1
|
Kwok A, Stephens S, Dorken M. Male reproductive success is not strongly affected by phenological changes in mate availability in monoecious Sagittaria latifolia. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231117. [PMID: 37771970 PMCID: PMC10523072 DOI: 10.1098/rsos.231117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Many plants express their female and male sex roles at different times (dichogamy), with important consequences for mating. Dichogamy can yield mate limitation via biased floral sex ratios, particularly at the beginning and end of the flowering season when many plants simultaneously function as the same sex. This form of mate limitation should be reduced if plants adjust their allocations to female versus male sex functions in a manner that tracks seasonal variability in mating opportunities. For example, under protogyny (i.e. dichogamy with female function expressed first) plants with male-biased sex expression should have enhanced mating opportunities early in the flowering season as other plants begin to flower (in female sex phase). We quantified seasonal changes in sex allocation, patterns of mate availability and realized siring success in a population of protogynous Sagittaria latifolia. Our results were consistent with previous findings that seasonal changes in sex allocation should compensate for lost mating opportunities under the temporally variable mating environments caused by dichogamy. However, patterns of siring success in the population were inconsistent with this interpretation. We suggest that realized siring success might depend more strongly on spatial than on temporal aspects of mate availability.
Collapse
Affiliation(s)
- Allison Kwok
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Samantha Stephens
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Marcel Dorken
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9J 7B8
| |
Collapse
|
5
|
Tedder A, Helling M, Pannell JR, Shimizu-Inatsugi R, Kawagoe T, van Campen J, Sese J, Shimizu KK. Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae). ANNALS OF BOTANY 2015; 115:763-76. [PMID: 25776435 PMCID: PMC4373288 DOI: 10.1093/aob/mcv006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/29/2014] [Accepted: 12/23/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The coexistence of hermaphrodites and female-sterile individuals, or androdioecy, has been documented in only a handful of plants and animals. This study reports its existence in the plant species Cardamine amara (Brassicaceae), in which female-sterile individuals have shorter pistils than seed-producing hermaphrodites. METHODS Morphological analysis, in situ manual pollination, microsatellite genotyping and differential gene expression analysis using Arabidopsis microarrays were used to delimit variation between female-sterile individuals and hermaphrodites. KEY RESULTS Female sterility in C. amara appears to be caused by disrupted ovule development. It was associated with a 2.4- to 2.9-fold increase in clonal propagation. This made the pollen number of female-sterile genets more than double that of hermaphrodite genets, which fulfils a condition of co-existence predicted by simple androdioecy theories. When female-sterile individuals were observed in wild androdioecious populations, their ramet frequencies ranged from 5 to 54 %; however, their genet frequencies ranged from 11 to 29 %, which is consistent with the theoretically predicted upper limit of 50 %. CONCLUSIONS The results suggest that a combination of sexual reproduction and increased asexual proliferation by female-sterile individuals probably explains the invasion and maintenance of female sterility in otherwise hermaphroditic populations. To our knowledge, this is the first report of the coexistence of female sterility and hermaphrodites in the Brassicaceae.
Collapse
Affiliation(s)
- Andrew Tedder
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Matthias Helling
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - John R Pannell
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Rie Shimizu-Inatsugi
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Tetsuhiro Kawagoe
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Julia van Campen
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Jun Sese
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
7
|
Pannell JR, Labouche AM. The incidence and selection of multiple mating in plants. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120051. [PMID: 23339242 DOI: 10.1098/rstb.2012.0051] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female's point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so.
Collapse
Affiliation(s)
- John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland.
| | | |
Collapse
|
8
|
Barrett SCH, Hough J. Sexual dimorphism in flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:67-82. [PMID: 23183260 DOI: 10.1093/jxb/ers308] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Among dioecious flowering plants, females and males often differ in a range of morphological, physiological, and life-history traits. This is referred to as sexual dimorphism, and understanding why it occurs is a central question in evolutionary biology. Our review documents a range of sexually dimorphic traits in angiosperm species, discusses their ecological consequences, and details the genetic and evolutionary processes that drive divergence between female and male phenotypes. We consider why sexual dimorphism in plants is generally less well developed than in many animal groups, and also the importance of sexual and natural selection in contributing to differences between the sexes. Many sexually dimorphic characters, including both vegetative and flowering traits, are associated with differences in the costs of reproduction, which are usually greater in females, particularly in longer-lived species. These differences can influence the frequency and distribution of females and males across resource gradients and within heterogeneous environments, causing niche differences and the spatial segregation of the sexes. The interplay between sex-specific adaptation and the breakdown of between-sex genetic correlations allows for the independent evolution of female and male traits, and this is influenced in some species by the presence of sex chromosomes. We conclude by providing suggestions for future work on sexual dimorphism in plants, including investigations of the ecological and genetic basis of intraspecific variation, and genetic mapping and expression studies aimed at understanding the genetic architecture of sexually dimorphic trait variation.
Collapse
Affiliation(s)
- Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2.
| | | |
Collapse
|