1
|
Ma K, Zhang P, Zhao J, Qin Y. Discovery of a novel translation-machinery-associated protein that positively correlates with cellulase production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:20. [PMID: 39987148 PMCID: PMC11847360 DOI: 10.1186/s13068-025-02624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND The production of cellulases by filamentous fungi is a crucial aspect of sustainable bioproduction from renewable lignocellulosic biomass. Following the transcription of cellulase genes in the nucleus, a complex pathway involving translation, folding, and secretion is required to produce extracellular cellulases. Most studies about cellulase production have focused on examining transcriptional regulatory mechanisms and enhancement of enzyme gene levels; comparatively, little is known about protein translation and secretion for cellulase production. RESULTS A translation-machinery-associated (TMA) protein PoTma15 was identified in cellulosic Penicillium oxalicum. The PoTma15 is conserved in various filamentous fungi, but not in yeast, plants, or animals. All homologous proteins of PoTma15 have previously been uncharacterized. PoTma15 was initially thought to be one of the putative interactors of transcription factor PoXlnR, as it was preyed by tandem affinity purification (TAP) coupled with the mass spectrometry (TAP-MS) technique using PoXlnR as the bait. Subsequent research revealed that PoTma15 is associated with the translation machinery. The top three proteins associated with PoTma15 are orthologs of Saccharomyces cerevisiae translation-machinery-associated protein (Tma19), translation elongation factor eIF5A, and ribosomal protein S28, respectively. PoTma15 is widely distributed in fungal hyphae and positively correlates with the production of cellulases and extracellular proteins. Deleting the Potma15 gene (Δtma15) decreased cellulase production, while overexpressing the Potma15 gene (OEtma15) increased cellulase production. However, the Δtma15 mutant was not observed to have downregulated transcript levels of major (hemi)cellulase and amylase genes, compared to the P. oxalicum wild type (WT). The production of extracellular cellulases and extracellular proteins of the Δtma15 mutant was less affected by cycloheximide, an inhibitor of eukaryotic translation elongation, compared to the WT strain and OEtma15 mutant, suggesting a stronger resistance to the translation-inhibiting effects of cycloheximide in the Δtma15 mutant. The results demonstrate that PoTma15 is a translation-machinery-associated protein that affects translation elongation and, consequently, the production of enzyme proteins. CONCLUSIONS PoTma15 is the first TMA protein characterized in cellulosic filamentous fungi and the first TMA protein used in fungi to increase cellulase production. PoTma15's role in the production of cellulases and total extracellular proteins suggests that not only can it be used to widen the cellulase production pathway, but can even be engineered as a target to improve the production of other heterologous protein or bioproducts using filamentous fungi as cell factories in the future.
Collapse
Affiliation(s)
- Kexuan Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Panpan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- National Glycoengineering Research Center, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Portugal-Calisto D, Geiger AG, Rabl J, Vadas O, Oborská-Oplová M, Mazur J, Richina F, Klingauf-Nerurkar P, Michel E, Leitner A, Boehringer D, Panse VG. An inhibitory segment within G-patch activators tunes Prp43-ATPase activity during ribosome assembly. Nat Commun 2024; 15:10150. [PMID: 39578461 PMCID: PMC11584650 DOI: 10.1038/s41467-024-54584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Mechanisms by which G-patch activators tune the processive multi-tasking ATP-dependent RNA helicase Prp43 (DHX15 in humans) to productively remodel diverse RNA:protein complexes remain elusive. Here, a comparative study between a herein and previously characterized activators, Tma23 and Pxr1, respectively, defines segments that organize Prp43 function during ribosome assembly. In addition to the activating G-patch, we discover an inhibitory segment within Tma23 and Pxr1, I-patch, that restrains Prp43 ATPase activity. Cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry show how I-patch binds to the catalytic RecA-like domains to allosterically inhibit Prp43 ATPase activity. Tma23 and Pxr1 contain dimerization segments that organize Prp43 into higher-order complexes. We posit that Prp43 function at discrete locations on pre-ribosomal RNA is coordinated through toggling interactions with G-patch and I-patch segments. This could guarantee measured and timely Prp43 activation, enabling precise control over multiple RNA remodelling events occurring concurrently during ribosome formation.
Collapse
Affiliation(s)
| | | | - Julius Rabl
- Cryo-EM Knowledge Hub, ETH Zurich, Zurich, Switzerland
| | - Oscar Vadas
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Jarosław Mazur
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Purnima Klingauf-Nerurkar
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Erich Michel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Moteshareie H, Indrayanti AM, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Hydrogen peroxide sensitivity connects the activity of COX5A and NPR3 to the regulation of YAP1 expression. FASEB J 2024; 38:e23439. [PMID: 38416461 DOI: 10.1096/fj.202300978rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Reactive oxygen species (ROS) are among the most severe types of cellular stressors with the ability to damage essential cellular biomolecules. Excess levels of ROS are correlated with multiple pathophysiological conditions including neurodegeneration, diabetes, atherosclerosis, and cancer. Failure to regulate the severely imbalanced levels of ROS can ultimately lead to cell death, highlighting the importance of investigating the molecular mechanisms involved in the detoxification procedures that counteract the effects of these compounds in living organisms. One of the most abundant forms of ROS is H2 O2 , mainly produced by the electron transport chain in the mitochondria. Numerous genes have been identified as essential to the process of cellular detoxification. Yeast YAP1, which is homologous to mammalian AP-1 type transcriptional factors, has a key role in oxidative detoxification by upregulating the expression of antioxidant genes in yeast. The current study reveals novel functions for COX5A and NPR3 in H2 O2 -induced stress by demonstrating that their deletions result in a sensitive phenotype. Our follow-up investigations indicate that COX5A and NPR3 regulate the expression of YAP1 through an alternative mode of translation initiation. These novel gene functions expand our understanding of the regulation of gene expression and defense mechanism of yeast against oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | | | - Taha Azad
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Parker MD, Karbstein K. Quality control ensures fidelity in ribosome assembly and cellular health. J Cell Biol 2023; 222:e202209115. [PMID: 36790396 PMCID: PMC9960125 DOI: 10.1083/jcb.202209115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The coordinated integration of ribosomal RNA and protein into two functional ribosomal subunits is safeguarded by quality control checkpoints that ensure ribosomes are correctly assembled and functional before they engage in translation. Quality control is critical in maintaining the integrity of ribosomes and necessary to support healthy cell growth and prevent diseases associated with mistakes in ribosome assembly. Its importance is demonstrated by the finding that bypassing quality control leads to misassembled, malfunctioning ribosomes with altered translation fidelity, which change gene expression and disrupt protein homeostasis. In this review, we outline our understanding of quality control within ribosome synthesis and how failure to enforce quality control contributes to human disease. We first provide a definition of quality control to guide our investigation, briefly present the main assembly steps, and then examine stages of assembly that test ribosome function, establish a pass-fail system to evaluate these functions, and contribute to altered ribosome performance when bypassed, and are thus considered "quality control."
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
- Howard Hughes Medical Institute Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Abstract
Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ, USA.
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt/M., Germany.
| |
Collapse
|
6
|
Georgeson J, Schwartz S. The ribosome epitranscriptome: inert-or a platform for functional plasticity? RNA (NEW YORK, N.Y.) 2021; 27:1293-1301. [PMID: 34312287 PMCID: PMC8522695 DOI: 10.1261/rna.078859.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A universal property of all rRNAs explored to date is the prevalence of post-transcriptional ("epitranscriptional") modifications, which expand the chemical and topological properties of the four standard nucleosides. Are these modifications an inert, constitutive part of the ribosome? Or could they, in part, also regulate the structure or function of the ribosome? In this review, we summarize emerging evidence that rRNA modifications are more heterogeneous than previously thought, and that they can also vary from one condition to another, such as in the context of a cellular response or a developmental trajectory. We discuss the implications of these results and key open questions on the path toward connecting such heterogeneity with function.
Collapse
Affiliation(s)
- Joseph Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding. Proc Natl Acad Sci U S A 2021; 118:2101164118. [PMID: 34135123 DOI: 10.1073/pnas.2101164118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While RNAs are known to misfold, the underlying molecular causes have been mainly studied in fragments of biologically relevant larger RNAs. As these small RNAs are dominated by secondary structures, misfolding of these secondary structures remains the most-explored cause for global RNA misfolding. Conversely, how RNA chaperones function in a biological context to promote native folding beyond duplex annealing remains unknown. Here, in a combination of dimethylsulfate mutational profiling with sequencing (DMS-MaPseq), structural analyses, biochemical experiments, and yeast genetics, we show that three-helix junctions are prone to misfolding during assembly of the small ribosomal subunit in vivo. We identify ubiquitous roles for ribosome assembly factors in chaperoning their folding by preventing the formation of premature tertiary interactions, which otherwise kinetically trap misfolded junctions, thereby blocking further progress in the assembly cascade. While these protein chaperones act indirectly by binding the interaction partners of junctions, our analyses also suggest direct roles for small nucleolar RNAs (snoRNAs) in binding and chaperoning helical junctions during transcription. While these assembly factors do not utilize energy to ameliorate misfolding, our data demonstrate how their dissociation renders reversible folding steps irreversible, thereby driving native folding and assembly and setting up a timer that dictates the propensity of misfolded intermediates to escape quality control. Finally, the data demonstrate that RNA chaperones act locally on individual tertiary interactions, in contrast to protein chaperones, which globally unfold misfolded proteins.
Collapse
|
8
|
Zhang L, Wu C, Cai G, Chen S, Ye K. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Dev 2016; 30:718-32. [PMID: 26980190 PMCID: PMC4803056 DOI: 10.1101/gad.274688.115] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, Zhang et al. researched how the 90S preribosomal particle is cotranscriptionally assembled in yeast using a novel approach. They determined the assembly point of 65 proteins and the U3, U14, and snR30 snoRNAs, revealing a stepwise and dynamic assembly map, thereby advancing our understanding of small subunit biogenesis. The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3′-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5′ external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5′ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis.
Collapse
Affiliation(s)
- Liman Zhang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Chen Wu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Meyer B, Wurm JP, Sharma S, Immer C, Pogoryelov D, Kötter P, Lafontaine DLJ, Wöhnert J, Entian KD. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res 2016; 44:4304-16. [PMID: 27084949 PMCID: PMC4872110 DOI: 10.1093/nar/gkw244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.
Collapse
Affiliation(s)
- Britta Meyer
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| | - Jan Philip Wurm
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Sunny Sharma
- RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB)
| | - Carina Immer
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Denys Pogoryelov
- Institute of Biochemistry, Goethe University, Frankfurt/M, Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| | - Denis L J Lafontaine
- RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB)
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| |
Collapse
|
10
|
Wurm JP, Lioutikov A, Kötter P, Entian KD, Wöhnert J. Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:345-348. [PMID: 23921755 DOI: 10.1007/s12104-013-9514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/21/2013] [Indexed: 06/02/2023]
Abstract
The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost complete (>90%) (1)H,(13)C,(15)N backbone and side chain NMR assignment of a 15 kDa Nop6 construct comprising the RNA binding and coiled-coil domains.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
11
|
Genetic interactions of yeast NEP1 (EMG1), encoding an essential factor in ribosome biogenesis. Yeast 2012; 29:167-83. [DOI: 10.1002/yea.2898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
López-Martínez G, Rodríguez-Porrata B, Margalef-Català M, Cordero-Otero R. The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration stress tolerance. PLoS One 2012; 7:e33324. [PMID: 22442684 PMCID: PMC3306391 DOI: 10.1371/journal.pone.0033324] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 12/15/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is able to overcome cell dehydration; cell metabolic activity is arrested during this period but restarts after rehydration. The yeast genes encoding hydrophilin proteins were characterised to determine their roles in the dehydration-resistant phenotype, and STF2p was found to be a hydrophilin that is essential for survival after the desiccation-rehydration process. Deletion of STF2 promotes the production of reactive oxygen species and apoptotic cell death during stress conditions, whereas the overexpression of STF2, whose gene product localises to the cytoplasm, results in a reduction in ROS production upon oxidative stress as the result of the antioxidant capacity of the STF2p protein.
Collapse
Affiliation(s)
| | | | | | - Ricardo Cordero-Otero
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, Tarragona, Spain
- * E-mail:
| |
Collapse
|
13
|
Lemay V, Hossain A, Osheim YN, Beyer AL, Dragon F. Identification of novel proteins associated with yeast snR30 small nucleolar RNA. Nucleic Acids Res 2011; 39:9659-70. [PMID: 21893585 PMCID: PMC3239182 DOI: 10.1093/nar/gkr659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly.
Collapse
Affiliation(s)
- Vincent Lemay
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Québec, H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
14
|
Meyer B, Wurm JP, Kötter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, Bohnsack MT, Wöhnert J, Entian KD. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res 2010; 39:1526-37. [PMID: 20972225 PMCID: PMC3045603 DOI: 10.1093/nar/gkq931] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen–Conradi syndrome (BCS) is caused by a specific Nep1D86G mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific 14C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1ts mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.
Collapse
Affiliation(s)
- Britta Meyer
- Cluster of Excellence Frankfurt: Macromolecular Complexes, Max-von-Laue Str. 9, D-60438 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kötter P, Weigand JE, Meyer B, Entian KD, Suess B. A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 2009; 37:e120. [PMID: 19592423 PMCID: PMC2764425 DOI: 10.1093/nar/gkp578] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 01/26/2023] Open
Abstract
A new artificial regulatory system for essential genes in yeast is described. It prevents translation of target mRNAs upon tetracycline (tc) binding to aptamers introduced into their 5'UTRs. Exploiting direct RNA-ligand interaction renders auxiliary protein factors unnecessary. Therefore, our approach is strain independent and not susceptible to interferences by heterologous expressed regulatory proteins. We use a simple PCR-based strategy, which allows easy tagging of any target gene and the level of gene expression can be adjusted due to various tc aptamer-regulated promoters. As proof of concept, five differently expressed genes were targeted, two of which could not be regulated previously. In all cases, adding tc completely prevented growth and, as shown for Nop14p, rapidly abolished de novo protein synthesis providing a powerful tool for conditional regulation of yeast gene expression.
Collapse
Affiliation(s)
- Peter Kötter
- Institut für Molekulare Biowissenschaften, Cluster of Excellence: Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany and Aventis Foundation Endowed Professorship
| | - Julia E. Weigand
- Institut für Molekulare Biowissenschaften, Cluster of Excellence: Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany and Aventis Foundation Endowed Professorship
| | - Britta Meyer
- Institut für Molekulare Biowissenschaften, Cluster of Excellence: Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany and Aventis Foundation Endowed Professorship
| | - Karl-Dieter Entian
- Institut für Molekulare Biowissenschaften, Cluster of Excellence: Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany and Aventis Foundation Endowed Professorship
| | - Beatrix Suess
- Institut für Molekulare Biowissenschaften, Cluster of Excellence: Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany and Aventis Foundation Endowed Professorship
| |
Collapse
|
16
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Leulliot N, Bohnsack MT, Graille M, Tollervey D, Van Tilbeurgh H. The yeast ribosome synthesis factor Emg1 is a novel member of the superfamily of alpha/beta knot fold methyltransferases. Nucleic Acids Res 2007; 36:629-39. [PMID: 18063569 PMCID: PMC2241868 DOI: 10.1093/nar/gkm1074] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Emg1 was previously shown to be required for maturation of the 18S rRNA and biogenesis of the 40S ribosomal subunit. Here we report the determination of the crystal structure of Emg1 at 2 Å resolution in complex with the methyl donor, S-adenosyl-methionine (SAM). This structure identifies Emg1 as a novel member of the alpha/beta knot fold methyltransferase (SPOUT) superfamily. In addition to the conserved SPOUT core, Emg1 has two unique domains that form an extended surface, which we predict to be involved in binding of RNA substrates. A point mutation within a basic patch on this surface almost completely abolished RNA binding in vitro. Three point mutations designed to disrupt the interaction of Emg1 with SAM each caused>100-fold reduction in SAM binding in vitro. Expression of only Emg1 with these mutations could support growth and apparently normal ribosome biogenesis in strains genetically depleted of Emg1. We conclude that the catalytic activity of Emg1 is not essential and that the presence of the protein is both necessary and sufficient for ribosome biogenesis.
Collapse
Affiliation(s)
- Nicolas Leulliot
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619, Bât 430, Université de Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|