1
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Nikolic DM, Dimitrijevic-Sreckovic V, Ranin LT, Stojanovic MM, Ilic ID, Gostiljac DM, Soldatovic IA. Homeostatic microbiome disruption as a cause of insulin secretion disorders. Candida albicans, a new factor in pathogenesis of diabetes: A STROBE compliant cross-sectional study. Medicine (Baltimore) 2022; 101:e31291. [PMID: 36397429 PMCID: PMC9666105 DOI: 10.1097/md.0000000000031291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
The study aimed to test the hypothesis that homeostatic microbiome (HM) disorders lead to the increased indirect influence of certain microorganisms (MO) in the gastrointestinal tract, causing a disorder of insulin secretion, insulin resistance, and diabetes. We highlighted Candida and certain types of bacteria since previous in vitro research showed they significantly affect insulin secretion and can cause insulin resistance in obese patients with metabolic syndrome. After determining the type of MO present in the throat swab and the stool, the oral glucose tolerance test (OGTT) test, and analysis of glucose and insulin secretion were performed in patients (n = 38) who were positive for certain types of MO compared to negative patients. Finally, all patients were divided into two groups: overweight patients (body mass index [BMI] < 30) and obese patients (BMI > 30). These two groups were compared for the percentage of certain types of MO to determine which MO can affect an increase in obesity and BMI. The presence of Diphtheroids in the throat (60.5%) reduces insulin secretion in patients compared with the negative group (194.5: 332.4) and the difference was statistically significant (P = .030). The presence of Candida in the throat (10%) increases insulin secretion, but the difference was statistically insignificant. The presence of Candida in the stool (28.9%) also increases insulin secretion and the difference was statistically significant (P = .038). Cumulative results (throat + stool) were similar (180: 332, P = .022). Analysis of BMI showed that the percentage of Diphtheroids in the throat decreases with increased body weight (53.8: 75%) while the percentage of Candida (38.5: 8.3%) and Enterobacter (61.5: 25%) increases, but these differences were statistically insignificant (P > .05). Diphtheroids in the throat can reduce insulin secretion by synthesizing their metabolites. Candida albicans is a conditional pathogen and as a significant indirect factor induces increased insulin secretion and insulin resistance. There are indications that elevated levels of Candida in the intestinal system can cause increased body weight of patients. C albicans should be considered a new factor in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Dragan M. Nikolic
- Faculty of Medicine Belgrade, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vesna Dimitrijevic-Sreckovic
- Faculty of Medicine Belgrade, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Lazar T. Ranin
- Faculty of Medicine Belgrade, University of Belgrade, Belgrade, Serbia
- Institute of Microbiology and Immunology, Belgrade, Serbia
| | - Milos M. Stojanovic
- Faculty of Medicine Belgrade, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Iva D. Ilic
- Institute of Public Health of Serbia “Dr. Milan Jovanovic Batut”, Belgrade, Serbia
| | - Drasko M. Gostiljac
- Faculty of Medicine Belgrade, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivan A. Soldatovic
- Faculty of Medicine Belgrade, University of Belgrade, Belgrade, Serbia
- Institute of Medical Statistics and Informatics, Belgrade, Serbia
| |
Collapse
|
3
|
Edel J, Grinstein-Koren O, Winocur-Arias O, Kaplan I, Schnaiderman-Shapiro A, Buchner A, Vered M, Zlotogorski-Hurvitz A. Unexpected Candidal Hyphae in Oral Mucosa Lesions-A Clinico-Pathological Study. Antibiotics (Basel) 2022; 11:antibiotics11101386. [PMID: 36290044 PMCID: PMC9598629 DOI: 10.3390/antibiotics11101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Oral mucosal biopsies might harbor candidal hyphae (CH) in the absence of any clinical signs or symptoms. Aim: To assess oral mucosa biopsies for the frequency of unexpected CH and characterize their clinico-pathological features. Materials and Methods: All biopsy reports (2004−2019) were searched using CH/candida/candidiasis as key words. Cases with clinical diagnosis of oral candidiasis (OC) were excluded. Demographic data, health status, smoking habits, clinical features and diagnoses were collected. Statistical analysis included the chi-square test; significance was set at p < 0.05. Results: Of all the biopsies, 100 (1.05%) reported microscopical evidence of CH without typical clinical signs/symptoms of OC. Fifteen cases were from healthy, non-smoking patients. CH was common on buccal mucosa (38%) and lateral tongue (23%). The tip of tongue (OR = 54.5, 95% CI 9.02−329.4, p < 0.001) and lateral tongue (OR = 3.83, 95% CI 2.4−6.09, p < 0.001) were more likely to harbor CH-positive lesions. CH-positive lesions were diagnosed as epithelial hyperplasia (55%) and exophytic reactive lesions (30%). No correlation was found between CH and the grade of epithelial dysplasia. Conclusions: Microscopic evidence of CH embedded into oral epithelium without typical signs/symptoms of OC is rare, especially in healthy, non-smokers. Since CH was occasionally found in oral sites prone to local trauma and in association with reactive lesions, in absence of host co-morbidities, the contribution of local mechanical forces to CH embedment cannot be ruled out.
Collapse
Affiliation(s)
- Jeremy Edel
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Osnat Grinstein-Koren
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Orit Winocur-Arias
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Ilana Kaplan
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Institute of Pathology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Anna Schnaiderman-Shapiro
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262000, Israel
| | - Amos Buchner
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262000, Israel
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petach Tikva 4941492, Israel
- Correspondence:
| |
Collapse
|
4
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
5
|
A Proteomic Landscape of Candida albicans in the Stepwise Evolution to Fluconazole Resistance. Antimicrob Agents Chemother 2022; 66:e0210521. [PMID: 35343782 DOI: 10.1128/aac.02105-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an opportunistic fungal pathogen, Candida albicans is a major cause of superficial and systemic infections in immunocompromised patients. The increasing rate of azole resistance in C. albicans has brought further challenges to clinical therapy. In this study, we collected five isogenic C. albicans strains recovered over discrete intervals from an HIV-infected patient who suffered 2-year recurrent oropharyngeal candidiasis. Azole resistance was known from the clinical history to have developed gradually in this patient, and this was confirmed by MIC assays of each strain. Proteomic techniques can be used to investigate more comprehensively how resistance develops in pathogenic fungi over time. Our study is the first to use tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology to investigate the acquired resistance mechanisms of serial C. albicans isolates at the proteomic level. A total of 4,029 proteins have been identified, of which 3,766 have been quantified. Compared with Ca1, bioinformatics analysis showed that differentially expressed proteins were mainly associated with aspects such as the downregulation of glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, and oxidative stress response proteins in all four subsequent strains but, remarkably, the activation of amino acid metabolism in Ca8 and Ca14 and increased protection against osmotic stress or excessive copper toxicity, upregulation of respiratory chain activity, and suppression of iron transport in Ca17. By tracing proteomic alterations in this set of isogenic resistance isolates, we acquire mechanistic insight into the steps involved in the acquisition of azole resistance in C. albicans.
Collapse
|
6
|
Abstract
The tight association of Candida albicans with the human host has driven the evolution of mechanisms that permit metabolic flexibility. Amino acids, present in a free or peptide-bound form, are abundant carbon and nitrogen sources in many host niches. In C. albicans, the capacity to utilize certain amino acids, like proline, is directly connected to fungal morphogenesis and virulence. Yet the precise nature of proline sensing and uptake in this pathogenic fungus has not been investigated. Since C. albicans encodes 10 putative orthologs of the four Saccharomyces cerevisiae proline transporters, we tested deletion strains of the respective genes and identified Gnp2 (CR_09920W) as the main C. albicans proline permease. In addition, we found that this specialization of Gnp2 was reflected in its transcriptional regulation and further assigned distinct substrate specificities for the other orthologs, indicating functional differences of the C. albicans amino acid permeases compared to the model yeast. The physiological relevance of proline uptake is exemplified by the findings that strains lacking GNP2 were unable to filament in response to extracellular proline and had a reduced capacity to damage macrophages and impaired survival following phagocytosis. Furthermore, GNP2 deletion rendered the cells more sensitive to oxidative stress, illustrating new connections between amino acid uptake and stress adaptation in C. albicans. IMPORTANCE The utilization of various nutrients is of paramount importance for the ability of Candida albicans to successfully colonize and infect diverse host niches. In this context, amino acids are of special interest due to their ubiquitous availability, relevance for fungal growth, and direct influence on virulence traits like filamentation. In this study, we identify a specialized proline transporter in C. albicans encoded by GNP2. The corresponding amino acid permease is essential for proline-induced filamentation, oxidative stress resistance, and fungal survival following interaction with macrophages. Altogether, this work highlights the importance of amino acid uptake for metabolic and stress adaptation in this fungus.
Collapse
|
7
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
8
|
Diphenyl pyrimidine exhibits protective effect on Staphylococcus aureus pneumonia in rat model by targeting NLRP3 expression. Microb Pathog 2021; 161:105168. [PMID: 34478857 DOI: 10.1016/j.micpath.2021.105168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022]
Abstract
Pneumonia is one of the most frequent disorder induced by S. aureus infection and accounts for 13.3% of the all the infections caused by staphylococcus. In the present study effect of diphenyl pyrimidine was investigated against Staphylococcus aureus (S. aureus) induced pneumonia in the rat model. The results demonstrated that diphenyl pyrimidine treatment of the rats effectively prevented S. aureus induced increase in mortality in dose-dependent manner. Diphenyl pyrimidine treatment inhibited histopathological changes in S. aureus infected rat lungs. Treatment of the rats with 1.25, 2.5, 5 and 10 mg/kg doses of diphenyl pyrimidine significantly (P < 0.05) reversed S. aureus infection induced increase in interleukin (IL)-1β, IL-18 and tumor necrosis factor (TNF)-α levels. Treatment with 1.25, 2.5, 5 and 10 mg/kg doses of diphenyl pyrimidine significantly (P < 0.05) reversed S. aureus infection induced increase nucleotide-binding domain and leucine-rich repeat containing (NLR) protein (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) and caspase-1 protein expression in rat lungs in dose-dependent manner. The NLRP3, ASC and caspase-1 mRNA level in S. aureus infected rat pulmonary tissues was significantly (P < 0.05) reduced by diphenyl pyrimidine treatment in dose-dependent manner. Thus, diphenyl pyrimidine protects S. aureus-induced pneumonia through suppression of NLRP3 and inflammatory cytokine expression. Therefore, diphenyl pyrimidine can be of therapeutic importance for the treatment of S. aureus induced pneumonia.
Collapse
|
9
|
Padder SA, Ramzan A, Tahir I, Rehman RU, Shah AH. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans. Crit Rev Microbiol 2021; 48:1-20. [PMID: 34213983 DOI: 10.1080/1040841x.2021.1935447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Commensal fungus-Candida albicans turn pathogenic during the compromised immunity of the host, causing infections ranging from superficial mucosal to dreadful systemic ones. C. albicans has evolved various adaptive measures which collectively contribute towards its enhanced virulence. Among fitness attributes, metabolic flexibility and vigorous stress response are essential for its pathogenicity and virulence. Metabolic flexibility provides a means for nutrient assimilation and growth in diverse host microenvironments and reduces the vulnerability of the pathogen to various antifungals besides evading host immune response(s). Inside the host micro-environments, C. albicans efficiently utilizes the multiple fermentable and non-fermentable carbon sources to sustain and proliferate in glucose deficit conditions. The utilization of alternative carbon sources further highlights the importance of understanding these pathways as the attractive and potential therapeutic target. A thorough understanding of metabolic flexibility and adaptation to environmental stresses is warranted to decipher in-depth insights into virulence and molecular mechanisms of fungal pathogenicity. In this review, we have attempted to provide a detailed and recent understanding of some key aspects of fungal biology. Particular focus will be placed on processes like nutrient assimilation and utilization, metabolic adaptability, virulence factors, and host immune response in C. albicans leading to its enhanced pathogenicity.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Asiya Ramzan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Departments of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
10
|
Laurian R, Ravent J, Dementhon K, Lemaire M, Soulard A, Cotton P. Candida albicans Hexokinase 2 Challenges the Saccharomyces cerevisiae Moonlight Protein Model. Microorganisms 2021; 9:microorganisms9040848. [PMID: 33920979 PMCID: PMC8071269 DOI: 10.3390/microorganisms9040848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Survival of the pathogenic yeast Candida albicans depends upon assimilation of fermentable and non-fermentable carbon sources detected in host microenvironments. Among the various carbon sources encountered in a human body, glucose is the primary source of energy. Its effective detection, metabolism and prioritization via glucose repression are primordial for the metabolic adaptation of the pathogen. In C. albicans, glucose phosphorylation is mainly performed by the hexokinase 2 (CaHxk2). In addition, in the presence of glucose, CaHxK2 migrates in the nucleus and contributes to the glucose repression signaling pathway. Based on the known dual function of the Saccharomyces cerevisiae hexokinase 2 (ScHxk2), we intended to explore the impact of both enzymatic and regulatory functions of CaHxk2 on virulence, using a site-directed mutagenesis approach. We show that the conserved aspartate residue at position 210, implicated in the interaction with glucose, is essential for enzymatic and glucose repression functions but also for filamentation and virulence in macrophages. Point mutations and deletion into the N-terminal region known to specifically affect glucose repression in ScHxk2 proved to be ineffective in CaHxk2. These results clearly show that enzymatic and regulatory functions of the hexokinase 2 cannot be unlinked in C. albicans.
Collapse
Affiliation(s)
- Romain Laurian
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Jade Ravent
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Karine Dementhon
- UMR-CNRS 5234, Laboratoire de Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, 33076 Bordeaux, France;
| | - Marc Lemaire
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Alexandre Soulard
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Pascale Cotton
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
- Correspondence:
| |
Collapse
|
11
|
Abstract
Of the many microbial species on earth, only a small number are able to thrive in humans and cause disease. Comparison of closely related pathogenic and nonpathogenic species can therefore be useful in identifying key features that contribute to virulence. We created interspecies hybrids between Candida albicans, a prevalent fungal pathogen of humans, and Candida dubliniensis, a close, but much less pathogenic, relative. By comparing genome-wide expression differences between the two genomes in the same cell, we surmised that since the two species diverged from a common ancestor, natural selection has acted upon the expression level of an ancient metabolic pathway, illustrating that pathogenicity traits can arise over evolutionary timescales through small expression changes in deeply conserved proteins. Candida albicans is the most common cause of systemic fungal infections in humans and is considerably more virulent than its closest known relative, Candida dubliniensis. To investigate this difference, we constructed interspecies hybrids and quantified mRNA levels produced from each genome in the hybrid. This approach systematically identified expression differences in orthologous genes arising from cis-regulatory sequence changes that accumulated since the two species last shared a common ancestor, some 10 million y ago. We documented many orthologous gene-expression differences between the two species, and we pursued one striking observation: All 15 genes coding for the enzymes of glycolysis showed higher expression from the C. albicans genome than the C. dubliniensis genome in the interspecies hybrid. This pattern requires evolutionary changes to have occurred at each gene; the fact that they all act in the same direction strongly indicates lineage-specific natural selection as the underlying cause. To test whether these expression differences contribute to virulence, we created a C. dubliniensis strain in which all 15 glycolysis genes were produced at modestly elevated levels and found that this strain had significantly increased virulence in the standard mouse model of systemic infection. These results indicate that small expression differences across a deeply conserved set of metabolism enzymes can play a significant role in the evolution of virulence in fungal pathogens.
Collapse
|
12
|
Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio 2020; 11:mBio.02435-20. [PMID: 33024045 PMCID: PMC7542370 DOI: 10.1128/mbio.02435-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another. Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.
Collapse
|
13
|
Jenull S, Tscherner M, Mair T, Kuchler K. ATAC-Seq Identifies Chromatin Landscapes Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida albicans. J Fungi (Basel) 2020; 6:jof6030182. [PMID: 32967096 PMCID: PMC7559329 DOI: 10.3390/jof6030182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human fungal pathogens often encounter fungicidal stress upon host invasion, but they can swiftly adapt by transcriptional reprogramming that enables pathogen survival. Fungal immune evasion is tightly connected to chromatin regulation. Hence, fungal chromatin modifiers pose alternative treatment options to combat fungal infections. Here, we present an assay for transposase-accessible chromatin using sequencing (ATAC-seq) protocol adapted for the opportunistic pathogen Candida albicans to gain further insight into the interplay of chromatin accessibility and gene expression mounted during fungal adaptation to oxidative stress. The ATAC-seq workflow not only facilitates the robust detection of genomic regions with accessible chromatin but also allows for the precise modeling of nucleosome positions in C. albicans. Importantly, the data reveal genes with altered chromatin accessibility in upstream regulatory regions, which correlate with transcriptional regulation during oxidative stress. Interestingly, many genes show increased chromatin accessibility without change in gene expression upon stress exposure. Such chromatin signatures could predict yet unknown regulatory factors under highly dynamic transcriptional control. Additionally, de novo motif analysis in genomic regions with increased chromatin accessibility upon H2O2 treatment shows significant enrichment for Cap1 binding sites, a major factor of oxidative stress responses in C. albicans. Taken together, the ATAC-seq workflow enables the identification of chromatin signatures and highlights the dynamics of regulatory mechanisms mediating environmental adaptation of C. albicans.
Collapse
|
14
|
Thomas G, Bain JM, Budge S, Brown AJP, Ames RM. Identifying Candida albicans Gene Networks Involved in Pathogenicity. Front Genet 2020; 11:375. [PMID: 32391057 PMCID: PMC7193023 DOI: 10.3389/fgene.2020.00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is a normal member of the human microbiome. It is also an opportunistic pathogen, which can cause life-threatening systemic infections in severely immunocompromized individuals. Despite the availability of antifungal drugs, mortality rates of systemic infections are high and new drugs are needed to overcome therapeutic challenges including the emergence of drug resistance. Targeting known disease pathways has been suggested as a promising avenue for the development of new antifungals. However, <30% of C. albicans genes are verified with experimental evidence of a gene product, and the full complement of genes involved in important disease processes is currently unknown. Tools to predict the function of partially or uncharacterized genes and generate testable hypotheses will, therefore, help to identify potential targets for new antifungal development. Here, we employ a network-extracted ontology to leverage publicly available transcriptomics data and identify potential candidate genes involved in disease processes. A subset of these genes has been phenotypically screened using available deletion strains and we present preliminary data that one candidate, PEP8, is involved in hyphal development and immune evasion. This work demonstrates the utility of network-extracted ontologies in predicting gene function to generate testable hypotheses that can be applied to pathogenic systems. This could represent a novel first step to identifying targets for new antifungal therapies.
Collapse
Affiliation(s)
- Graham Thomas
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Susan Budge
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,MRC Centre for Medical Mycology at the University of Exeter, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ryan M Ames
- Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Ozturk I, Tunçel A, Yurt F, Biyiklioglu Z, Ince M, Ocakoglu K. Antifungal photodynamic activities of phthalocyanine derivatives on Candida albicans. Photodiagnosis Photodyn Ther 2020; 30:101715. [PMID: 32165338 DOI: 10.1016/j.pdpdt.2020.101715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance is one of the most important causes of morbidity and mortality in the treatment of infectious diseases worldwide. Candida albicans is one of the most virulent and common species of fungi to cause invasive fungal infections on humans. Alternative treatment strategies, including photodynamic therapy, are needed for controlling these infectious diseases. The aim of this study was to investigate the antifungal photodynamic activities of phthalocyanine derivatives on C. albicans. The minimum inhibitory concentration (MIC) values of compounds were determined by the broth microdilution method. Uptake of the compounds in C. albicans and dark toxicity of the compounds were also investigated. Photodynamic inhibition of growth experiments was performed by measuring the colony-forming unit/mL (CFU/mL) of the strain. Maximum uptake into the cells was observed in the presence of 64 μg/mL concentration for each compound except for ZnPc. Compounds did not show dark toxicity/inhibitory effects at sub-MIC concentrations on C. albicans when compared to the negative control groups. Zn(II)Pc, ZnPc, and ZnPc-TiO2 showed fungicidal effect after irradiation with the light dose of 90 J/cm2 in the presence of the compounds. In addition to the fungicidal effects, SubPc, SubPc-TiO2, Es-SiPc, and Es-SubPc compounds were also found to have inhibitory effects on the growth of yeast cells after irradiation.
Collapse
Affiliation(s)
- Ismail Ozturk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, 35620, Turkey.
| | - Ayça Tunçel
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Izmir, 35100, Turkey
| | - Fatma Yurt
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Izmir, 35100, Turkey.
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Mine Ince
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Mersin, 33400, Turkey
| | - Kasim Ocakoglu
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Mersin, 33400, Turkey
| |
Collapse
|
16
|
Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi (Basel) 2020; 6:E16. [PMID: 31963458 PMCID: PMC7151168 DOI: 10.3390/jof6010016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Collapse
Affiliation(s)
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
17
|
In Vitro Antifungal and Antivirulence Activities of Biologically Synthesized Ethanolic Extract of Propolis-Loaded PLGA Nanoparticles against Candida albicans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3715481. [PMID: 31871479 PMCID: PMC6907039 DOI: 10.1155/2019/3715481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Propolis is a natural substance and consists of bioactive compounds, which gives it antioxidant and antimicrobial properties. However, the use of propolis is limited by the low solubility in aqueous solutions. Thus, nanoparticles may be likely to accomplish enhanced delivery of poorly water-soluble phytomedicine. The aim of the present study was to fabricate and evaluate the biological activity of ethanolic extract of propolis-loaded poly(lactic-co-glycolic acid) nanoparticles (EEP-NPs). The EEP-NPs were prepared using the oil-in-water (o/w) single-emulsion solvent evaporation technique. The physicochemical properties of EEP-NPs were characterized and tested on their cytotoxicity, antifungal activity, and impact on key virulence factors that contribute to pathogenesis of C. albicans. EEP-NPs were successfully synthesized and demonstrated higher antifungal activity than EEP in free form. Moreover, EEP-NPs exhibited less cytotoxicity on Vero cells and suppressed the virulence factors of C. albicans, including adhesion, hyphal germination, biofilm formation, and invasion. Importantly, EEP-NPs exhibited a statistical decrease in the expression of hyphal adhesion-related genes, ALS3 and HWP1, of C. albicans. The results of this study revealed that EEP-NPs mediates a potent anticandidal activity and key virulence factors by reducing the gene-encoding virulence-associated hyphal- adhesion proteins of C. albicans and, thereby, disrupting the morphologic presence and attenuating their virulence.
Collapse
|
18
|
Esfahani AN, Golestannejad Z, Khozeimeh F, Dehghan P, Maheronnaghsh M, Zarei Z. Antifungal effect of Atorvastatin against Candida species in comparison to Fluconazole and Nystatin. Med Pharm Rep 2019; 92:368-373. [PMID: 31750437 PMCID: PMC6853048 DOI: 10.15386/mpr-1209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 01/29/2023] Open
Abstract
Background and aims Atorvastatin is a plasma cholesterol-lowering drug which applies antifungal effects by inhibiting the production of yeast cell wall ergostrol. The aim of present study was to investigate in-vitro susceptibility of candida species to atorvastatin, in comparison to nystatin and fluconazole. Methods Minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) were determined using serial dilution. Candida strains isolated from 35 patients receiving cancer chemotherapy in Isfahan, Seyyed-al-Shohada Hospital and analyzed by Kruskal-Wallis and Mann Whitney statistical methods. Results Candida isolates included 5 strains, C. albicans, C. glabrata, C. kefyr, C. stellatoidea and C. krusei. All five strains appeared to be resistant to nystatin and fluconazole but sensitive to atorvastatin with no statistically significant difference. The MFC of atorvastatin was significantly lower in comparison to both nystatin and fluconazole for all five strains (p value<0.05). There was no significant difference between the MFCs of 5 strains for fluconazole and atorvastatin. However, MFC of nystatin differed significantly for C. albicans and C. kefyr (p=0.007). Conclusion The results showed that all strains were sensitive to atorvastatin and resistant to nystatin and fluconazole. Atorvastatin MIC for C. albicans, C. krusei and C. stellatoidea was equivalent to its serum level used to treat hyperlipidemia and was above such level for both C. glabrata and C. kefyr.
Collapse
Affiliation(s)
- Ava Nasr Esfahani
- Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Zahra Golestannejad
- Department of Oral Medicine, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Faezeh Khozeimeh
- Department of Oral Medicine, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Parvin Dehghan
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mehrnoosh Maheronnaghsh
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Zahra Zarei
- Department of Orthodontics, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| |
Collapse
|
19
|
Chew SY, Chee WJY, Than LTL. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J Biomed Sci 2019; 26:52. [PMID: 31301737 PMCID: PMC6626413 DOI: 10.1186/s12929-019-0546-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Carbon utilization and metabolism are fundamental to every living organism for cellular growth. For intracellular human fungal pathogens such as Candida glabrata, an effective metabolic adaptation strategy is often required for survival and pathogenesis. As one of the host defence strategies to combat invading pathogens, phagocytes such as macrophages constantly impose restrictions on pathogens' access to their preferred carbon source, glucose. Surprisingly, it has been reported that engulfed C. glabrata are able to survive in this harsh microenvironment, further suggesting alternative carbon metabolism as a potential strategy for this opportunistic fungal pathogen to persist in the host. MAIN TEXT In this review, we discuss alternative carbon metabolism as a metabolic adaptation strategy for the pathogenesis of C. glabrata. As the glyoxylate cycle is an important pathway in the utilization of alternative carbon sources, we also highlight the key metabolic enzymes in the glyoxylate cycle and its necessity for the pathogenesis of C. glabrata. Finally, we explore the transcriptional regulatory network of the glyoxylate cycle. CONCLUSION Considering evidence from Candida albicans and Saccharomyces cerevisiae, this review summarizes the current knowledge of the glyoxylate cycle as an alternative carbon metabolic pathway of C. glabrata.
Collapse
Affiliation(s)
- Shu Yih Chew
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wallace Jeng Yang Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
20
|
Casaroto AR, da Silva RA, Salmeron S, Rezende MLRD, Dionísio TJ, Santos CFD, Pinke KH, Klingbeil MFG, Salomão PA, Lopes MMR, Lara VS. Candida albicans-Cell Interactions Activate Innate Immune Defense in Human Palate Epithelial Primary Cells via Nitric Oxide (NO) and β-Defensin 2 (hBD-2). Cells 2019; 8:cells8070707. [PMID: 31336838 PMCID: PMC6678605 DOI: 10.3390/cells8070707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
The presence of Candida albicans in the biofilm underlying the dental prosthesis is related to denture stomatitis (DS), an inflammatory reaction of the oral mucosa. The oral epithelium, a component of the innate immune response, has the ability to react to fungal invasion. In this study, we evaluated the in vitro effect of viable C. albicans on the apoptosis, nitric oxide (NO) production, and β-defensin 2 (hBD-2) expression and production of human palate epithelial cells (HPECs). We further determined whether or not these effects were correlated with fungal invasion of epithelial cells. Interaction between HPEC primary culture and C. albicans was obtained through either direct or indirect cell–cell contact with a supernatant from a hyphal fungus. We found that the hyphae supernatants were sufficient to induce slight HPEC apoptosis, which occurred prior to the activation of the specific mechanisms of epithelial defense. The epithelial defense responses were found to occur via NO and antimicrobial peptide hBD-2 production only during direct contact between C. albicans and HPECs and coincided with the fungus’s intraepithelial invasion. However, although the hBD-2 levels remained constant in the HPEC supernatants over time, the NO release and hBD-2 gene expression were reduced at a later time (10 h), indicating that the epithelial defense capacity against the fungal invasion was not maintained in later phases. This aspect of the immune response was associated with increased epithelial invasion and apoptosis maintenance.
Collapse
Affiliation(s)
- Ana Regina Casaroto
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil.
| | - Rafaela Alves da Silva
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Samira Salmeron
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Maria Lúcia Rubo de Rezende
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Carlos Ferreira Dos Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Karen Henriette Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | | | - Priscila Aranda Salomão
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Marcelo Milanda Ribeiro Lopes
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, 17012-901 Bauru, SP, Brazil
| |
Collapse
|
21
|
Junker K, Chailyan A, Hesselbart A, Forster J, Wendland J. Multi-omics characterization of the necrotrophic mycoparasite Saccharomycopsis schoenii. PLoS Pathog 2019; 15:e1007692. [PMID: 31071195 PMCID: PMC6508603 DOI: 10.1371/journal.ppat.1007692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/10/2019] [Indexed: 12/14/2022] Open
Abstract
Pathogenic yeasts and fungi are an increasing global healthcare burden, but discovery of novel antifungal agents is slow. The mycoparasitic yeast Saccharomycopsis schoenii was recently demonstrated to be able to kill the emerging multi-drug resistant yeast pathogen Candida auris. However, the molecular mechanisms involved in the predatory activity of S. schoenii have not been explored. To this end, we de novo sequenced, assembled and annotated a draft genome of S. schoenii. Using proteomics, we confirmed that Saccharomycopsis yeasts have reassigned the CTG codon and translate CTG into serine instead of leucine. Further, we confirmed an absence of all genes from the sulfate assimilation pathway in the genome of S. schoenii, and detected the expansion of several gene families, including aspartic proteases. Using Saccharomyces cerevisiae as a model prey cell, we honed in on the timing and nutritional conditions under which S. schoenii kills prey cells. We found that a general nutrition limitation, not a specific methionine deficiency, triggered predatory activity. Nevertheless, by means of genome-wide transcriptome analysis we observed dramatic responses to methionine deprivation, which were alleviated when S. cerevisiae was available as prey, and therefore postulate that S. schoenii acquired methionine from its prey cells. During predation, both proteomic and transcriptomic analyses revealed that S. schoenii highly upregulated and translated aspartic protease genes, probably used to break down prey cell walls. With these fundamental insights into the predatory behavior of S. schoenii, we open up for further exploitation of this yeast as a biocontrol yeast and/or source for novel antifungal agents.
Collapse
Affiliation(s)
- Klara Junker
- Yeast & Fermentation, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Anna Chailyan
- Yeast & Fermentation, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Ana Hesselbart
- Yeast & Fermentation, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Jochen Forster
- Yeast & Fermentation, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Jürgen Wendland
- Yeast & Fermentation, Carlsberg Research Laboratory, Copenhagen, Denmark
- Functional Yeast Genomics, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Song YG, Lee SH. Efficacy of newly developed denture cleaning device on physical properties of denture material and Candida biofilm. J Dent Sci 2019; 14:248-254. [PMID: 31528252 PMCID: PMC6739286 DOI: 10.1016/j.jds.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Indexed: 11/26/2022] Open
Abstract
Background/purpose Electrolyzed water has antimicrobial activity against oral microbes. The purpose of this study was to investigate the effects of a denture cleaning device that uses electrolyzed water on Candida biofilm on denture base-material and the physical properties of the denture material. Materials and methods Denture base-resin disks were prepared with Polymethyl methacrylate. After the formation of Candida albicans biofilm on the resin disks, the antimicrobial activity of the denture cleaning device and the chemical cleanser against C. albicans biofilm was compared. The resin disks were also treated with the cleaning device and the chemical cleanser for 150 days, and the physical properties were analyzed by an atomic force microscope, Vickers hardness tester, and colorimeter. Results The denture cleaning device and the chemical cleanser reduced the levels of C. albicans biofilm on the denture resin. Upon immersing of the resin disks for 150 days, the electrolyzed water of the denture cleaning device did not significantly change the surface roughness of the specimens, but significantly reduced its Vickers hardness compared to the initial value. The color changes of the resin disk were 0.477 ± 0.076, 0.612 ± 0.095 and 0.562 ± 0.096 after treating with tap water, the chemical cleanser, and the denture cleaning device, respectively. Conclusion The denture cleaning device may be suitable for use by the elderly to clean dentures without side effects caused by the misuse of chemical cleanser.
Collapse
Affiliation(s)
- Young-Gyun Song
- Department of Prosthodontics, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Sung-Hoon Lee
- Department of Microbiology and Immunology, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
23
|
Laurian R, Dementhon K, Doumèche B, Soulard A, Noel T, Lemaire M, Cotton P. Hexokinase and Glucokinases Are Essential for Fitness and Virulence in the Pathogenic Yeast Candida albicans. Front Microbiol 2019; 10:327. [PMID: 30858840 PMCID: PMC6401654 DOI: 10.3389/fmicb.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/08/2019] [Indexed: 01/28/2023] Open
Abstract
The pathogenic yeast Candida albicans is both a powerful commensal and a pathogen of humans that can infect wide range of organs and body sites. Metabolic flexibility promotes infection and commensal colonization by this opportunistic pathogen. Yeast cell survival depends upon assimilation of fermentable and non-fermentable locally available carbon sources. Physiologically relevant sugars like glucose and fructose are present at low levels in host niches. However, because glucose is the preferred substrate for energy and biosynthesis of structural components, its efficient detection and metabolism are fundamental for the metabolic adaptation of the pathogen. We explored and characterized the C. albicans hexose kinase system composed of one hexokinase (CaHxk2) and two glucokinases (CaGlk1 and CaGlk4). Using a set of mutant strains, we found that hexose phosphorylation is mostly performed by CaHxk2, which sustains growth on hexoses. Our data on hexokinase and glucokinase expression point out an absence of cross regulation mechanisms at the transcription level and different regulatory pathways. In the presence of glucose, CaHxk2 migrates in the nucleus and contributes to the glucose repression signaling pathway. In addition, CaHxk2 participates in oxidative, osmotic and cell wall stress responses, while glucokinases are overexpressed under hypoxia. Hexose phosphorylation is a key step necessary for filamentation that is affected in the hexokinase mutant. Virulence of this mutant is clearly impacted in the Galleria mellonella and macrophage models. Filamentation, glucose phosphorylation and stress response defects of the hexokinase mutant prevent host killing by C. albicans. By contributing to metabolic flexibility, stress response and morphogenesis, hexose kinase enzymes play an essential role in the virulence of C. albicans.
Collapse
Affiliation(s)
- Romain Laurian
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Karine Dementhon
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Bastien Doumèche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon – Université Lyon 1, Lyon, France
| | - Alexandre Soulard
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Thierry Noel
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Marc Lemaire
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Pascale Cotton
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| |
Collapse
|
24
|
An Invertebrate Host to Study Fungal Infections, Mycotoxins and Antifungal Drugs: Tenebrio molitor. J Fungi (Basel) 2018; 4:jof4040125. [PMID: 30424549 PMCID: PMC6308941 DOI: 10.3390/jof4040125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Faced with ethical conflict and social pressure, researchers have increasingly chosen to use alternative models over vertebrates in their research. Since the innate immune system is evolutionarily conserved in insects, the use of these animals in research is gaining ground. This review discusses Tenebrio molitor as a potential model host for the study of pathogenic fungi. Larvae of T. molitor are known as cereal pests and, in addition, are widely used as animal and human feed. A number of studies on mechanisms of the humoral system, especially in the synthesis of antimicrobial peptides, which have similar characteristics to vertebrates, have been performed. These studies demonstrate the potential of T. molitor larvae as a model host that can be used to study fungal virulence, mycotoxin effects, host immune responses to fungal infection, and the action of antifungal compounds.
Collapse
|
25
|
Sieber P, Voigt K, Kämmer P, Brunke S, Schuster S, Linde J. Comparative Study on Alternative Splicing in Human Fungal Pathogens Suggests Its Involvement During Host Invasion. Front Microbiol 2018; 9:2313. [PMID: 30333805 PMCID: PMC6176087 DOI: 10.3389/fmicb.2018.02313] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is an important regulatory mechanism in eukaryotes but only little is known about its impact in fungi. Human fungal pathogens are of high clinical interest causing recurrent or life-threatening infections. AS can be well-investigated genome-wide and quantitatively with the powerful technology of RNA-Seq. Here, we systematically studied AS in human fungal pathogens based on RNA-Seq data. To do so, we investigated its effect in seven fungi during conditions simulating ex vivo infection processes and during in vitro stress. Genes undergoing AS are species-specific and act independently from differentially expressed genes pointing to an independent mechanism to change abundance and functionality. Candida species stand out with a low number of introns with higher and more varying lengths and more alternative splice sites. Moreover, we identified a functional difference between response to host and other stress conditions: During stress, AS affects more genes and is involved in diverse regulatory functions. In contrast, during response-to-host conditions, genes undergoing AS have membrane functionalities and might be involved in the interaction with the host. We assume that AS plays a crucial regulatory role in pathogenic fungi and is important in both response to host and stress conditions.
Collapse
Affiliation(s)
- Patricia Sieber
- Department of Bioinformatics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.,Research Group Systems Biology, Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Philipp Kämmer
- Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Sascha Brunke
- Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Jörg Linde
- Research Group PiDOMICS, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute for Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health-Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
26
|
Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in Candida albicans. Genetics 2018; 209:725-741. [PMID: 29724862 DOI: 10.1534/genetics.118.301019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.
Collapse
|
27
|
Dühring S, Ewald J, Germerodt S, Kaleta C, Dandekar T, Schuster S. Modelling the host-pathogen interactions of macrophages and Candida albicans using Game Theory and dynamic optimization. J R Soc Interface 2018; 14:rsif.2017.0095. [PMID: 28701506 PMCID: PMC5550964 DOI: 10.1098/rsif.2017.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage–Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host–pathogen interaction of macrophages and C. albicans. For this, we study the population dynamics of the macrophage–C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jan Ewald
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Dandekar
- Biocenter, Department of Bioinformatics, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
28
|
Kobayashi-Sakamoto M, Tamai R, Isogai E, Kiyoura Y. Gastrointestinal colonisation and systemic spread of Candida albicans in mice treated with antibiotics and prednisolone. Microb Pathog 2018; 117:191-199. [PMID: 29477742 DOI: 10.1016/j.micpath.2018.02.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
Abstract
Normally, Candida albicans is a commensal microbe that resides in the human oral cavity, gut and vagina. However, the fungus can cause mucosal and systemic infections in immunocompromised individuals. The mechanism by which local mucosal infections progress to systemic candidiasis is poorly understood. Here, a murine model of gastrointestinal (GI) candidiasis was developed by inoculation of the oral cavity, followed by treatment with tetracycline (TC) and prednisolone (PSL). Temporal progression from a local infection of the oral cavity to a systemic infection was then monitored. Histological analysis of tissues from mice treated with both TC and PSL revealed massive infiltration of the tongue and stomach by hyphae. PSL increased the fungal burden in the tongue, stomach and small intestine, and facilitated dissemination to the spleen, kidney and liver within 3 days post-infection. Treatment with both TC and PSL supressed interferon (IFN)-γ and interleukin (IL)-17 (cytokines that play key roles in host defence against fungal infection) levels in the tongue, which were induced by C. albicans infection. In addition, the mucosal layer of the small intestine of mice treated with both TC and PSL was almost destroyed by the fungal infection; this may be a critical event that allows passage of the fungus across the mucosa and into the systemic circulation. Thus, this mouse model is useful for studying mechanisms underlying progression of C. albicans from a local infection of the oral cavity to a systemic infection in immunocompromised individuals.
Collapse
Affiliation(s)
| | - Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima, Japan
| | - Emiko Isogai
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima, Japan
| |
Collapse
|
29
|
Abstract
Microarray technologies have been a major research tool in the last decades. In addition they have been introduced into several fields of diagnostics including diagnostics of infectious diseases. Microarrays are highly parallelized assay systems that initially were developed for multiparametric nucleic acid detection. From there on they rapidly developed towards a tool for the detection of all kind of biological compounds (DNA, RNA, proteins, cells, nucleic acids, carbohydrates, etc.) or their modifications (methylation, phosphorylation, etc.). The combination of closed-tube systems and lab on chip devices with microarrays further enabled a higher automation degree with a reduced contamination risk. Microarray-based diagnostic applications currently complement and may in the future replace classical methods in clinical microbiology like blood cultures, resistance determination, microscopic and metabolic analyses as well as biochemical or immunohistochemical assays. In addition, novel diagnostic markers appear, like noncoding RNAs and miRNAs providing additional room for novel nucleic acid based biomarkers. Here I focus an microarray technologies in diagnostics and as research tools, based on nucleic acid-based arrays.
Collapse
|
30
|
Wu S, Huang J. Resveratrol alleviates Staphylococcus aureus pneumonia by inhibition of the NLRP3 inflammasome. Exp Ther Med 2017; 14:6099-6104. [PMID: 29285164 DOI: 10.3892/etm.2017.5337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a wide variety of infections, including S. aureus pneumonia. Resveratrol, a natural polyphenolic compound contained in several plant species, exerts various activities, including anti-bacterial and pulmonary protective activities. The aim of the present study was to evaluate the protective effect of resveratrol on a murine model of S. aureus pneumonia and to elucidate the underlying mechanisms. It was found that resveratrol significantly reduced S. aureus-induced mortality, ameliorated lung injury and decreased cytokine levels in the bronchoalveolar lavage fluid and lung tissue of S. aureus infected-mice. In addition, reverse-transcription quantitative polymerase chain reaction and western blot assays showed that resveratrol markedly decreased the mRNA and protein expression of nucleotide-binding domain and leucine-rich repeat containing gene family pyrin domain containing 3 protein (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain and caspase-1. These results demonstrated that resveratrol significantly alleviates S. aureus pneumonia in mice, the possible underlying mechanism of which is associated with the inhibition of the NLRP3 inflammasome. The present study suggested that resveratrol is a potentially useful agent for the treatment of S. aureus pneumonia and S. aureus-induced infectious diseases.
Collapse
Affiliation(s)
- Suxia Wu
- Department of Respiratory Medicine, Zhangjiagang City Jingfeng People's Hospital, Suzhou, Jiangsu 215625, P.R. China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
31
|
Maza PK, Bonfim-Melo A, Padovan ACB, Mortara RA, Orikaza CM, Ramos LMD, Moura TR, Soriani FM, Almeida RS, Suzuki E, Bahia D. Candida albicans: The Ability to Invade Epithelial Cells and Survive under Oxidative Stress Is Unlinked to Hyphal Length. Front Microbiol 2017; 8:1235. [PMID: 28769876 PMCID: PMC5511855 DOI: 10.3389/fmicb.2017.01235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
In its hyphal form, Candida albicans invades epithelial and endothelial cells by two distinct mechanisms: active penetration and induced endocytosis. The latter is dependent on a reorganization of the host cytoskeleton (actin/cortactin recruitment), whilst active penetration does not rely on the host's cellular machinery. The first obstacle for the fungus to reach deep tissues is the epithelial barrier and this interaction is crucial for commensal growth, fungal pathogenicity and host defense. This study aimed to characterize in vitro epithelial HeLa cell invasion by four different isolates of C. albicans with distinct clinical backgrounds, including a C. albicans SC5314 reference strain. All isolates invaded HeLa cells, recruited actin and cortactin, and induced the phosphorylation of both Src-family kinases (SFK) and cortactin. Curiously, L3881 isolated from blood culture of a patient exhibited the highest resistance to oxidative stress, although this isolate showed reduced hyphal length and displayed the lowest cell damage and invasion rates. Collectively, these data suggest that the ability of C. albicans to invade HeLa cells, and to reach and adapt to the host's blood, including resistance to oxidative stress, may be independent of hyphal length.
Collapse
Affiliation(s)
- Paloma K Maza
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Alexis Bonfim-Melo
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Ana C B Padovan
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil.,Departamento de Microbiologia e Imunologia, Universidade Federal de AlfenasAlfenas, Brazil
| | - Renato A Mortara
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Cristina M Orikaza
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Lilian M Damas Ramos
- Laboratório de Micologia Médica e Microbiologia Bucal, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Tauany R Moura
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Frederico M Soriani
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Ricardo S Almeida
- Laboratório de Micologia Médica e Microbiologia Bucal, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Erika Suzuki
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| | - Diana Bahia
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|
32
|
Pradhan A, Herrero-de-Dios C, Belmonte R, Budge S, Lopez Garcia A, Kolmogorova A, Lee KK, Martin BD, Ribeiro A, Bebes A, Yuecel R, Gow NAR, Munro CA, MacCallum DM, Quinn J, Brown AJP. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathog 2017; 13:e1006405. [PMID: 28542620 PMCID: PMC5456399 DOI: 10.1371/journal.ppat.1006405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/02/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host. The pathogenic yeast Candida albicans faces multiple challenges within its human host. These include the need to protect itself against the toxic oxidants used by the host to kill invading microbes, and the need to scavenge iron, an essential micronutrient that is limiting in certain tissues. The iron-containing enzyme, catalase, detoxifies hydrogen peroxide, thereby playing a major role in protecting C. albicans against reactive oxygen species and neutrophil killing. Indeed, we show that high basal catalase expression increases the resistance of this yeast to oxidative and combinatorial (oxidative plus cationic) stresses. Yet, rather than enhancing the virulence of C. albicans as had been predicted, high basal catalase expression decreases fungal colonisation in certain iron-limiting tissues. Furthermore, we demonstrate that catalase inactivation does not significantly perturb the virulence of C. albicans in models of systemic infection. We also show that ectopic catalase expression increases the demand for iron in C. albicans, thereby reducing the fitness of this pathogen in the absence of stress under iron-limiting conditions. Therefore, high basal catalase expression is a double-edged sword: it enhances the fitness of C. albicans in the presence of stress, but reduces fitness in the absence of stress. This explains why catalase overexpression reduces rather than enhances virulence.
Collapse
Affiliation(s)
- Arnab Pradhan
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Carmen Herrero-de-Dios
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Rodrigo Belmonte
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Susan Budge
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Angela Lopez Garcia
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Aljona Kolmogorova
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Keunsook K. Lee
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Brennan D. Martin
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Antonio Ribeiro
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Attila Bebes
- Iain Fraser Cytometry Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Lan YB, Huang YZ, Qu F, Li JQ, Ma LJ, Yan J, Zhou JH. Time course of global gene expression alterations in Candida albicans during infection of HeLa cells. Bosn J Basic Med Sci 2017; 17:120-131. [PMID: 28397609 DOI: 10.17305/bjbms.2017.1667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic fungus that quickly adapts to various microniches. It causes candidiasis, a common fungal infection for which the pathogenic mechanism has not been elucidated yet. To explore the pathogenic mechanism of candidiasis we used several methods, including microscopic observation of morphological changes of HeLa cells and fungus, analysis of differentially expressed genes using gene chips, and a series of biological and bioinformatic analyses to explore genes that are possibly involved in the pathogenesis of C. albicans. During the C. albicans infection, significant morphological changes of the fungus were observed, and the HeLa cells were gradually destroyed. The gene chip experiments showed upregulated expression of 120 genes and downregulated expression of 178 genes. Further analysis showed that some genes may play an important role in the pathogenesis of C. albicans. Overall, morphological variation and adaptive gene expression within a particular microniche may exert important effects during C. albicans infections.
Collapse
Affiliation(s)
- Yi-Bing Lan
- Department of Gynecology, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Song YG, Lee SH. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Arch Oral Biol 2017; 76:1-6. [DOI: 10.1016/j.archoralbio.2016.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/15/2016] [Accepted: 12/31/2016] [Indexed: 01/24/2023]
|
35
|
Rodrigues CF, Rodrigues ME, Silva S, Henriques M. Candida glabrata Biofilms: How Far Have We Come? J Fungi (Basel) 2017; 3:E11. [PMID: 29371530 PMCID: PMC5715960 DOI: 10.3390/jof3010011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata's biofilms are emerging. In this article, the knowledge available on C. glabrata's resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.
Collapse
Affiliation(s)
- Célia F Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Sónia Silva
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
36
|
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ikeh MAC, Kastora SL, Day AM, Herrero-de-Dios CM, Tarrant E, Waldron KJ, Banks AP, Bain JM, Lydall D, Veal EA, MacCallum DM, Erwig LP, Brown AJP, Quinn J. Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis. Mol Biol Cell 2016; 27:2784-801. [PMID: 27385340 PMCID: PMC5007097 DOI: 10.1091/mbc.e16-05-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
This study provides the first evidence that the phosphate-responsive transcription factor Pho4 is vital for survival of Candida albicans to diverse and physiologically relevant stresses. Pho4 is important for C. albicans pathogenesis, and thus these findings illustrate how metabolic adaptation promotes C. albicans survival in the host. During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indicated that Pho4 does not induce stress-protective genes directly. Instead, we show that loss of Pho4 affects metal cation toxicity, accumulation, and bioavailability. We demonstrate that pho4Δ cells are sensitive to metal and nonmetal cations and that Pho4-mediated polyphosphate synthesis mediates manganese resistance. Significantly, we show that Pho4 is important for mediating copper bioavailability to support the activity of the copper/zinc superoxide dismutase Sod1 and that loss of Sod1 activity contributes to the superoxide sensitivity of pho4Δ cells. Consistent with the key role of fungal stress responses in countering host phagocytic defenses, we also report that C. albicans pho4Δ cells are acutely sensitive to macrophage-mediated killing and display attenuated virulence in animal infection models. The novel connections between phosphate metabolism, metal homeostasis, and superoxide stress resistance presented in this study highlight the importance of metabolic adaptation in promoting C. albicans survival in the host.
Collapse
Affiliation(s)
- Mélanie A C Ikeh
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stavroula L Kastora
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alison M Day
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Emma Tarrant
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - A Peter Banks
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Judith M Bain
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Donna M MacCallum
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Lars P Erwig
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alistair J P Brown
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
38
|
Degani G, Ragni E, Botias P, Ravasio D, Calderon J, Pianezzola E, Rodriguez-Peña JM, Vanoni MA, Arroyo J, Fonzi WA, Popolo L. Genomic and functional analyses unveil the response to hyphal wall stress in Candida albicans cells lacking β(1,3)-glucan remodeling. BMC Genomics 2016; 17:482. [PMID: 27411447 PMCID: PMC4942948 DOI: 10.1186/s12864-016-2853-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
Background The cell wall is essential for the yeast to hypha (Y-H) transition that enables Candida albicans to invade human tissues and evade the immune system. The main constituent, β(1,3)-glucan, is remodeled by glucanosyltransferases of the GH72 family. Phr1p is responsible of glucan remodeling at neutral-alkaline pH and is essential for morphogenesis and virulence. Due to the pH-regulated expression of PHR1, the phr1Δ phenotype is manifested at pH > 6 and its severity increases with the rise in pH. We exploited the pH-conditional nature of a PHR1 null mutant to analyze the impact of glucan remodeling on the hyphal transcriptional program and the role of chitin synthases in the hyphal wall stress (HWS) response. Results In hyphal growth inducing conditions, phr1Δ germ tubes are defective in elongation, accumulate chitin, and constitutively activate the signaling pathways mediated by the MAP kinases Mkc1p, Cek1p and Hog1p. The transcriptional profiles revealed an increase of transcript levels for genes involved in cell wall formation (CHS2 and CHS8, CRH11, PGA23, orf19.750, RBR1, RBT4, ECM331, PGA6, PGA13), protein N-glycosylation and sorting in the ER (CWH8 and CHS7), signaling (CPP1, SSK2), ion transport (FLC2, YVC1), stress response and metabolism and a reduced expression of adhesins. A transient up-regulation of DNA replication genes associated with entry into S-phase occurred whereas cell-cycle regulating genes (PCL1, PCL2, CCN1, GIN4, DUN1, CDC28) were persistently up-regulated. To test the physiological relevance of altered CHS gene expression, phr1Δ chsxΔ (x = 2,3,8) mutant phenotypes were analyzed during the Y-H transition. PHR1 deletion was synthetic lethal with CHS3 loss on solid M199 medium-pH 7.5 and with CHS8 deletion on solid M199-pH 8. On Spider medium, PHR1 was synthetic lethal with CHS3 or CHS8 at pH 8. Conclusions The absence of Phr1p triggers an adaptive response aimed to reinforce the hyphal cell wall and restore homeostasis. Chs3p is essential in preserving phr1Δ cell integrity during the Y-H transition. Our findings also unveiled an unanticipated essential role of Chs8p during filamentation on solid media. These results highlight the flexibility of fungal cells in maintaining cell wall integrity and contribute to assessments of glucan remodeling as a target for therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2853-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Genny Degani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Enrico Ragni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Unit of Cell therapy and Cryobiology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Pedro Botias
- Unidad de Genómica, CAI de Genómica y Proteómica, UCM, Madrid, Spain
| | - Davide Ravasio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Evolva, Basel, Switzerland
| | - Julia Calderon
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Instituto de Biología Funcional y Genómica, Salamanca, Spain
| | - Elena Pianezzola
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Jose Manuel Rodriguez-Peña
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Javier Arroyo
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - William A Fonzi
- Department of Microbiology and Immunology, Georgetown University, Washington, D.C, USA
| | - Laura Popolo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
39
|
Mackie J, Szabo EK, Urgast DS, Ballou ER, Childers DS, MacCallum DM, Feldmann J, Brown AJP. Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections. PLoS One 2016; 11:e0158683. [PMID: 27362522 PMCID: PMC4928837 DOI: 10.1371/journal.pone.0158683] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection) and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection) to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits-metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease.
Collapse
Affiliation(s)
- Joanna Mackie
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
- * E-mail:
| | - Edina K. Szabo
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Dagmar S. Urgast
- Trace Element Speciation Laboratory, Department of Chemistry, College of Physical Science, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - Elizabeth R. Ballou
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Joerg Feldmann
- Trace Element Speciation Laboratory, Department of Chemistry, College of Physical Science, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
40
|
Miramón P, Lorenz MC. The SPS amino acid sensor mediates nutrient acquisition and immune evasion in Candida albicans. Cell Microbiol 2016; 18:1611-1624. [PMID: 27060451 DOI: 10.1111/cmi.12600] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/12/2016] [Accepted: 03/30/2016] [Indexed: 01/20/2023]
Abstract
Candida albicans is well adapted to its host and is able to sense and respond to the nutrients available within. We have shown that C. albicans avidly utilizes amino acids as a carbon source, which allows this opportunistic pathogen to neutralize acidic environments, including the macrophage phagosome. The transcription factor Stp2 is a key regulator of this phenomenon, and we sought to understand the mechanism of activation of Stp2, focusing on the SPS sensor system previously characterized for its role in nitrogen acquisition. We generated deletion mutants of the three components, SSY1, PTR3 and SSY5 and demonstrated that these strains utilize amino acids poorly as carbon source, cannot neutralize the medium in response to these nutrients, and have reduced ammonia release. Exogenous amino acids rapidly induce proteolytic processing of Stp2 and nuclear translocation in an SPS-dependent manner. A truncated version of Stp2, lacking the amino terminal nuclear exclusion domain, could suppress the growth and pH neutralization defects of the SPS mutants. We showed that the SPS system is required for normal resistance of C. albicans to macrophages and that mutants defective in this system reside in more acidic phagosomes compared with wild type cells; however, a more equivocal contribution was observed in the murine model of disseminated candidiasis. Taken together, these results indicate that the SPS system is activated under carbon starvation conditions resembling host environments, regulating Stp2 functions necessary for amino acid catabolism and normal interactions with innate immune cells.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes 2015; 3:467-495. [PMID: 28248281 PMCID: PMC5217390 DOI: 10.3390/proteomes3040467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Collapse
|
42
|
de Souza PC, Morey AT, Castanheira GM, Bocate KP, Panagio LA, Ito FA, Furlaneto MC, Yamada-Ogatta SF, Costa IN, Mora-Montes HM, Almeida RS. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. J Microbiol Methods 2015; 118:182-6. [DOI: 10.1016/j.mimet.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
|
43
|
Pitarch A, Nombela C, Gil C. Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia. J Proteomics 2015; 134:144-162. [PMID: 26485298 DOI: 10.1016/j.jprot.2015.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 12/01/2022]
Abstract
Serum antibodies to specific Candida proteins have been reported as potential diagnostic biomarkers for candidemia. However, their diagnostic usefulness at the protein species level has hardly been examined. Using serological proteome analysis, we explored the IgG-antibody responses to Candida albicans protein species in candidemia and control patients. We found that 87 discrete protein species derived from 34 unique proteins were IgG-targets, although only 43 of them were differentially recognized by candidemia and control sera. An increase in the speciation of the immunome, connectivity and modularity of antigenic species co-recognition networks, and heterogeneity of antigenic species recognition patterns was associated with candidemia. IgG antibodies to certain discrete protein species were better predictors of candidemia than those to their corresponding proteins. A molecular discriminator delineated from the combined fingerprints of IgG antibodies to two distinct species of phosphoglycerate kinase and enolase accurately classified candidemia and control patients. These results provide new insight into the anti-Candida IgG-antibody response development in candidemia, and demonstrate that an immunoproteomic signature at the molecular level may be useful for its diagnosis. Our study further highlights the importance of defining pathogen-specific antigens at the chemical and molecular level for their potential application as immunodiagnostic reagents or even vaccine candidates.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain.
| | - César Nombela
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| |
Collapse
|
44
|
Abstract
Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species.
Collapse
|
45
|
Mota S, Alves R, Carneiro C, Silva S, Brown AJ, Istel F, Kuchler K, Sampaio P, Casal M, Henriques M, Paiva S. Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Front Microbiol 2015; 6:919. [PMID: 26388859 PMCID: PMC4560035 DOI: 10.3389/fmicb.2015.00919] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Candida glabrata is considered a major opportunistic fungal pathogen of humans. The capacity of this yeast species to cause infections is dependent on the ability to grow within the human host environment and to assimilate the carbon sources available. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources, such as carboxylic acids, contributes to the virulence of this fungus. Transcriptional studies on C. glabrata cells identified a similar response, upon nutrient deprivation. In this work, we aimed at analyzing biofilm formation, antifungal drug resistance, and phagocytosis of C. glabrata cells grown in the presence of acetic acid as an alternative carbon source. C. glabrata planktonic cells grown in media containing acetic acid were more susceptible to fluconazole and were better phagocytosed and killed by macrophages than when compared to media lacking acetic acid. Growth in acetic acid also affected the ability of C. glabrata to form biofilms. The genes ADY2a, ADY2b, FPS1, FPS2, and ATO3, encoding putative carboxylate transporters, were upregulated in C. glabrata planktonic and biofilm cells in the presence of acetic acid. Phagocytosis assays with fps1 and ady2a mutant strains suggested a potential role of FPS1 and ADY2a in the phagocytosis process. These results highlight how acidic pH niches, associated with the presence of acetic acid, can impact in the treatment of C. glabrata infections, in particular in vaginal candidiasis.
Collapse
Affiliation(s)
- Sandra Mota
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal ; Centre of Health and Environmental Research, School of Allied Health Sciences, Polytechnic Institute of Porto Porto, Portugal
| | - Rosana Alves
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Catarina Carneiro
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Sónia Silva
- Centre for Biological Engineering, University of Minho Braga, Portugal
| | - Alistair J Brown
- Institute of Medical Sciences - School of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Fabian Istel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna Vienna, Austria
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Mariana Henriques
- Centre for Biological Engineering, University of Minho Braga, Portugal
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| |
Collapse
|
46
|
Irmer H, Tarazona S, Sasse C, Olbermann P, Loeffler J, Krappmann S, Conesa A, Braus GH. RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics 2015; 16:640. [PMID: 26311470 PMCID: PMC4551469 DOI: 10.1186/s12864-015-1853-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
Background Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. Electronic supplementary material The online version of this article (doi10.1186/s12864-015-1853-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henriette Irmer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Sonia Tarazona
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain.
| | - Christoph Sasse
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Patrick Olbermann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany.
| | - Jürgen Loeffler
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany.
| | - Sven Krappmann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany. .,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinik Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Ana Conesa
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain. .,Department of Microbiology and Cell Science, Institute for Food and Agricultura Sciences, University of Florida at Gainesville, Gainesville, FL, USA.
| | - Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| |
Collapse
|
47
|
Chowdhury T, Köhler JR. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans. Mol Microbiol 2015; 98:384-402. [PMID: 26173379 DOI: 10.1111/mmi.13130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/25/2022]
Abstract
TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant.
Collapse
Affiliation(s)
- Tahmeena Chowdhury
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Julia R Köhler
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
48
|
Crawford A, Wilson D. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res 2015; 15:fov071. [PMID: 26242402 PMCID: PMC4629794 DOI: 10.1093/femsyr/fov071] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
The ability of pathogenic microorganisms to assimilate sufficient nutrients for growth within their hosts is a fundamental requirement for pathogenicity. However, certain trace nutrients, including iron, zinc and manganese, are actively withheld from invading pathogens in a process called nutritional immunity. Therefore, successful pathogenic species must have evolved specialized mechanisms in order to adapt to the nutritionally restrictive environment of the host and cause disease. In this review, we discuss recent advances which have been made in our understanding of fungal iron and zinc acquisition strategies and nutritional immunity against fungal infections, and explore the mechanisms of micronutrient uptake by human pathogenic fungi. The human body tightly sequesters essential micronutrients, restricting their access to invading microorganisms, and pathogenic species must counteract this action of ‘nutritional immunity’.
Collapse
Affiliation(s)
- Aaron Crawford
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Duncan Wilson
- Aberdeen Fungal Group, School of Medical Sciences, Aberdeen AB25 2ZD, UK
| |
Collapse
|
49
|
Tavares AH, Fernandes L, Bocca AL, Silva-Pereira I, Felipe MS. Transcriptomic reprogramming of genus Paracoccidioides in dimorphism and host niches. Fungal Genet Biol 2015; 81:98-109. [DOI: 10.1016/j.fgb.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 01/04/2023]
|
50
|
Dühring S, Germerodt S, Skerka C, Zipfel PF, Dandekar T, Schuster S. Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies. Front Microbiol 2015; 6:625. [PMID: 26175718 PMCID: PMC4485224 DOI: 10.3389/fmicb.2015.00625] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
- Friedrich-Schiller-University JenaJena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biozentrum, Universitaet WuerzburgWuerzburg, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|