential theories which argued that in vivo virus evolution is a key player in HIV pathogenesis. Subsequently, more recent concepts are reviewed that have relevance for disease progression, including the multiple infection of cells and the direct cell-to-cell transmission of the virus through the formation of virological synapses. These are important mechanisms that can influence the rate at which HIV spreads through its target cell population, which is tightly linked to the rate at which the disease progresses towards AIDS.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 926967, USA,
| |
Collapse
|
7
|
Komarova NL, Levy DN, Wodarz D. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs. Sci Rep 2013; 3:2103. [PMID: 23811684 PMCID: PMC3696900 DOI: 10.1038/srep02103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
8
|
Bélanger K, Savoie M, Rosales Gerpe MC, Couture JF, Langlois MA. Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Res 2013; 41:7438-52. [PMID: 23761443 PMCID: PMC3753645 DOI: 10.1093/nar/gkt527] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
APOBEC3G (A3G) is a host-encoded protein that potently restricts the infectivity of a broad range of retroviruses. This can occur by mechanisms dependent on catalytic activity, resulting in the mutagenic deamination of nascent viral cDNA, and/or by other means that are independent of its catalytic activity. It is not yet known to what extent deamination-independent processes contribute to the overall restriction, how they exactly work or how they are regulated. Here, we show that alanine substitution of either tryptophan 94 (W94A) or 127 (W127A) in the non-catalytic N-terminal domain of A3G severely impedes RNA binding and alleviates deamination-independent restriction while still maintaining DNA mutator activity. Substitution of both tryptophans (W94A/W127A) produces a more severe phenotype in which RNA binding and RNA-dependent protein oligomerization are completely abrogated. We further demonstrate that RNA binding is specifically required for crippling late reverse transcript accumulation, preventing proviral DNA integration and, consequently, restricting viral particle release. We did not find that deaminase activity made a significant contribution to the restriction of any of these processes. In summary, this work reveals that there is a direct correlation between A3G's capacity to bind RNA and its ability to inhibit retroviral infectivity in a deamination-independent manner.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Mathieu Savoie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - María Carla Rosales Gerpe
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
9
|
Kim W, Chung HB, Chung CC. Constant drug dose in human immuno‐deficiency virus‐infected patients to induce long‐term non‐progressor status: bifurcation and controllability approach. IET Syst Biol 2013; 7:79-88. [DOI: 10.1049/iet-syb.2012.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Wonhee Kim
- Department of Electrical EngineeringHanyang UniversitySeoul133-791Korea
| | - Han Byul Chung
- Department of Electrical EngineeringHanyang UniversitySeoul133-791Korea
- MANDO Corp.Kyonggi-DoKorea
| | - Chung Choo Chung
- Division of Electrical and Biomedical EngineeringHanyang UniversitySeoul133-791Korea
| |
Collapse
|
10
|
Komarova NL, Wodarz D. Virus dynamics in the presence of synaptic transmission. Math Biosci 2013; 242:161-71. [PMID: 23357287 PMCID: PMC4122664 DOI: 10.1016/j.mbs.2013.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/03/2013] [Accepted: 01/11/2013] [Indexed: 11/16/2022]
Abstract
Traditionally, virus dynamics models consider populations of infected and target cells, and a population of free virus that can infect susceptible cells. In recent years, however, it has become. clear that direct cell-to-cell transmission can also play an important role for the in vivo spread of viruses, especially retroviruses such as human T lymphotropic virus-1 (HTLV-1) and Human immunodeficiency virus (HIV). Such cell-to-cell transmission is thought to occur through the formation of virological synapses that are formed between an infected source cell and a susceptible target cell. Here we formulate and analyze a class of virus dynamics models that include such cell-cell synaptic transmission. We explore different "strategies" of the virus defined by the number of viruses passed per synapse, and determine how the choice of strategy influences the basic reproductive ratio, R0, of the virus and thus its ability to establish a persistent infection. We show that depending on specific assumptions about the viral kinetics, strategies with low or intermediate numbers of viruses transferred may correspond to the highest values of R0. We also explore the evolutionary competition of viruses of different strains, which differ by their synaptic strategy, and show that viruses characterized by synaptic strategies with the highest R0 win the evolutionary competition and exclude other, inferior, strains.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
11
|
Murall CL, McCann KS, Bauch CT. Food webs in the human body: linking ecological theory to viral dynamics. PLoS One 2012; 7:e48812. [PMID: 23155409 PMCID: PMC3498237 DOI: 10.1371/journal.pone.0048812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/05/2012] [Indexed: 12/20/2022] Open
Abstract
The dynamics of in-host infections are central to predicting the progression of natural infections and the effectiveness of drugs or vaccines, however, they are not well understood. Here, we apply food web theory to in-host disease networks of the human body that are structured similarly to food web models that treat both predation and competition simultaneously. We show that in-host trade-offs, an under-studied aspect of disease ecology, are fundamental to understanding the outcomes of competing viral strains under differential immune responses. Further, and importantly, our analysis shows that the outcome of competition between virulent and non-virulent strains can be highly contingent on the abiotic conditions prevailing in the human body. These results suggest the alarming idea that even subtle behavioral changes that alter the human body (e.g. weight gain, smoking) may switch the environmental conditions in a manner that suddenly allows a virulent strain to dominate and replace less virulent strains. These ecological results therefore cast new light on the control of disease in the human body, and highlight the importance of longitudinal empirical studies across host variation gradients, as well as, of studies focused on delineating life history trade-offs within hosts.
Collapse
Affiliation(s)
- Carmen Lía Murall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
12
|
Althaus CL, De Boer RJ. Impaired immune evasion in HIV through intracellular delays and multiple infection of cells. Proc Biol Sci 2012; 279:3003-10. [PMID: 22492063 DOI: 10.1098/rspb.2012.0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle.
Collapse
Affiliation(s)
- Christian L Althaus
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
13
|
Nonacs P, Kapheim KM. Modeling Disease Evolution with Multilevel Selection: HIV as a Quasispecies Social Genome. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/jem/235553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Simultaneous detection of infectious human echoviruses and adenoviruses by an in situ nuclease-resistant molecular beacon-based assay. Appl Environ Microbiol 2011; 78:1584-8. [PMID: 22194298 DOI: 10.1128/aem.05937-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multiplex methodology using two nuclease-resistant molecular beacons that target specific genomic regions of adenovirus 2 and echovirus 17 during simultaneous infection in A549 cells is presented. Using fluorescence microscopy, visualization of enteroviral and adenoviral replication was possible within 3 h postinfection.
Collapse
|
15
|
Wodarz D, Levy DN. Effect of multiple infection of cells on the evolutionary dynamics of HIV in vivo: implications for host adaptation mechanisms. Exp Biol Med (Maywood) 2011; 236:926-37. [DOI: 10.1258/ebm.2011.011062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics between human immunodeficiency virus type 1 and the immune system have been studied both experimentally and mathematically, exploring aspects of host adaptation and viral mechanisms to escape host control. The majority of this work, however, has been performed assuming that any cell can only be infected by one copy of the virus. In recent years, it has become clear that multiple copies of the virus can infect the same cell, a process we refer to as co-infection. Here, we review this topic and discuss how immune control of the infection and the ability of the virus to escape immune control is affected by co-infection.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall
- Department of Mathematics, University of California, Irvine, CA 92697
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| |
Collapse
|
16
|
Evolutionary game theoretic strategy for optimal drug delivery to influence selection pressure in treatment of HIV-1. J Math Biol 2011; 64:495-512. [PMID: 21503727 DOI: 10.1007/s00285-011-0422-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 03/06/2011] [Indexed: 01/22/2023]
Abstract
Cytotoxic T-lymphocyte (CTL) escape mutation is associated with long-term behaviors of human immunodeficiency virus type 1 (HIV-1). Recent studies indicate heterogeneous behaviors of reversible and conservative mutants while the selection pressure changes. The purpose of this study is to optimize the selection pressure to minimize the long-term virus load. The results can be used to assist in delivery of highly loaded cognate peptide-pulsed dendritic cells (DC) into lymph nodes that could change the selection pressure. This mechanism may be employed for controlled drug delivery. A mathematical model is proposed in this paper to describe the evolutionary dynamics involving viruses and T cells. We formulate the optimization problem into the framework of evolutionary game theory, and solve for the optimal control of the selection pressure as a neighborhood invader strategy. The strategy dynamics can be obtained to evolve the immune system to the best controlled state. The study may shed light on optimal design of HIV-1 therapy based on optimization of adaptive CTL immune response.
Collapse
|
17
|
Wodarz D, Levy DN. Effect of different modes of viral spread on the dynamics of multiply infected cells in human immunodeficiency virus infection. J R Soc Interface 2010; 8:289-300. [PMID: 20659927 DOI: 10.1098/rsif.2010.0266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Infection of individual cells with more than one HIV particle is an important feature of HIV replication, which may contribute to HIV pathogenesis via the occurrence of recombination, viral complementation and other outcomes that influence HIV replication and evolutionary dynamics. A previous mathematical model of co-infection has shown that the number of cells infected with i viruses correlates with the ith power of the singly infected cell population, and this has partly been observed in experiments. This model, however, assumed that virus spread from cell to cell occurs only via free virus particles, and that viruses and cells mix perfectly. Here, we introduce a cellular automaton model that takes into account different modes of virus spread among cells, including cell to cell transmission via the virological synapse, and spatially constrained virus spread. In these scenarios, it is found that the number of multiply infected cells correlates linearly with the number of singly infected cells, meaning that co-infection plays a greater role at lower virus loads. The model further indicates that current experimental systems that are used to study co-infection dynamics fail to reflect the true dynamics of multiply infected cells under these specific assumptions, and that new experimental techniques need to be designed to distinguish between the different assumptions.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | | |
Collapse
|