1
|
Wu Y, Zhang Y, Zhao Y, Zhang X, Gu M, Huo W, Fu X, Li X, Guo B, Li J, Lu X, Hu F, Hu D, Zhang M. Elevated lipid accumulation product trajectory patterns are associated with increasing incident risk of type 2 diabetes mellitus in China. Prev Med 2025; 190:108186. [PMID: 39612991 DOI: 10.1016/j.ypmed.2024.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE Our study aimed to identify the trajectory patterns of lipid accumulation product (LAP) and investigate their association with the incident risk of type 2 diabetes mellitus (T2DM) in China. METHODS This study included 37,316 eligible participants, with data collected between1998 and 2021. The LAP trajectory patterns were identified through latent mixture modeling. Logistic regression models were used to examine the association between different LAP trajectory patterns and the incident risk of T2DM. RESULTS Over an average period of 12.7 years, 3195 participants developed T2DM. Four LAP trajectory patterns were identified: low stable, moderate slow-increasing, high decreasing, and moderate fast-increasing. After adjusting for demographic and clinical confounders, the odds ratios (ORs) and 95 % confidence intervals (CIs) for T2DM were 1.67 (1.50, 1.86) for the moderate slow-increasing group, 1.63 (1.38, 1.94) for the high decreasing group, and 2.43 (2.07, 2.85) for the moderate fast-increasing group compared with the low stable group. Similar trajectory patterns were found in sex-specific populations as in the general population, while the elevated LAP trajectory pattern was more strongly associated with an increase in the incident risk of T2DM in females. CONCLUSION Individuals with moderate fast-increasing LAP trajectory patterns had a 2.4 times higher risk of developing T2DM compared to those with low stable LAP patterns. More attention should be paid to preventing T2DM in people with high levels of LAP, especially females, the elderly, drinkers, and people with a history of diabetes.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Yanyan Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yang Zhao
- Department of General Practice, Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Xing Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Minqi Gu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xueru Fu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xi Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Botang Guo
- Department of General Practice, Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, PR China; Department of General Practice, Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, PR China.
| |
Collapse
|
2
|
Kasperski A, Heng HH. The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers. Int J Mol Sci 2024; 25:9163. [PMID: 39273111 PMCID: PMC11395208 DOI: 10.3390/ijms25179163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, Institute of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Ye JC, Heng HH. The New Era of Cancer Cytogenetics and Cytogenomics. Methods Mol Biol 2024; 2825:3-37. [PMID: 38913301 DOI: 10.1007/978-1-0716-3946-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The promises of the cancer genome sequencing project, combined with various -omics technologies, have raised questions about the importance of cancer cytogenetic analyses. It is suggested that DNA sequencing provides high resolution, speed, and automation, potentially replacing cytogenetic testing. We disagree with this reductionist prediction. On the contrary, various sequencing projects have unexpectedly challenged gene theory and highlighted the importance of the genome or karyotype in organizing gene network interactions. Consequently, profiling the karyotype can be more meaningful than solely profiling gene mutations, especially in cancer where karyotype alterations mediate cellular macroevolution dominance. In this chapter, recent studies that illustrate the ultimate importance of karyotype in cancer genomics and evolution are briefly reviewed. In particular, the long-ignored non-clonal chromosome aberrations or NCCAs are linked to genome or chromosome instability, genome chaos is linked to genome reorganization under cellular crisis, and the two-phased cancer evolution reconciles the relationship between genome alteration-mediated punctuated macroevolution and gene mutation-mediated stepwise microevolution. By further synthesizing, the concept of karyotype coding is discussed in the context of information management. Altogether, we call for a new era of cancer cytogenetics and cytogenomics, where an array of technical frontiers can be explored further, which is crucial for both basic research and clinical implications in the cancer field.
Collapse
Affiliation(s)
- Jing Christine Ye
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry H Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
4
|
Vosberg DE. Sex and Gender in Population Neuroscience. Curr Top Behav Neurosci 2024; 68:87-105. [PMID: 38509404 DOI: 10.1007/7854_2024_468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To understand psychiatric and neurological disorders and the structural and functional properties of the human brain, it is essential to consider the roles of sex and gender. In this chapter, I first define sex and gender and describe studies of sex differences in non-human animals. In humans, I describe the sex differences in behavioral and clinical phenotypes and neuroimaging-derived phenotypes, including whole-brain measures, regional subcortical and cortical measures, and structural and functional connectivity. Although structural whole-brain sex differences are large, regional effects (adjusting for whole-brain volumes) are typically much smaller and often fail to replicate. Nevertheless, while an individual neuroimaging feature may have a small effect size, aggregating them in a "maleness/femaleness" score or machine learning multivariate paradigm may prove to be predictive and informative of sex- and gender-related traits. Finally, I conclude by summarizing emerging investigations of gender norms and gender identity and provide methodological recommendations to incorporate sex and gender in population neuroscience research.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada.
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Heng J, Heng HH. Karyotype as code of codes: An inheritance platform to shape the pattern and scale of evolution. Biosystems 2023; 233:105016. [PMID: 37659678 DOI: 10.1016/j.biosystems.2023.105016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Organismal evolution displays complex dynamics in phase and scale which seem to trend towards increasing biocomplexity and diversity. For over a century, such amazing dynamics have been cleverly explained by the apparently straightforward mechanism of natural selection: all diversification, including speciation, results from the gradual accumulation of small beneficial or near-neutral alterations over long timescales. However, although this has been widely accepted, natural selection makes a crucial assumption that has not yet been validated. Specifically, the informational relationship between small microevolutionary alterations and large macroevolutionary changes in natural selection is unclear. To address the macroevolution-microevolution relationship, it is crucial to incorporate the concept of organic codes and particularly the "karyotype code" which defines macroevolutionary changes. This concept piece examines the karyotype from the perspective of two-phased evolution and four key components of information management. It offers insight into how the karyotype creates and preserves information that defines the scale and phase of macroevolution and, by extension, microevolution. We briefly describe the relationship between the karyotype code, the genetic code, and other organic codes in the context of generating evolutionary novelties in macroevolution and imposing constraints on them as biological routines in microevolution. Our analyses suggest that karyotype coding preserves many organic codes by providing system-level inheritance, and similar analyses are needed to classify and prioritize a large number of different organic codes based on the phases and scales of evolution. Finally, the importance of natural information self-creation is briefly discussed, leading to a call to integrate information and time into the relationship between matter and energy.
Collapse
Affiliation(s)
- Julie Heng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Heng E, Thanedar S, Heng HH. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes (Basel) 2023; 14:493. [PMID: 36833419 PMCID: PMC9956237 DOI: 10.3390/genes14020493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The powerful utilities of current DNA sequencing technology question the value of developing clinical cytogenetics any further. By briefly reviewing the historical and current challenges of cytogenetics, the new conceptual and technological platform of the 21st century clinical cytogenetics is presented. Particularly, the genome architecture theory (GAT) has been used as a new framework to emphasize the importance of clinical cytogenetics in the genomic era, as karyotype dynamics play a central role in information-based genomics and genome-based macroevolution. Furthermore, many diseases can be linked to elevated levels of genomic variations within a given environment. With karyotype coding in mind, new opportunities for clinical cytogenetics are discussed to integrate genomics back into cytogenetics, as karyotypic context represents a new type of genomic information that organizes gene interactions. The proposed research frontiers include: 1. focusing on karyotypic heterogeneity (e.g., classifying non-clonal chromosome aberrations (NCCAs), studying mosaicism, heteromorphism, and nuclear architecture alteration-mediated diseases), 2. monitoring the process of somatic evolution by characterizing genome instability and illustrating the relationship between stress, karyotype dynamics, and diseases, and 3. developing methods to integrate genomic data and cytogenomics. We hope that these perspectives can trigger further discussion beyond traditional chromosomal analyses. Future clinical cytogenetics should profile chromosome instability-mediated somatic evolution, as well as the degree of non-clonal chromosomal aberrations that monitor the genomic system's stress response. Using this platform, many common and complex disease conditions, including the aging process, can be effectively and tangibly monitored for health benefits.
Collapse
Affiliation(s)
- Eric Heng
- Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sanjana Thanedar
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Henry H. Heng
- Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Li X, Kang H, Yin H, Liu T, Hou Q, Yu X, Guo Y, Shen W, Ge H, Zeng X, Lu K, Xiong Y. How many missed abortions are caused by embryonic chromosomal abnormalities and what are their risk factors? Front Genet 2023; 13:1058261. [PMID: 36685814 PMCID: PMC9846508 DOI: 10.3389/fgene.2022.1058261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: Though embryonic chromosome abnormalities have been reported to be the most common cause of missed abortions, previous studies have mainly focused on embryonic chromosome abnormalities of missed abortions, with very few studies reporting that of non-missed abortion. Without chromosome studies of normal abortion samples, it is impossible to determine the risk factors of embryo chromosome abnormalities and missed abortion. This study aimed to investigate the maternal and embryonic chromosome characteristics of missed and non-missed abortion, to clarify the questions that how many missed abortions are caused by embryonic chromosomal abnormalities and what are their risk factors. Material and methods: This study was conducted on 131 women with missed or non-missed abortion from the Longitudinal Missed Abortion Study (LoMAS). Logistic regression analysis was used to identify the association between maternal covariates and embryonic chromosomal abnormalities and missed abortions. Data on the characteristics of women with abortions were collected. Results: The embryonic chromosome abnormality rate was only 3.9% in non-missed abortion embryos, while it was 64.8% in missed-abortion embryos. Assisted reproductive technology and prior missed abortions increased the risk of embryonic chromosome abnormalities by 1.637 (95% CI: 1.573, 4.346. p = 0.010) and 3.111 (95% CI: 1.809, 7.439. (p < 0.001) times, respectively. In addition, as the age increased by 1 year, the risk of embryonic chromosome abnormality increased by 14.4% (OR: 1.144, 95% CI: 1.030, 1.272. p = 0.012). Moreover, advanced age may lead to different distributions of chromosomal abnormality types. Conclusion: Nearly two-thirds of missed abortions are caused by embryonic chromosomal abnormalities. Moreover, advanced age, assisted reproductive technology, and prior missed abortions increase the risk of embryonic chromosomal abnormalities.
Collapse
Affiliation(s)
- Xin Li
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Kang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huifeng Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianjiao Liu
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiannan Hou
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolan Yu
- West China Second University Hospital, West China Women’s and Children’s Hospital, Chengdu, China
| | - Yuanlin Guo
- Chengdu Jinniu Maternal and Child Health Care Hospital, Chengdu, China
| | - Wei Shen
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huisheng Ge
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Zeng
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangmu Lu
- The Eighth Affiliated Hospital of Sun Yat Sen University, Shenzhen, China,*Correspondence: Kangmu Lu, ; Ying Xiong,
| | - Ying Xiong
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Kangmu Lu, ; Ying Xiong,
| |
Collapse
|
8
|
Using individual-based modeling to investigate whether fluctuating resources help to explain the prevalence of sexual reproduction in animal species. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Heng J, Heng HH. Genome Chaos, Information Creation, and Cancer Emergence: Searching for New Frameworks on the 50th Anniversary of the "War on Cancer". Genes (Basel) 2021; 13:genes13010101. [PMID: 35052441 PMCID: PMC8774498 DOI: 10.3390/genes13010101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
The year 2021 marks the 50th anniversary of the National Cancer Act, signed by President Nixon, which declared a national “war on cancer.” Powered by enormous financial support, this past half-century has witnessed remarkable progress in understanding the individual molecular mechanisms of cancer, primarily through the characterization of cancer genes and the phenotypes associated with their pathways. Despite millions of publications and the overwhelming volume data generated from the Cancer Genome Project, clinical benefits are still lacking. In fact, the massive, diverse data also unexpectedly challenge the current somatic gene mutation theory of cancer, as well as the initial rationales behind sequencing so many cancer samples. Therefore, what should we do next? Should we continue to sequence more samples and push for further molecular characterizations, or should we take a moment to pause and think about the biological meaning of the data we have, integrating new ideas in cancer biology? On this special anniversary, we implore that it is time for the latter. We review the Genome Architecture Theory, an alternative conceptual framework that departs from gene-based theories. Specifically, we discuss the relationship between genes, genomes, and information-based platforms for future cancer research. This discussion will reinforce some newly proposed concepts that are essential for advancing cancer research, including two-phased cancer evolution (which reconciles evolutionary contributions from karyotypes and genes), stress-induced genome chaos (which creates new system information essential for macroevolution), the evolutionary mechanism of cancer (which unifies diverse molecular mechanisms to create new karyotype coding during evolution), and cellular adaptation and cancer emergence (which explains why cancer exists in the first place). We hope that these ideas will usher in new genomic and evolutionary conceptual frameworks and strategies for the next 50 years of cancer research.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 16 Divinity Ave, Cambridge, MA 02138, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
10
|
Crkvenjakov R, Heng HH. Further illusions: On key evolutionary mechanisms that could never fit with Modern Synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 169-170:3-11. [PMID: 34767862 DOI: 10.1016/j.pbiomolbio.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
In the light of illusions of the Modern Synthesis (MS) listed by Noble (2021a), its key concept, that gradual accumulation of gene mutations within microevolution leads to macroevolution, requires reexamination. In this article, additional illusions of the MS are identified as being caused by the absence of system information and correct history. First, the MS lacks distinction among the two basic types of information: genome-defined system and gene-defined parts-information, as its treatment was based mostly on gene information. In contrast, it is argued here that system information is maintained by species-specific karyotype code, and macroevolution is based on the whole genome information package rather than on specific genes. Linking the origin of species with system information shows that the creation and accumulation of the latter in evolution is the fundamental question omitted from the MS. Second, modern evidence eliminates the MS's preferred theory that present evolutionary events can be linearly extrapolated to the past to reconstruct Life's history, wrongly assuming that most of the fossil record supports the gradual change while ignoring the true karyotype/genome patterns. Furthermore, stasis, as the most prominent pattern of the deep history of Life, remains a puzzle to the MS, but can be explained by the mechanism of karyotype-preservation-via-sex. Consequently, the concept of system-information is smoothly integrated into the two-phased evolutionary model that paleontology requires (Eldredge and Gould, 1972). Finally, research on genome-level causation of evolution, which does not fit the MS, is summarized. The availability of alternative concepts further illustrates that it is time to depart from the MS.
Collapse
Affiliation(s)
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Heng E, Moy A, Liu G, Heng HH, Zhang K. ER Stress and Micronuclei Cluster: Stress Response Contributes to Genome Chaos in Cancer. Front Cell Dev Biol 2021; 9:673188. [PMID: 34422803 PMCID: PMC8371933 DOI: 10.3389/fcell.2021.673188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Eric Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amanda Moy
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
12
|
Heng J, Heng HH. Karyotype coding: The creation and maintenance of system information for complexity and biodiversity. Biosystems 2021; 208:104476. [PMID: 34237348 DOI: 10.1016/j.biosystems.2021.104476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022]
Abstract
The mechanism of biological information flow is of vital importance. However, traditional research surrounding the genetic code that follows the central dogma to a phenotype faces challengers, including missing heritability and two-phased evolution. Here, we propose the karyotype code, which by organizing genes along chromosomes at once preserves species genome information and provides a platform for other genetic and nongenetic information to develop and accumulate. This specific genome-level code, which exists in all living systems, is compared to the genetic code and other organic codes in the context of information management, leading to the concept of hierarchical biological codes and an 'extended' definition of adaptor where the adaptors of a code can be not only molecular structures but also, more commonly, biological processes. Notably, different levels of a biosystem have their own mechanisms of information management, and gene-coded parts inheritance preserves "parts information" while karyotype-coded system inheritance preserves the "system information" which organizes parts information. The karyotype code prompts many questions regarding the flow of biological information, including the distinction between information creation, maintenance, modification, and usage, along with differences between living and non-living systems. How do biological systems exist, reproduce, and self-evolve for increased complexity and diversity? Inheritance is mediated by organic codes which function as informational tools to organize chemical reactions, create new information, and preserve frozen accidents, transforming historical miracles into biological routines.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Heng J, Heng HH. Two-phased evolution: Genome chaos-mediated information creation and maintenance. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:29-42. [PMID: 33992670 DOI: 10.1016/j.pbiomolbio.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Cancer is traditionally labeled a "cellular growth problem." However, it is fundamentally an issue of macroevolution where new systems emerge from tissue by breaking various constraints. To study this process, we used experimental platforms to "watch evolution in action" by comparing the profiles of karyotypes, transcriptomes, and cellular phenotypes longitudinally before, during, and after key phase transitions. This effort, alongside critical rethinking of current gene-based genomic and evolutionary theory, led to the development of the Genome Architecture Theory. Following a brief historical review, we present four case studies and their takeaways to describe the pattern of genome-based cancer evolution. Our discoveries include 1. The importance of non-clonal chromosome aberrations or NCCAs; 2. Two-phased cancer evolution, comprising a punctuated phase and a gradual phase, dominated by karyotype changes and gene mutation/epigenetic alterations, respectively; 3. How the karyotype codes system inheritance, which organizes gene interactions and provides the genomic basis for physiological regulatory networks; and 4. Stress-induced genome chaos, which creates genomic information by reorganizing chromosomes for macroevolution. Together, these case studies redefine the relationship between cellular macro- and microevolution: macroevolution does not equal microevolution + time. Furthermore, we incorporate genome chaos and gene mutation in a general model: genome reorganization creates new karyotype coding, then diverse cancer gene mutations can promote the dominance of tumor cell populations. Finally, we call for validation of the Genome Architecture Theory of cancer and organismal evolution, as well as the systematic study of genomic information flow in evolutionary processes.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Ye CJ, Sharpe Z, Heng HH. Origins and Consequences of Chromosomal Instability: From Cellular Adaptation to Genome Chaos-Mediated System Survival. Genes (Basel) 2020; 11:E1162. [PMID: 33008067 PMCID: PMC7601827 DOI: 10.3390/genes11101162] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
When discussing chromosomal instability, most of the literature focuses on the characterization of individual molecular mechanisms. These studies search for genomic and environmental causes and consequences of chromosomal instability in cancer, aiming to identify key triggering factors useful to control chromosomal instability and apply this knowledge in the clinic. Since cancer is a phenomenon of new system emergence from normal tissue driven by somatic evolution, such studies should be done in the context of new genome system emergence during evolution. In this perspective, both the origin and key outcome of chromosomal instability are examined using the genome theory of cancer evolution. Specifically, chromosomal instability was linked to a spectrum of genomic and non-genomic variants, from epigenetic alterations to drastic genome chaos. These highly diverse factors were then unified by the evolutionary mechanism of cancer. Following identification of the hidden link between cellular adaptation (positive and essential) and its trade-off (unavoidable and negative) of chromosomal instability, why chromosomal instability is the main player in the macro-cellular evolution of cancer is briefly discussed. Finally, new research directions are suggested, including searching for a common mechanism of evolutionary phase transition, establishing chromosomal instability as an evolutionary biomarker, validating the new two-phase evolutionary model of cancer, and applying such a model to improve clinical outcomes and to understand the genome-defined mechanism of organismal evolution.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zachary Sharpe
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Martel SI, Ossa CG, Simon J, Figueroa CC, Bozinovic F. Latitudinal trend in the reproductive mode of the pea aphid Acyrthosiphon pisum invading a wide climatic range. Ecol Evol 2020; 10:8289-8298. [PMID: 32788979 PMCID: PMC7417215 DOI: 10.1002/ece3.6536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 11/12/2022] Open
Abstract
The maintenance of sexuality is a puzzling phenomenon in evolutionary biology. Many universal hypotheses have been proposed to explain the prevalence of sex despite its costs, but it has been hypothesized that sex could be also retained by lineage-specific mechanisms that would confer some short-term advantage. Aphids are good models to study the maintenance of sex because they exhibit coexistence of both sexual and asexual populations within the same species and because they invade a large variety of ecosystems. Sex in aphids is thought to be maintained because only sexually produced eggs can persist in cold climates, but whether sex is obligate or facultative depending on climatic conditions remains to be elucidated. In this study, we have inferred the reproductive mode of introduced populations of the pea aphid Acyrthosiphon pisum in Chile along a climatic gradient using phenotypic assays and genetic-based criteria to test the ecological short-term advantage of sex in cold environments. Our results showed a latitudinal trend in the reproductive mode of Chilean pea aphid population from obligate parthenogenesis in the north to an intermediate life cycle producing both parthenogenetic and sexual progeny in the southernmost locality, where harsh winters are usual. These findings are congruent with the hypothesis of the ecological short-term advantage of sex in aphids.
Collapse
Affiliation(s)
- Sebastián I. Martel
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiago de ChileChile
| | - Carmen G. Ossa
- Instituto de BiologíaFacultad de CienciasUniversidad de ValparaísoValparaísoChile
| | | | - Christian C. Figueroa
- Instituto de Ciencias BiológicasCenter for Molecular and Functional Ecology in Agroecosystems (CEMF)Universidad de TalcaTalcaChile
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiago de ChileChile
| |
Collapse
|
17
|
Ye CJ, Chen J, Liu G, Heng HH. Somatic Genomic Mosaicism in Multiple Myeloma. Front Genet 2020; 11:388. [PMID: 32391059 PMCID: PMC7189895 DOI: 10.3389/fgene.2020.00388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jason Chen
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
18
|
Pellestor F, Gatinois V. Chromoanagenesis: a piece of the macroevolution scenario. Mol Cytogenet 2020; 13:3. [PMID: 32010222 PMCID: PMC6988253 DOI: 10.1186/s13039-020-0470-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/05/2020] [Indexed: 01/04/2023] Open
Abstract
Over the last decade, new types of massive and complex chromosomal rearrangements based on the chaotic shattering and restructuring of chromosomes have been identified in cancer cells as well as in patients with congenital diseases and healthy individuals. These unanticipated phenomena are named chromothripsis, chromoanasynthesis and chromoplexy, and are grouped under the term of chromoanagenesis. As mechanisms for rapid and profound genome modifications in germlines and early development, these processes can be regarded as credible pathways for genomic evolution and speciation process. Their discovery confirms the importance of genome-centric investigations to fully understand organismal evolution. Because they oppose the model of progressive acquisition of driver mutations or rearrangements, these phenomena conceptually give support to the concept of macroevolution, known through the models of “Hopeful Monsters” and the “Punctuated Equilibrium”. In this review, we summarize mechanisms underlying chromoanagenesis processes and we show that numerous cases of chromosomal speciation and short-term adaptation could be correlated to chromoanagenesis-related mechanisms. In the frame of a modern and integrative analysis of eukaryote evolutionary processes, it seems important to consider the unexpected chromoanagenesis phenomena.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| | - Vincent Gatinois
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
19
|
Ye CJ, Stilgenbauer L, Moy A, Liu G, Heng HH. What Is Karyotype Coding and Why Is Genomic Topology Important for Cancer and Evolution? Front Genet 2019; 10:1082. [PMID: 31737054 PMCID: PMC6838208 DOI: 10.3389/fgene.2019.01082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
While the importance of chromosomal/nuclear variations vs. gene mutations in diseases is becoming more appreciated, less is known about its genomic basis. Traditionally, chromosomes are considered the carriers of genes, and genes define bio-inheritance. In recent years, the gene-centric concept has been challenged by the surprising data of various sequencing projects. The genome system theory has been introduced to offer an alternative framework. One of the key concepts of the genome system theory is karyotype or chromosomal coding: chromosome sets function as gene organizers, and the genomic topologies provide a context for regulating gene expression and function. In other words, the interaction of individual genes, defined by genomic topology, is part of the full informational system. The genes define the “parts inheritance,” while the karyotype and genomic topology (the physical relationship of genes within a three-dimensional nucleus) plus the gene content defines “system inheritance.” In this mini-review, the concept of karyotype or chromosomal coding will be briefly discussed, including: 1) the rationale for searching for new genomic inheritance, 2) chromosomal or karyotype coding (hypothesis, model, and its predictions), and 3) the significance and evidence of chromosomal coding (maintaining and changing the system inheritance-defined bio-systems). This mini-review aims to provide a new conceptual framework for appreciating the genome organization-based information package and its ultimate importance for future genomic and evolutionary studies.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lukas Stilgenbauer
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amanda Moy
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
20
|
Alves LDF, Westmann CA, Lovate GL, de Siqueira GMV, Borelli TC, Guazzaroni ME. Metagenomic Approaches for Understanding New Concepts in Microbial Science. Int J Genomics 2018; 2018:2312987. [PMID: 30211213 PMCID: PMC6126073 DOI: 10.1155/2018/2312987] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past thirty years, since the dawn of metagenomic studies, a completely new (micro) universe was revealed, with the potential to have profound impacts on many aspects of the society. Remarkably, the study of human microbiome provided a new perspective on a myriad of human traits previously regarded as solely (epi-) genetically encoded, such as disease susceptibility, immunological response, and social and nutritional behaviors. In this context, metagenomics has established a powerful framework for understanding the intricate connections between human societies and microbial communities, ultimately allowing for the optimization of both human health and productivity. Thus, we have shifted from the old concept of microbes as harmful organisms to a broader panorama, in which the signal of the relationship between humans and microbes is flexible and directly dependent on our own decisions and practices. In parallel, metagenomics has also been playing a major role in the prospection of "hidden" genetic features and the development of biotechnological applications, through the discovery of novel genes, enzymes, pathways, and bioactive molecules with completely new or improved biochemical functions. Therefore, this review highlights the major milestones over the last three decades of metagenomics, providing insights into both its potentialities and current challenges.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cauã Antunes Westmann
- Department of Cell Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Lencioni Lovate
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Ye CJ, Regan S, Liu G, Alemara S, Heng HH. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet 2018; 11:31. [PMID: 29760781 PMCID: PMC5946397 DOI: 10.1186/s13039-018-0376-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. RESULTS Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. CONCLUSION Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis encourages efforts to apply the principles/approaches of complex adaptive systems to ultimately understand aneuploidy in cancer.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sarah Regan
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Sarah Alemara
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
22
|
Jaffe K. Synergy from reproductive division of labor and genetic complexity drive the evolution of sex. J Biol Phys 2018; 44:317-329. [PMID: 29663185 DOI: 10.1007/s10867-018-9485-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/16/2018] [Indexed: 11/28/2022] Open
Abstract
Computer experiments that mirror the evolutionary dynamics of sexual and asexual organisms as they occur in nature were used to test features proposed to explain the evolution of sexual recombination. Results show that this evolution is better described as a network of interactions between possible sexual forms, including diploidy, thelytoky, facultative sex, assortation, bisexuality, and division of labor between the sexes, rather than a simple transition from parthenogenesis to sexual recombination. Diploidy was shown to be fundamental for the evolution of sex; bisexual reproduction emerged only among anisogamic diploids with a synergistic division of reproductive labor; and facultative sex was more likely to evolve among haploids practicing assortative mating. Looking at the evolution of sex as a complex system through individual-based simulations explains better the diversity of sexual strategies known to exist in nature, compared to classical analytical models.
Collapse
Affiliation(s)
- Klaus Jaffe
- Universidad Simón Bolivar, Caracas, Venezuela.
| |
Collapse
|
23
|
Forsdyke DR. The chromosomal basis of species initiation: Prdm9 as an anti-speciation gene. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
24
|
Heng HH, Horne SD, Chaudhry S, Regan SM, Liu G, Abdallah BY, Ye CJ. A Postgenomic Perspective on Molecular Cytogenetics. Curr Genomics 2018; 19:227-239. [PMID: 29606910 PMCID: PMC5850511 DOI: 10.2174/1389202918666170717145716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The postgenomic era is featured by massive data collection and analyses from various large scale-omics studies. Despite the promising capability of systems biology and bioinformatics to handle large data sets, data interpretation, especially the translation of -omics data into clinical implications, has been challenging. DISCUSSION In this perspective, some important conceptual and technological limitations of current systems biology are discussed in the context of the ultimate importance of the genome beyond the collection of all genes. Following a brief summary of the contributions of molecular cytogenetics/cytogenomics in the pre- and post-genomic eras, new challenges for postgenomic research are discussed. Such discussion leads to a call to search for a new conceptual framework and holistic methodologies. CONCLUSION Throughout this synthesis, the genome theory of somatic cell evolution is highlighted in contrast to gene theory, which ignores the karyotype-mediated higher level of genetic information. Since "system inheritance" is defined by the genome context (gene content and genomic topology) while "parts inheritance" is defined by genes/epigenes, molecular cytogenetics and cytogenomics (which directly study genome structure, function, alteration and evolution) will play important roles in this postgenomic era.
Collapse
Affiliation(s)
- Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven D. Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sophia Chaudhry
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sarah M. Regan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Batoul Y. Abdallah
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christine J. Ye
- The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Abstract
Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
26
|
Toman J, Flegr J. Stability-based sorting: The forgotten process behind (not only) biological evolution. J Theor Biol 2017; 435:29-41. [PMID: 28899756 DOI: 10.1016/j.jtbi.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022]
Abstract
Natural selection is considered to be the main process that drives biological evolution. It requires selected entities to originate dependent upon one another by the means of reproduction or copying, and for the progeny to inherit the qualities of their ancestors. However, natural selection is a manifestation of a more general persistence principle, whose temporal consequences we propose to name "stability-based sorting" (SBS). Sorting based on static stability, i.e., SBS in its strict sense and usual conception, favours characters that increase the persistence of their holders and act on all material and immaterial entities. Sorted entities could originate independently from each other, are not required to propagate and need not exhibit heredity. Natural selection is a specific form of SBS-sorting based on dynamic stability. It requires some form of heredity and is based on competition for the largest difference between the speed of generating its own copies and their expiration. SBS in its strict sense and selection thus have markedly different evolutionary consequences that are stressed in this paper. In contrast to selection, which is opportunistic, SBS is able to accumulate even momentarily detrimental characters that are advantageous for the long-term persistence of sorted entities. However, it lacks the amplification effect based on the preferential propagation of holders of advantageous characters. Thus, it works slower than selection and normally is unable to create complex adaptations. From a long-term perspective, SBS is a decisive force in evolution-especially macroevolution. SBS offers a new explanation for numerous evolutionary phenomena, including broad distribution and persistence of sexuality, altruistic behaviour, horizontal gene transfer, patterns of evolutionary stasis, planetary homeostasis, increasing ecosystem resistance to disturbances, and the universal decline of disparity in the evolution of metazoan lineages. SBS acts on all levels in all biotic and abiotic systems. It could be the only truly universal evolutionary process, and an explanatory framework based on SBS could provide new insight into the evolution of complex abiotic and biotic systems.
Collapse
Affiliation(s)
- Jan Toman
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University in Prague, Vinicna 7, 128 00 Prague 2, Czech Republic.
| | - Jaroslav Flegr
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University in Prague, Vinicna 7, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
27
|
Zadesenets KS, Schärer L, Rubtsov NB. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Sci Rep 2017; 7:6066. [PMID: 28729552 PMCID: PMC5519732 DOI: 10.1038/s41598-017-06498-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/13/2017] [Indexed: 01/02/2023] Open
Abstract
The free-living flatworm Macrostomum lignano is a model organism for evolutionary and developmental biology studies. Recently, an unusual karyotypic diversity was revealed in this species. Specifically, worms are either ‘normal’ 2n = 8, or they are aneuploid with one or two additional large chromosome(s) (i.e. 2n = 9 or 2n = 10, respectively). Aneuploid worms did not show visible behavioral or morphological abnormalities and were successful in reproduction. In this study, we generated microdissected DNA probes from chromosome 1 (further called MLI1), chromosome 2 (MLI2), and a pair of similar-sized smaller chromosomes (MLI3, MLI4). FISH using these probes revealed that MLI1 consists of contiguous regions homologous to MLI2-MLI4, suggesting that MLI1 arose due to the whole genome duplication and subsequent fusion of one full chromosome set into one large metacentric chromosome. Therefore, one presumably full haploid genome was packed into MLI1, leading to hidden tetraploidy in the M. lignano genome. The study of Macrostomum sp. 8 — a sibling species of M. lignano — revealed that it usually has one additional pair of large chromosomes (2n = 10) showing a high homology to MLI1, thus suggesting hidden hexaploidy in its genome. Possible evolutionary scenarios for the emergence of the M. lignano and Macrostomum sp. 8 genomes are discussed.
Collapse
Affiliation(s)
- Kira S Zadesenets
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave., 10, Novosibirsk, 630090, Russian Federation.
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, CH-4051, Switzerland
| | - Nikolay B Rubtsov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Lavrentiev ave., 10, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
28
|
Xu Z. An evolutionary perspective of the origin of males from unisexual ancestral females. SCIENCE CHINA. LIFE SCIENCES 2017; 60:102-104. [PMID: 27928701 DOI: 10.1007/s11427-015-0125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
29
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
30
|
Heng HHQ, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet 2016; 9:15. [PMID: 26877768 PMCID: PMC4752783 DOI: 10.1186/s13039-016-0223-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Current cytogenetics has largely focused its efforts on the identification of recurrent karyotypic alterations, also known as clonal chromosomal aberrations (CCAs). The rationale of doing so seems simple: recurrent genetic changes are relevant for diseases or specific physiological conditions, while non clonal chromosome aberrations (NCCAs) are insignificant genetic background or noise. However, in reality, the vast majority of chromosomal alterations are NCCAs, and it is challenging to identify commonly shared CCAs in most solid tumors. Furthermore, the karyotype, rather than genes, represents the system inheritance, or blueprint, and each NCCA represents an altered genome system. These realizations underscore the importance of the re-evaluation of NCCAs in cytogenetic analyses. In this concept article, we briefly review the definition of NCCAs, some historical misconceptions about them, and why NCCAs are not insignificant "noise," but rather a highly significant feature of the cellular population for providing genome heterogeneity and complexity, representing one important form of fuzzy inheritance. The frequencies of NCCAs also represent an index to measure both internally- and environmentally-induced genome instability. Additionally, the NCCA/CCA cycle is associated with macro- and micro-cellular evolution. Lastly, elevated NCCAs are observed in many disease/illness conditions. Considering all of these factors, we call for the immediate action of studying and reporting NCCAs. Specifically, effort is needed to characterize and compare different types of NCCAs, to define their baseline in various tissues, to develop methods to access mitotic cells, to re-examine/interpret the NCCAs data, and to develop an NCCA database.
Collapse
Affiliation(s)
- Henry H. Q. Heng
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Department of Pathology, Wayne State University School of Medicine, 3226 Scott Hall, 540 E. Canfield, Detroit, MI 48201 USA
| | - Sarah M. Regan
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118 USA
| | - Guo Liu
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Christine J. Ye
- />The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA
| |
Collapse
|
31
|
Becks L, Alavi Y. Using Microevolution to Explain the Macroevolutionary Observations for the Evolution of Sex. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-15045-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2014; 32:325-40. [PMID: 23605440 DOI: 10.1007/s10555-013-9427-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Results of various cancer genome sequencing projects have "unexpectedly" challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.
Collapse
Affiliation(s)
- Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA,
| | | | | | | | | | | | | | | |
Collapse
|
33
|
DeHaan LR, Van Tassel DL. Useful insights from evolutionary biology for developing perennial grain crops. AMERICAN JOURNAL OF BOTANY 2014; 101:1801-1819. [PMID: 25326622 DOI: 10.3732/ajb.1400084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Annual grain crops dominate agricultural landscapes and provide the majority of calories consumed by humanity. Perennial grain crops could potentially ameliorate the land degradation and off-site impacts associated with annual grain cropping. However, herbaceous perennial plants with constitutively high allocation to harvestable seeds are rare to absent in nature. Recent trade-off theory models suggest that rugged fitness landscapes may explain the absence of this form better than sink competition models. Artificial selection for both grain production and multiyear lifespan can lead to more rapid progress in the face of fitness and genetic trade-offs than natural selection but is likely to result in plant types that differ substantially from all current domestic crops. Perennial grain domestication is also likely to require the development of selection strategies that differ from published crop breeding methods, despite their success in improving long-domesticated crops; for this purpose, we have reviewed literature in the areas of population and evolutionary genetics, domestication, and molecular biology. Rapid domestication will likely require genes with large effect that are expected to exhibit strong pleiotropy and epistasis. Cryptic genetic variation will need to be deliberately exposed both to purge mildly deleterious alleles and to generate novel agronomic phenotypes. We predict that perennial grain domestication programs will benefit from population subdivision followed by selection for simple traits in each subpopulation, the evaluation of very large populations, high selection intensity, rapid cycling through generations, and heterosis. The latter may be particularly beneficial in the development of varieties with stable yield and tolerance to crowding.
Collapse
Affiliation(s)
- Lee R DeHaan
- The Land Institute, 2440 E. Water Well Rd., Salina, Kansas 67401 USA
| | | |
Collapse
|
34
|
Niklas KJ, Cobb ED, Kutschera U. Did meiosis evolve before sex and the evolution of eukaryotic life cycles? Bioessays 2014; 36:1091-101. [PMID: 25143284 DOI: 10.1002/bies.201400045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biologists have long theorized about the evolution of life cycles, meiosis, and sexual reproduction. We revisit these topics and propose that the fundamental difference between life cycles is where and when multicellularity is expressed. We develop a scenario to explain the evolutionary transition from the life cycle of a unicellular organism to one in which multicellularity is expressed in either the haploid or diploid phase, or both. We propose further that meiosis might have evolved as a mechanism to correct for spontaneous whole-genome duplication (auto-polyploidy) and thus before the evolution of sexual reproduction sensu stricto (i.e. the formation of a diploid zygote via the fusion of haploid gametes) in the major eukaryotic clades. In addition, we propose, as others have, that sexual reproduction, which predominates in all eukaryotic clades, has many different advantages among which is that it produces variability among offspring and thus reduces sibling competition.
Collapse
Affiliation(s)
- Karl J Niklas
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
35
|
Horne SD, Pollick SA, Heng HHQ. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 2014; 136:2012-21. [PMID: 24957955 DOI: 10.1002/ijc.29031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/13/2014] [Indexed: 12/15/2022]
Abstract
The basis for the gene mutation theory of cancer that dominates current molecular cancer research consists of: the belief that gene-level aberrations such as mutations are the main cause of cancers, the concept that stepwise gene mutation accumulation drives cancer progression, and the hallmarks of cancer. The research community swiftly embraced the hallmarks of cancer, as such synthesis has supported the notions that common cancer genes are responsible for the majority of cancers and the complexity of cancer can be dissected into simplified molecular principles. The gene/pathway classification based on individual hallmarks provides explanation for the large number of diverse gene mutations, which is in contrast to the original estimation that only a handful of gene mutations would be discovered. Further, these hallmarks have been highly influential as they also provide the rationale and research direction for continued gene-based cancer research. While the molecular knowledge of these hallmarks is drastically increasing, the clinical implication remains limited, as cancer dynamics cannot be summarized by a few isolated/fixed molecular principles. Furthermore, the highly heterogeneous genetic signature of cancers, including massive stochastic genome alterations, challenges the utility of continuously studying each individual gene mutation under the framework of these hallmarks. It is therefore necessary to re-evaluate the concept of cancer hallmarks through the lens of cancer evolution. In this analysis, the evolutionary basis for the hallmarks of cancer will be discussed and the evolutionary mechanism of cancer suggested by the genome theory will be employed to unify the diverse molecular mechanisms of cancer.
Collapse
Affiliation(s)
- Steven D Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | | | | |
Collapse
|
36
|
Horne SD, Chowdhury SK, Heng HHQ. Stress, genomic adaptation, and the evolutionary trade-off. Front Genet 2014; 5:92. [PMID: 24795754 PMCID: PMC4005935 DOI: 10.3389/fgene.2014.00092] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/03/2014] [Indexed: 12/27/2022] Open
Abstract
Cells are constantly exposed to various internal and external stresses. The importance of cellular stress and its implication to disease conditions have become popular research topics. Many ongoing investigations focus on the sources of stress, their specific molecular mechanisms and interactions, especially regarding their contributions to many common and complex diseases through defined molecular pathways. Numerous molecular mechanisms have been linked to endoplasmic reticulum stress along with many unexpected findings, drastically increasing the complexity of our molecular understanding and challenging how to apply individual mechanism-based knowledge in the clinic. A newly emergent genome theory searches for the synthesis of a general evolutionary mechanism that unifies different types of stress and functional relationships from a genome-defined system point of view. Herein, we discuss the evolutionary relationship between stress and somatic cell adaptation under physiological, pathological, and somatic cell survival conditions, the multiple meanings to achieve adaptation and its potential trade-off. In particular, we purposely defocus from specific stresses and mechanisms by redirecting attention toward studying underlying general mechanisms.
Collapse
Affiliation(s)
- Steven D Horne
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University Detroit, MI, USA
| | | | - Henry H Q Heng
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University Detroit, MI, USA ; Department of Pathology, School of Medicine, Wayne State University Detroit, MI, USA
| |
Collapse
|
37
|
Stevens JB, Liu G, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Ye CJ, Krawetz SA, Heng HH. Unstable genomes elevate transcriptome dynamics. Int J Cancer 2014; 134:2074-87. [PMID: 24122714 DOI: 10.1002/ijc.28531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 01/15/2023]
Abstract
The challenge of identifying common expression signatures in cancer is well known, however the reason behind this is largely unclear. Traditionally variation in expression signatures has been attributed to technological problems, however recent evidence suggests that chromosome instability (CIN) and resultant karyotypic heterogeneity may be a large contributing factor. Using a well-defined model of immortalization, we systematically compared the pattern of genome alteration and expression dynamics during somatic evolution. Co-measurement of global gene expression and karyotypic alteration throughout the immortalization process reveals that karyotype changes influence gene expression as major structural and numerical karyotypic alterations result in large gene expression deviation. Replicate samples from stages with stable genomes are more similar to each other than are replicate samples with karyotypic heterogeneity. Karyotypic and gene expression change during immortalization is dynamic as each stage of progression has a unique expression pattern. This was further verified by comparing global expression in two replicates grown in one flask with known karyotypes. Replicates with higher karyotypic instability were found to be less similar than replicates with stable karyotypes. This data illustrates the karyotype, transcriptome, and transcriptome determined pathways are in constant flux during somatic cellular evolution (particularly during the macroevolutionary phase) and this flux is an inextricable feature of CIN and essential for cancer formation. The findings presented here underscore the importance of understanding the evolutionary process of cancer in order to design improved treatment modalities.
Collapse
|
38
|
Abdallah BY, Horne SD, Kurkinen M, Stevens JB, Liu G, Ye CJ, Barbat J, Bremer SW, Heng HHQ. Ovarian cancer evolution through stochastic genome alterations: defining the genomic role in ovarian cancer. Syst Biol Reprod Med 2013; 60:2-13. [PMID: 24147962 DOI: 10.3109/19396368.2013.837989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the fifth leading cause of death among women worldwide. Characterized by complex etiology and multi-level heterogeneity, its origins are not well understood. Intense research efforts over the last decade have furthered our knowledge by identifying multiple risk factors that are associated with the disease. However, it is still unclear how genetic heterogeneity contributes to tumor formation, and more specifically, how genome-level heterogeneity acts as the key driving force of cancer evolution. Most current genomic approaches are based on 'average molecular profiling.' While effective for data generation, they often fail to effectively address the issue of high level heterogeneity because they mask variation that exists in a cell population. In this synthesis, we hypothesize that genome-mediated cancer evolution can effectively explain diverse factors that contribute to ovarian cancer. In particular, the key contribution of genome replacement can be observed during major transitions of ovarian cancer evolution including cellular immortalization, transformation, and malignancy. First, we briefly review major updates in the literature, and illustrate how current gene-mediated research will offer limited insight into cellular heterogeneity and ovarian cancer evolution. We next explain a holistic framework for genome-based ovarian cancer evolution and apply it to understand the genomic dynamics of a syngeneic ovarian cancer mouse model. Finally, we employ single cell assays to further test our hypothesis, discuss some predictions, and report some recent findings.
Collapse
|
39
|
Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderhyden B, Krawetz SA, Gorelick R, Heng HH. Single cell heterogeneity: why unstable genomes are incompatible with average profiles. Cell Cycle 2013; 12:3640-9. [PMID: 24091732 DOI: 10.4161/cc.26580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since "outliers" play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the "average" cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution.
Collapse
Affiliation(s)
- Batoul Y Abdallah
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Kalevi Kull
- Department of Semiotics; University of Tartu; Jakobi St. 2 51014 Tartu Estonia
| |
Collapse
|
41
|
GORELICK ROOT, OLSON KRYSTLE. Polyploidy Is Genetic Hence May Cause Non-Adaptive Radiations, Whereas Pseudopolyploidy Is Genomic Hence May Cause Adaptive Non-Radiations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:286-94. [DOI: 10.1002/jez.b.22499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Affiliation(s)
- ROOT GORELICK
- Department of Biology; Carleton University; Ottawa, Ontario Canada
- School of Mathematics and Statistics and Institute of Interdisciplinary Studies; Carleton University; Ottawa, Ontario Canada
| | - KRYSTLE OLSON
- Department of Biology; Carleton University; Ottawa, Ontario Canada
| |
Collapse
|
42
|
Stevens JB, Abdallah BY, Liu G, Horne SD, Bremer SW, Ye KJ, Huang JY, Kurkinen M, Ye CJ, Heng HHQ. Heterogeneity of cell death. Cytogenet Genome Res 2013; 139:164-73. [PMID: 23548436 DOI: 10.1159/000348679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell death constitutes a number of heterogeneous processes. Despite the dynamic nature of cell death, studies of cell death have primarily focused on apoptosis, and cell death has often been viewed as static events occurring in linear pathways. In this article we review cell death heterogeneity with specific focus on 4 aspects of cell death: the type of cell death; how it is induced; its mechanism(s); the results of cell death, and the implications of cell death heterogeneity for both basic and clinical research. This specifically reveals that cell death occurs in multiple overlapping forms that simultaneously occur within a population. Network and pathway heterogeneity in cell death is also discussed. Failure to integrate cell death heterogeneity within analyses can lead to inaccurate predictions of the amount of cell death that takes place in a tumor. Similarly, many molecular methods employed in cell death studies homogenize a population removing heterogeneity between individual cells and can be deceiving. Finally, and most importantly, cell death heterogeneity is linked to the formation of new genome systems through induction of aneuploidy and genome chaos (rapid genome reorganization).
Collapse
Affiliation(s)
- J B Stevens
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Mich. 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heng HHQ, Liu G, Stevens JB, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Chowdhury SK, Ye CJ. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 2013; 139:144-57. [PMID: 23571381 DOI: 10.1159/000348682] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a departure from traditional gene-centric thinking with regard to cytogenetics and cytogenomics, the recently introduced genome theory calls upon a re-focusing of our attention on karyotype analyses of disease conditions. Karyotype heterogeneity has been demonstrated to be directly involved in the somatic cell evolution process which is the basis of many common and complex diseases such as cancer. To correctly use karyotype heterogeneity and apply it to monitor system instability, we need to include many seemingly unimportant non-specific chromosomal aberrations into our analysis. Traditionally, cytogenetic analysis has been focused on identifying recurrent types of abnormalities, particularly those that have been linked to specific diseases. In this perspective, drawing on the new framework of 4D-genomics, we will briefly review the importance of studying karyotype heterogeneity. We have also listed a number of overlooked chromosomal aberrations including defective mitotic figures, chromosome fragmentation as well as genome chaos. Finally, we call for the systematic discovery/characterization and classification of karyotype abnormalities in human diseases, as karyotype heterogeneity is the common factor that is essential for somatic cell evolution.
Collapse
Affiliation(s)
- H H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Mich. 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Both theory and experimentation suggest that during development, the DNA of multicellular organisms, recognized as graced with a lifelong intrinsic stability, is instead target of several modifications (point mutations, larger structural variations, epigenetic marks) and partner of complex interactions with non-DNA moieties (RNAs and proteins). Some of these modifications probably affect a fraction of the genome larger than standard point mutations and are more likely to respond to environmental cues. Thus, the traditional concepts of gene and genome need revision: the structure serving as depository of the overall bioinformation of the cell is more dynamic and less homogeneous than allowed for by the Central Dogma, since in addition to DNA, it includes also RNA and proteins. Each of the individual contributors as well as their stoichiometry undergo modifications. Compared to the traditional unidimensional and static genome, the resulting dynamic aggregate could be more competent to cope with different regulatory requirements: its structural variations may respond to unscheduled macro- and microenvironmental stresses as well as to scheduled genetic programs. A detailed assessment of these variations in time and space should provide a basis for a deeper comprehension of the phenotypic changes punctuating the organism's physio-pathological development, aging and transgenerational transmission. The variations of such information storage-delivery system may interest also the germ cells: the inheritance of parental traits and hence their evolutionary transmission would be affected. For the structure featuring all these properties, we propose the term 'hypergenome' to underscore the dynamic composition of a complex nucleoprotein responsive to both unpredictable environmental stimuli and internal built-in programs.
Collapse
Affiliation(s)
- V Sgaramella
- Istituto Agrario di San Michele all'Adige, IT–38010 San Michele all'Adige, Italy.
| |
Collapse
|
45
|
Worth AR, Lymbery AJ, Thompson RCA. Adaptive host manipulation by Toxoplasma gondii: fact or fiction? Trends Parasitol 2013; 29:150-5. [PMID: 23415732 DOI: 10.1016/j.pt.2013.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 11/18/2022]
Abstract
It is widely accepted that behavioural changes induced by Toxoplasma gondii are an adaptation of the parasite to enhance transmission to its cat definitive host. In our opinion, this explanation requires a rethink. We argue that the experimental evidence that observed behavioural changes will enhance transmission to cats is not convincing. We also argue that cats and sexual reproduction may not be essential for transmission and maintenance of this parasite. Thus, the selection pressure to infect a cat may not be sufficiently strong for the evolution of adaptive host manipulation to have occurred in order to enhance predation by cats.
Collapse
Affiliation(s)
- Amanda R Worth
- School of Veterinary and Biomedical Science, Murdoch University, South Street, Murdoch 6150, Australia.
| | | | | |
Collapse
|
46
|
Horne SD, Abdallah BY, Stevens JB, Liu G, Ye KJ, Bremer SW, Heng HH. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology. Syst Biol Reprod Med 2013; 59:124-30. [DOI: 10.3109/19396368.2012.754969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
von Wulfingen BB. From re-pair and re-production to (re)generation: bio-objects as indicators of cultural change. Croat Med J 2012; 53:502-4. [PMID: 23100213 PMCID: PMC3490461 DOI: 10.3325/cmj.2012.53.502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
48
|
|
49
|
Melián CJ, Alonso D, Allesina S, Condit RS, Etienne RS. Does sex speed up evolutionary rate and increase biodiversity? PLoS Comput Biol 2012; 8:e1002414. [PMID: 22412362 PMCID: PMC3297559 DOI: 10.1371/journal.pcbi.1002414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023] Open
Abstract
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity. The role of sex in driving genetic variation and the speed at which new species emerge has been debated for over a century. There is experimental and theoretical evidence that sex increases genetic variation and the speed at which new species emerge, although evidence that sex reduces variation and slows the formation of new species also exists. Surprisingly, given the link between sex and genetic variation, little work has been done on the impact of sex on biodiversity. In the present theoretical study we show that a faster evolutionary rate can decrease the abundance of newly formed species and thus decrease long-term biodiversity. This leads to the paradoxical result that sexual reproduction can increase genetic variation but reduce species diversity. These results suggest that reducing the rate of appearance of genetic variation and the speed at which new species emerge may increase biodiversity in the long-term. This unexpected link between reproductive mode, the speed of evolution and biodiversity suggests that a high evolutionary rate may not be required to yield a large number of species in natural ecosystems.
Collapse
Affiliation(s)
- Carlos J Melián
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Heng HHQ, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ. Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 2012; 112:217-53. [PMID: 21925306 DOI: 10.1016/b978-0-12-387688-1.00008-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recently introduced genome theory of cancer evolution provides a new framework for evolutionary studies on cancer. In particular, the established relationship between the large number of individual molecular mechanisms and the general evolutionary mechanism of cancer calls upon a change in our strategies that have been based on the characterization of common cancer gene mutations and their defined pathways. To further explain the significance of the genome theory of cancer evolution, a brief review will be presented describing the various attempts to illustrate the evolutionary mechanism of cancer, followed by further analysis of some key components of somatic cell evolution, including the diversity of biological systems, the multiple levels of information systems and control systems, the two phases (the punctuated or discontinuous phase and gradual Darwinian stepwise phase) and dynamic patterns of somatic cell evolution where genome replacement is the driving force. By linking various individual molecular mechanisms to the level of genome population diversity and tumorigenicity, the general mechanism of cancer has been identified as the evolutionary mechanism of cancer, which can be summarized by the following three steps including stress-induced genome instability, population diversity or heterogeneity, and genome-mediated macroevolution. Interestingly, the evolutionary mechanism is equal to the collective aggregate of all individual molecular mechanisms. This relationship explains why most of the known molecular mechanisms can contribute to cancer yet there is no single dominant mechanism for the majority of clinical cases. Despite the fact that each molecular mechanism can serve as a system stress and initiate the evolutionary process, to achieve cancer, multiple cycles of genome-mediated macroevolution are required and are a stochastically determined event. Finally, the potential clinical implications of the evolutionary mechanism of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, MI, USA
| | | | | | | | | | | |
Collapse
|