1
|
Abstract
Yeast species in the Wickerhamiella and Starmerella genera (W/S clade) thrive in the sugar-rich floral niche. We have previously shown that species belonging to this clade harbor an unparalleled number of genes of bacterial origin, among which is the SUC2 gene, encoding a sucrose-hydrolyzing enzyme. In this study, we used complementary in silico and experimental approaches to examine sucrose utilization in a broader cohort of species representing extant diversity in the W/S clade. Distinct strategies and modes of sucrose assimilation were unveiled, involving either extracellular sucrose hydrolysis through secreted bacterial Suc2 or intracellular assimilation using broad-substrate-range α-glucoside/H+ symporters and α-glucosidases. The intracellular pathway is encoded in two types of gene clusters reminiscent of the MAL clusters in Saccharomyces cerevisiae, where they are involved in maltose utilization. The genes composing each of the two types of MAL clusters found in the W/S clade have disparate evolutionary histories, suggesting that they formed de novo. Both transporters and glucosidases were shown to be functional and additionally involved in the metabolization of other disaccharides, such as maltose and melezitose. In one Wickerhamiella species lacking the α-glucoside transporter, maltose assimilation is accomplished extracellularly, an attribute which has been rarely observed in fungi. Sucrose assimilation in Wickerhamiella generally escaped both glucose repression and the need for an activator and is thus essentially constitutive, which is consistent with the abundance of both glucose and sucrose in the floral niche. The notable plasticity associated with disaccharide utilization in the W/S clade is discussed in the context of ecological implications and energy metabolism. IMPORTANCE Microbes usually have flexible metabolic capabilities and are able to use different compounds to meet their needs. The yeasts belonging to the Wickerhamiella and Starmerella genera (forming the so-called W/S clade) are usually found in flowers or insects that visit flowers and are known for having acquired many genes from bacteria by a process called horizontal gene transfer. One such gene, dubbed SUC2, is used to assimilate sucrose, which is one of the most abundant sugars in floral nectar. Here, we show that different lineages within the W/S clade used different solutions for sucrose utilization that dispensed SUC2 and differed in their energy requirements, in their capacity to scavenge small amounts of sucrose from the environment, and in the potential for sharing this resource with other microbial species. We posit that this plasticity is possibly dictated by adaptation to the specific requirements of each species.
Collapse
|
2
|
Scomparin A, Bureik M. A convenient new method for reproducible fed-batch fermentation of fission yeast Schizosaccharomyces pombe. Biotechnol Lett 2020; 42:937-943. [PMID: 32064568 DOI: 10.1007/s10529-020-02840-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Development of an open-loop fed-batch protocol for highly reproducible fermentation of fission yeast that starts from batch cultures instead of glucose-limited aerobic chemostat cultures. RESULTS A new strategy was employed that consists of an exponential feeding phase followed by a starvation period and then a linear feeding phase. A comparison of several independent fed-batch fermentations of a recombinant fission yeast strain showed that while during the initial phase process parameters such as glucose consumption and CO2 evolution varied considerably as expected, they were much more uniform during the third phase. For instance, the normalized standard deviation of glucose consumption was thirty times higher during the exponential feeding phase of the fermentation that during the linear feeding phase. CONCLUSION These data demonstrate the usefulness of the proposed strategy. It is expected that by variation of only two parameters (the total amount of glucose fed in the initial phase and the time frame of the starvation phase) the protocol can easily be adapted to other microbes.
Collapse
Affiliation(s)
- Alberto Scomparin
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China.
| |
Collapse
|
3
|
Jung YH, Kim S, Yang J, Seo JH, Kim KH. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microb Biotechnol 2016; 10:395-404. [PMID: 27928897 PMCID: PMC5328829 DOI: 10.1111/1751-7915.12465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Furfural, one of the most common inhibitors in pre‐treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress‐protective molecules and cofactor‐related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts.
Collapse
Affiliation(s)
- Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jungwoo Yang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
4
|
Hung CW, Klein T, Cassidy L, Linke D, Lange S, Anders U, Bureik M, Heinzle E, Schneider K, Tholey A. Comparative Proteome Analysis in Schizosaccharomyces pombe Identifies Metabolic Targets to Improve Protein Production and Secretion. Mol Cell Proteomics 2016; 15:3090-3106. [PMID: 27477394 DOI: 10.1074/mcp.m115.051474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 01/09/2023] Open
Abstract
Protein secretion in yeast is a complex process and its efficiency depends on a variety of parameters. We performed a comparative proteome analysis of a set of Schizosaccharomyces pombe strains producing the α-glucosidase maltase in increasing amounts to investigate the overall proteomic response of the cell to the burden of protein production along the various steps of protein production and secretion. Proteome analysis of these strains, utilizing an isobaric labeling/two dimensional LC-MALDI MS approach, revealed complex changes, from chaperones and secretory transport machinery to proteins controlling transcription and translation. We also found an unexpectedly high amount of changes in enzyme levels of the central carbon metabolism and a significant up-regulation of several amino acid biosyntheses. These amino acids were partially underrepresented in the cellular protein compared with the composition of the model protein. Additional feeding of these amino acids resulted in a 1.5-fold increase in protein secretion. Membrane fluidity was identified as a second bottleneck for high-level protein secretion and addition of fluconazole to the culture caused a significant decrease in ergosterol levels, whereas protein secretion could be further increased by a factor of 2.1. In summary, we show that high level protein secretion causes global changes of protein expression levels in the cell and that precursor availability and membrane composition limit protein secretion in this yeast. In this respect, comparative proteome analysis is a powerful tool to identify targets for an efficient increase of protein production and secretion in S. pombe Data are available via ProteomeXchange with identifiers PXD002693 and PXD003016.
Collapse
Affiliation(s)
- Chien-Wen Hung
- From the ‡Institute for Experimental Medicine, Div. Systematic Proteome Research & Bioanalytics, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tobias Klein
- §Biochemical Engineering Institute, Saarland University, 66123 Saarbrücken, Germany
| | - Liam Cassidy
- From the ‡Institute for Experimental Medicine, Div. Systematic Proteome Research & Bioanalytics, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Dennis Linke
- From the ‡Institute for Experimental Medicine, Div. Systematic Proteome Research & Bioanalytics, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Sabrina Lange
- §Biochemical Engineering Institute, Saarland University, 66123 Saarbrücken, Germany
| | - Uwe Anders
- ¶Roche Diagnostics GmbH, 68305 Mannheim, Germany
| | - Matthias Bureik
- ‖PomBioTech GmbH, 66123 Saarbrücken, Germany; **School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Elmar Heinzle
- §Biochemical Engineering Institute, Saarland University, 66123 Saarbrücken, Germany
| | - Konstantin Schneider
- §Biochemical Engineering Institute, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas Tholey
- From the ‡Institute for Experimental Medicine, Div. Systematic Proteome Research & Bioanalytics, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany;
| |
Collapse
|
5
|
Viigand K, Visnapuu T, Mardo K, Aasamets A, Alamäe T. Maltase protein of Ogataea (Hansenula) polymorpha is a counterpart to the resurrected ancestor protein ancMALS of yeast maltases and isomaltases. Yeast 2016; 33:415-32. [PMID: 26919272 PMCID: PMC5074314 DOI: 10.1002/yea.3157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023] Open
Abstract
Saccharomyces cerevisiae maltases use maltose, maltulose, turanose and maltotriose as substrates, isomaltases use isomaltose, α‐methylglucoside and palatinose and both use sucrose. These enzymes are hypothesized to have evolved from a promiscuous α‐glucosidase ancMALS through duplication and mutation of the genes. We studied substrate specificity of the maltase protein MAL1 from an earlier diverged yeast, Ogataea polymorpha (Op), in the light of this hypothesis. MAL1 has extended substrate specificity and its properties are strikingly similar to those of resurrected ancMALS. Moreover, amino acids considered to determine selective substrate binding are highly conserved between Op MAL1 and ancMALS. Op MAL1 represents an α‐glucosidase in which both maltase and isomaltase activities are well optimized in a single enzyme. Substitution of Thr200 (corresponds to Val216 in S. cerevisiae isomaltase IMA1) with Val in MAL1 drastically reduced the hydrolysis of maltose‐like substrates (α‐1,4‐glucosides), confirming the requirement of Thr at the respective position for this function. Differential scanning fluorimetry (DSF) of the catalytically inactive mutant Asp199Ala of MAL1 in the presence of its substrates and selected monosaccharides suggested that the substrate‐binding pocket of MAL1 has three subsites (–1, +1 and +2) and that binding is strongest at the –1 subsite. The DSF assay results were in good accordance with affinity (Km) and inhibition (Ki) data of the enzyme for tested substrates, indicating the power of the method to predict substrate binding. Deletion of either the maltase (MAL1) or α‐glucoside permease (MAL2) gene in Op abolished the growth of yeast on MAL1 substrates, confirming the requirement of both proteins for usage of these sugars. © 2016 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katrin Viigand
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Karin Mardo
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Anneli Aasamets
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| |
Collapse
|
6
|
Hu W, Suo F, Du LL. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast. Genome Biol Evol 2015; 7:3496-510. [PMID: 26615217 PMCID: PMC4700965 DOI: 10.1093/gbe/evv238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal(-)) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal(-) phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal(-) phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains.
Collapse
Affiliation(s)
- Wen Hu
- PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China National Institute of Biological Sciences, Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
7
|
Klein T, Heinzle E, Schneider K. Acetate‐containing substrate mixtures improve recombinant protein secretion inSchizosaccharomyces pombe. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Tobias Klein
- Biochemical Engineering DepartmentSaarland University Saarbrücken Germany
| | - Elmar Heinzle
- Biochemical Engineering DepartmentSaarland University Saarbrücken Germany
| | | |
Collapse
|
8
|
Overcoming the metabolic burden of protein secretion in Schizosaccharomyces pombe – A quantitative approach using 13C-based metabolic flux analysis. Metab Eng 2014; 21:34-45. [DOI: 10.1016/j.ymben.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/27/2013] [Accepted: 11/11/2013] [Indexed: 01/20/2023]
|
9
|
Kato H, Kira S, Kawamukai M. The transcription factors Atf1 and Pcr1 are essential for transcriptional induction of the extracellular maltase Agl1 in fission yeast. PLoS One 2013; 8:e80572. [PMID: 24224056 PMCID: PMC3818258 DOI: 10.1371/journal.pone.0080572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe secretes the extracellular maltase Agl1, which hydrolyzes maltose into glucose, thereby utilizing maltose as a carbon source. Whether other maltases contribute to efficient utilization of maltose and how Agl1 expression is regulated in response to switching of carbon sources are unknown. In this study, we show that three other possible maltases and the maltose transporter Sut1 are not required for efficient utilization of maltose. Transcription of agl1 was induced when the carbon source was changed from glucose to maltose. This was dependent on Atf1 and Pcr1, which are highly conserved transcription factors that regulate stress-responsive genes in various stress conditions. Atf1 and Pcr1 generally bind the TGACGT motif as a heterodimer. The agl1 gene lacks the exact motif, but has many degenerate TGACGT motifs in its promoter and coding region. When the carbon source was switched from glucose to maltose, Atf1 and Pcr1 associated with the promoters and coding regions of agl1, fbp1, and gpx1, indicating that the Atf1-Pcr1 heteromer binds a variety of regions in its target genes to induce their transcription. In addition, the association of Mediator with these genes was dependent on Atf1 and Pcr1. These data indicate that Atf1 and Pcr1 induce the transcription of agl1, which allows efficient utilization of extracellular maltose.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Shintaro Kira
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
- * E-mail:
| |
Collapse
|
10
|
Sasaki M, Kumagai H, Takegawa K, Tohda H. Characterization of genome-reduced fission yeast strains. Nucleic Acids Res 2013; 41:5382-99. [PMID: 23563150 PMCID: PMC3664816 DOI: 10.1093/nar/gkt233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Schizosaccharomyces pombe genome is one of the smallest among the free-living eukaryotes. We further reduced the S. pombe gene number by large-scale gene deletion to identify a minimal gene set required for growth under laboratory conditions. The genome-reduced strain has four deletion regions: 168.4 kb in the left arm of chromosome I, 155.4 kb in the right arm of chromosome I, 211.7 kb in the left arm of chromosome II and 121.6 kb in the right arm of chromosome II. The deletions corresponded to a loss of 223 genes of the original ~5100. The quadruple-deletion strain, with a total deletion size of 657.3 kb, showed a decreased ability to uptake glucose and some amino acids in comparison with the parental strain. The strain also showed increased gene expression of the mating pheromone M-factor precursor and the nicotinamide adenine dinucleotide phosphate -specific glutamate dehydrogenase. There was also a 2.7-fold increase in the concentration of cellular adenosine triphosphate, and levels of the heterologous proteins, enhanced green fluorescent protein and secreted human growth hormone were increased by 1.7- and 1.8-fold, respectively. The transcriptome data from this study have been submitted to the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE38620 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=vjkxjewuywgcovc&acc=GSE38620).
Collapse
Affiliation(s)
- Mayumi Sasaki
- ASPEX Division, Research Center, Asahi Glass Co, Ltd, Yokohama, Kanagawa 221-8755, Japan
| | | | | | | |
Collapse
|
11
|
de Kok S, Kozak BU, Pronk JT, van Maris AJA. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res 2012; 12:387-97. [PMID: 22404754 DOI: 10.1111/j.1567-1364.2012.00799.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/15/2012] [Accepted: 02/26/2012] [Indexed: 11/28/2022] Open
Abstract
Free-energy (ATP) conservation during product formation is crucial for the maximum product yield that can be obtained, but often overlooked in metabolic engineering strategies. Product pathways that do not yield ATP or even demand input of free energy (ATP) require an additional pathway to supply the ATP needed for product formation, cellular maintenance, and/or growth. On the other hand, product pathways with a high ATP yield may result in excess biomass formation at the expense of the product yield. This mini-review discusses the importance of the ATP yield for product formation and presents several opportunities for engineering free-energy (ATP) conservation, with a focus on sugar-based product formation by Saccharomyces cerevisiae. These engineering opportunities are not limited to the metabolic flexibility within S. cerevisiae itself, but also expression of heterologous reactions will be taken into account. As such, the diversity in microbial sugar uptake and phosphorylation mechanisms, carboxylation reactions, product export, and the flexibility of oxidative phosphorylation via the respiratory chain and H(+) -ATP synthase can be used to increase or decrease free-energy (ATP) conservation. For product pathways with a negative, zero or too high ATP yield, analysis and metabolic engineering of the ATP yield of product formation will provide a promising strategy to increase the product yield and simplify process conditions.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Delft, The Netherlands
| | | | | | | |
Collapse
|
12
|
Biotechnological Production of 20-alpha-Dihydrodydrogesterone at Pilot Scale. Appl Biochem Biotechnol 2011; 165:190-203. [DOI: 10.1007/s12010-011-9243-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/04/2011] [Indexed: 01/20/2023]
|
13
|
Zöllner A, Parr MK, Drăgan CA, Dräs S, Schlörer N, Peters FT, Maurer HH, Schänzer W, Bureik M. CYP21-catalyzed production of the long-term urinary metandienone metabolite 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping. Biol Chem 2010; 391:119-27. [DOI: 10.1515/bc.2010.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAnabolic-androgenic steroids are some of the most frequently misused drugs in human sports. Recently, a previously unknown urinary metabolite of metandienone, 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one (20OH-NorMD), was discovered via LC-MS/MS and GC-MS. This metabolite was reported to be detected in urine samples up to 19 days after administration of metandienone. However, so far it was not possible to obtain purified reference material of this metabolite and to confirm its structure via NMR. Eleven recombinant strains of the fission yeastSchizosaccharomyces pombethat express different human hepatic or steroidogenic cytochrome P450 enzymes were screened for production of this metabolite in a whole-cell biotransformation reaction. 17,17-Dimethyl-18-norandrosta-1,4,13-trien-3-one, chemically derived from metandienone, was used as substrate for the bioconversion, because it could be converted to the final product in a single hydroxylation step. The obtained results demonstrate that CYP21 and to a lesser extent also CYP3A4 expressing strains can catalyze this steroid hydroxylation. Subsequent 5 l-scale fermentation resulted in the production and purification of 10 mg of metabolite and its unequivocal structure determination via NMR. The synthesis of this urinary metandienone metabolite viaS. pombe-based whole-cell biotransformation now allows its use as a reference substance in doping control assays.
Collapse
|
14
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|