1
|
Li Y, Sun J, Fu Z, He Y, Chen X, Wang S, Zhang L, Jian J, Yang W, Liu C, Liu X, Yang Y, Bai Z. Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:130. [PMID: 39415302 PMCID: PMC11481463 DOI: 10.1186/s13068-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Tryptophol (IET) is a metabolite derived from L-tryptophan that can be isolated from plants, bacteria, and fungi and has a wide range of biological activities in living systems. Despite the fact that IET biosynthesis pathways exist naturally in living organisms, industrial-scale production of IET and its derivatives is solely based on environmentally unfriendly chemical conversion. With diminishing petroleum reserves and a significant increase in global demand in all major commercial segments, it becomes essential to develop new technologies to produce chemicals from renewable resources and under mild conditions, such as microbial fermentation. Here we characterized and engineered the less-studied L-tryptophan pathway and IET biosynthesis in the baker's yeast Saccharomyces cerevisiae, with the goal of investigating microbial fermentation as an alternative/green strategy to produce IET. In detail, we divided the aromatic amino acids (AAAs) metabolism related to IET synthesis into the shikimate pathway, the L-tryptophan pathway, the competing L-tyrosine/L-phenylalanine pathways, and the Ehrlich pathway based on a modular engineering concept. Through stepwise engineering of these modules, we obtained a yeast mutant capable of producing IET up to 1.04 g/L through fed-batch fermentation, a ~ 650-fold improvement over the wild-type strain. Besides, our engineering process also revealed many insights about the regulation of AAAs metabolism in S. cerevisiae. Finally, during our engineering process, we also discovered yeast mutants that accumulate anthranilate and L-tryptophan, both of which are precursors of various valuable secondary metabolites from fungi and plants. These strains could be developed to the chassis for natural product biosynthesis upon introducing heterologous pathways.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jingzhen Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenhao Fu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yubing He
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaorui Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shijie Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lele Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Wuxi Tmaxtree Biotechnology Co. Ltd., Wuxi, 214072, China
| | - Jiansheng Jian
- Wuxi Tmaxtree Biotechnology Co. Ltd., Wuxi, 214072, China
| | - Weihua Yang
- Changxing Pharmaceutical Co. Ltd., Huzhou, 313100, China
| | - Chunli Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Agirman B, Carsanba E, Settanni L, Erten H. Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol. Yeast 2023; 40:457-475. [PMID: 37653692 DOI: 10.1002/yea.3895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.
Collapse
Affiliation(s)
- Bilal Agirman
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Erdem Carsanba
- Centro de Biotecnologia e Química Fina (CBQF), Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Palermo, Italy
| | - Huseyin Erten
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
3
|
Puyo M, Simonin S, Bach B, Klein G, Alexandre H, Tourdot-Maréchal R. Bio-protection in oenology by Metschnikowia pulcherrima: from field results to scientific inquiry. Front Microbiol 2023; 14:1252973. [PMID: 37664122 PMCID: PMC10469929 DOI: 10.3389/fmicb.2023.1252973] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Finding alternatives to the use of chemical inputs to preserve the sanitary and organoleptic quality of food and beverages is essential to meet public health requirements and consumer preferences. In oenology, numerous manufacturers already offer a diverse range of bio-protection yeasts to protect must against microbiological alterations and therefore limit or eliminate sulphites during winemaking. Bio-protection involves selecting non-Saccharomyces yeasts belonging to different genera and species to induce negative interactions with indigenous microorganisms, thereby limiting their development and their impact on the matrix. Although the effectiveness of bio-protection in the winemaking industry has been reported in numerous journals, the underlying mechanisms are not yet well understood. The aim of this review is to examine the current state of the art of field trials and laboratory studies that demonstrate the effects of using yeasts for bio-protection, as well as the interaction mechanisms that may be responsible for these effects. It focuses on the yeast Metschnikowia pulcherrima, particularly recommended for the bio-protection of grape musts.
Collapse
Affiliation(s)
- Maëlys Puyo
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Scott Simonin
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Benoit Bach
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Géraldine Klein
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| |
Collapse
|
4
|
Tian J, Lin Y, Su X, Tan H, Gan C, Ragauskas AJ. Effects of Saccharomyces cerevisiae quorum sensing signal molecules on ethanol production in bioethanol fermentation process. Microbiol Res 2023; 271:127367. [PMID: 36989758 DOI: 10.1016/j.micres.2023.127367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
In this study, the concentrations of Saccharomyces cerevisiae quorum sensing signal molecules (QSMs) were determined, not to mention the exploration of the effects of exogenous S. cerevisiae QSMs on the sole fermentation of S. cerevisiae and co-fermentation of S. cerevisiae and Lactobacillus plantarum. The results showed that the concentrations of three signal molecules (2-phenylethanol (2-PE), tyrosol and tryptophan) produced by S. cerevisiae increased with a higher bacteria density, which tends to become stable up to 118.02, 32.05 and 1.93 mg/L respectively when cultivating for 144 h. Among the three signaling molecules, only 2-PE promoted the ethanol production capacity of S. cerevisiae. The ethanol concentration of the sole fermentation of S. cerevisiae loaded with 120 mg/L 2-PE reached 3.2 g/L in 9 h, which was 58.7% higher than that of the group without 2-PE addition. Moreover, 2-PE reduced the negative impact of L. plantarum on S. cerevisiae. Within 12 h of the co-fermentation of L. plantarum and S. cerevisiae, the ethanol concentration in the co-fermentation group loaded with 2-PE reached 5.6 g/L, similar to that in the group fermenting with sole S. cerevisiae, and the yeast budding rate was also restored to 28.51%. qRT-PCR results of S. cerevisiae which was in sole fermentation with 2-PE addition for 9 h showed that the relative expression levels of ethanol dehydrogenase gene ADH1 in S. cerevisiae decreased by 25% and the relative expression levels of MLS1, CIT2, IDH1,CIT1 decreased by 26%, 30%, 22%,18%, respectively, meant that the glyoxylic and tricarboxylic acid cycles were greatly inhibited, which promotes the accumulation of ethanol. The results of this study provide basic data for using QSMs more than antibiotics in the the prevention of contamination during the industrialized bioethanol production.
Collapse
Affiliation(s)
- Jun Tian
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yunqin Lin
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Xiaoying Su
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Honghao Tan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Chaoyi Gan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Karine Marcomini E, Negri M. Fungal quorum-sensing molecules and antiseptics: a promising strategy for biofilm modulation? Drug Discov Today 2023:103624. [PMID: 37224996 DOI: 10.1016/j.drudis.2023.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
New strategies to control fungal biofilms are essential, especially those that interfere in the biofilm organization process and cellular communication, known as quorum sensing. The effect of antiseptics and quorum-sensing molecules (QSMs) have been considered with regard to this; however, little has been elucidated, particularly because studies are often restricted to the action of antiseptics and QSMs against a few fungal genera. In this review, we discuss progress reported in the literature thus far and analyze, through in silico methods, 13 fungal QSMs with regard to their physicochemical, pharmacological, and toxicity properties, including their mutagenicity, tumorigenicity, hepatotoxicity, and nephrotoxicity. From these in silico analyses, we highlight 4-hydroxyphenylacetic acid and tryptophol as having satisfactory properties and, thus, propose that these should be investigated further as antifungal agents. We also recommend future in vitro approaches to determine the association of QSMs with commonly used antiseptics as potential antibiofilm agents.
Collapse
|
6
|
Wachowska U, Pluskota W, Jastrzębski JP, Głowacka K, Szablewska-Stuper K, Balcerzak M. A method for reducing the concentrations of Fusarium graminearum trichothecenes in durum wheat grain with the use of Debaryomyces hansenii. Int J Food Microbiol 2023; 397:110211. [PMID: 37105049 DOI: 10.1016/j.ijfoodmicro.2023.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is one of the most dangerous diseases of durum wheat. This hemibiotrophic pathogen transitions from the biotrophic phase, during which it penetrates host tissues and secretes trichothecenes, to the necrotrophic phase which leads to the destruction of host tissues. Yeasts applied to spikes often reduce mycotoxin concentrations, but the underlying mechanisms have not been fully elucidated. Therefore, the aim of this study was to analyze the concentrations trichothecenes in durum wheat grain and changes in the F. graminearum transcriptome under the influence the Debaryomyces hansenii antagonistic yeast strain. Debaryomyces hansenii cells adhered to and formed cell aggregates/biofilm on the surface of spikes and pathogenic hyphae. Biological control suppressed the spread of F. graminearum by 90 % and decreased the content of deoxynivalenol (DON) in spikes by 31.2 %. Yeasts significantly reduced the expression of pathogen's genes encoding the rpaI subunit of RNA polymerase I and the activator of Hsp90 ATPase, but they had no effect on mRNA transcript levels of genes encoding the enzymes involved in the biosynthesis of trichothecenes. The yeast treatment reduced the number of F. graminearum operational taxonomic units (OTUs) nearly five-fold and increased the number of D. hansenii OTUs more than six-fold in the spike mycobiome. The mechanisms that suppress infections should be explored to develop effective biological methods for reducing the concentrations mycotoxins in wheat grain.
Collapse
Affiliation(s)
- Urszula Wachowska
- University of Warmia and Mazury, Department of Entomology, Phytopathology and Molecular Diagnostics, Poland.
| | - Wioletta Pluskota
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | - Jan Paweł Jastrzębski
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | - Katarzyna Głowacka
- University of Warmia and Mazury, Department of Plant Physiology, Genetics and Biotechnology, Poland
| | | | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food, Canada
| |
Collapse
|
7
|
Deng Q, Lei X, Zhang H, Deng L, Yi L, Zeng K. Phenylalanine Promotes Biofilm Formation of Meyerozyma caribbica to Improve Biocontrol Efficacy against Jujube Black Spot Rot. J Fungi (Basel) 2022; 8:jof8121313. [PMID: 36547646 PMCID: PMC9786301 DOI: 10.3390/jof8121313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During storage and transportation after harvest, the jujube fruit is susceptible to black spot rot, which is caused by Alternaria alternata. The present study aimed to evaluate the effectiveness of the yeast Meyerozyma caribbica in controlling A. alternata in postharvest jujube fruits, and to explore the biofilm formation mechanism. The results showed that M. caribbica treatment significantly reduced the A. alternata decay in jujube fruits. M. caribbica could rapidly colonize jujube fruit wounds, adhering tightly to hyphae of A. alternata, and accompanied by the production of extracellular secretions. In in vitro experiments, we identified that M. caribbica adhered to polystyrene plates, indicating a strong biofilm-forming ability. Furthermore, we demonstrated that M. caribbica can secrete phenylethanol, a quorum sensing molecule which can affect biofilm development. Phenylalanine (a precursor substance for phenylethanol synthesis) enhanced the secretion of phenylethanol and promoted the formation of M. caribbica biofilms. Meanwhile, phenylalanine enhanced the biological control performance of M. caribbica against jujube black spot rot. Our study provided new insights that enhance the biological control performance of antagonistic yeast.
Collapse
Affiliation(s)
- Qian Deng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xingmeng Lei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
8
|
Britton SJ, Rogers LJ, White JS, Maskell DL. HYPHAEdelity: a quantitative image analysis tool for assessing peripheral whole colony filamentation. FEMS Yeast Res 2022; 22:6832773. [PMID: 36398755 PMCID: PMC9697609 DOI: 10.1093/femsyr/foac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae, also known as brewer's yeast, can undergo a reversible stress-responsive transition from individual ellipsoidal cells to chains of elongated cells in response to nitrogen- or carbon starvation. Whole colony morphology is frequently used to evaluate phenotypic switching response; however, quantifying two-dimensional top-down images requires each pixel to be characterized as belonging to the colony or background. While feasible for a small number of colonies, this labor-intensive assessment process is impracticable for larger datasets. The software tool HYPHAEdelity has been developed to semi-automate the assessment of two-dimensional whole colony images and quantify the magnitude of peripheral whole colony yeast filamentation using image analysis tools intrinsic to the OpenCV Python library. The software application functions by determining the total area of filamentous growth, referred to as the f-measure, by subtracting the area of the inner colony boundary from the outer-boundary area associated with hyphal projections. The HYPHAEdelity application was validated against automated and manually pixel-counted two-dimensional top-down images of S. cerevisiae colonies exhibiting varying degrees of filamentation. HYPHAEdelity's f-measure results were comparable to areas determined through a manual pixel enumeration method and found to be more accurate than other whole colony filamentation software solutions.
Collapse
Affiliation(s)
- Scott J Britton
- Corresponding author: Institute for Biological Chemistry, Biophysics and Bioengineering, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh, Scotland, United Kingdom, EH14 4AS. Tel: +32470205380; E-mail:
| | | | - Jane S White
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| | - Dawn L Maskell
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| |
Collapse
|
9
|
Perpetuini G, Tittarelli F, Perla C, Tofalo R. Influence of Different Aggregation States on Volatile Organic Compounds Released by Dairy Kluyveromyces marxianus Strains. Foods 2022; 11:foods11182910. [PMID: 36141037 PMCID: PMC9498923 DOI: 10.3390/foods11182910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Kluyveromyces marxianus has the ability to contribute to the aroma profile of foods and beverages since it is able to produce several volatile organic compounds (VOCs). In this study, 8 dairy K. marxianus strains, previously selected for their adhesion properties, were tested for VOCs production when grown in different conditions: planktonic, biofilm-detached, and MATS forming-cells. It was shown that biofilm-detached cells were mainly able to produce higher alcohols (64.57 mg/L), while esters were mainly produced by planktonic and MATS forming-cells (117.86 and 94.90 mg/L, respectively). Moreover, K. marxianus biofilm-detached cells were able to produce VOCs with flavor and odor impacts, such as ketons, phenols, and terpenes, which were not produced by planktonic cells. In addition, specific unique compounds were associated to the different conditions tested. Biofilm-detached cells were characterized by the production of 9 unique compounds, while planktonic and MATS forming-cells by 7 and 12, respectively. The obtained results should be exploited to modulate the volatilome of foods and beverages and improve the production of certain compounds at the industrial level. Further studies will be carried out to better understand the genetic mechanisms underlying the metabolic pathways activated under different conditions.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Fabrizia Tittarelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Carlo Perla
- Dalton Biotecnologie s.r.l., 65010 Spoltore, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861266943
| |
Collapse
|
10
|
Ochoa-Gutiérrez D, Reyes-Torres AM, de la Fuente-Colmenares I, Escobar-Sánchez V, González J, Ortiz-Hernández R, Torres-Ramírez N, Segal-Kischinevzky C. Alternative CUG Codon Usage in the Halotolerant Yeast Debaryomyces hansenii: Gene Expression Profiles Provide New Insights into Ambiguous Translation. J Fungi (Basel) 2022; 8:jof8090970. [PMID: 36135695 PMCID: PMC9502446 DOI: 10.3390/jof8090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
The halotolerant yeast Debaryomyces hansenii belongs to the CTG-Ser1 clade of fungal species that use the CUG codon to translate as leucine or serine. The ambiguous decoding of the CUG codon is relevant for expanding protein diversity, but little is known about the role of leucine–serine ambiguity in cellular adaptations to extreme environments. Here, we examine sequences and structures of tRNACAG from the CTG-Ser1 clade yeasts, finding that D. hansenii conserves the elements to translate ambiguously. Then, we show that D. hansenii has tolerance to conditions of salinity, acidity, alkalinity, and oxidative stress associated with phenotypic and ultrastructural changes. In these conditions, we found differential expression in both the logarithmic and stationary growth phases of tRNASer, tRNALeu, tRNACAG, LeuRS, and SerRS genes that could be involved in the adaptive process of this yeast. Finally, we compare the proteomic isoelectric points and hydropathy profiles, detecting that the most important variations among the physicochemical characteristics of D. hansenii proteins are in their hydrophobic and hydrophilic interactions with the medium. We propose that the ambiguous translation, i.e., leucylation or serynation, on translation of the CUG-encoded residues, could be linked to adaptation processes in extreme environments.
Collapse
Affiliation(s)
- Daniel Ochoa-Gutiérrez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Anya M. Reyes-Torres
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Ileana de la Fuente-Colmenares
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Viviana Escobar-Sánchez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - James González
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Nayeli Torres-Ramírez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Claudia Segal-Kischinevzky
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
11
|
Jeong DM, Yoo SJ, Jeon MS, Chun BH, Han DM, Jeon CO, Eyun SI, Seo YJ, Kang HA. Genomic features, aroma profiles, and probiotic potential of the Debaryomyces hansenii species complex strains isolated from Korean soybean fermented food. Food Microbiol 2022; 105:104011. [PMID: 35473972 DOI: 10.1016/j.fm.2022.104011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Fermented soybean products are gaining attention in the food industry owing to their nutritive value and health benefits. In this study, we performed genomic analysis and physiological characterization of two Debaryomyces spp. yeast isolates obtained from a Korean traditional fermented soy sauce "ganjang". Both Debaryomyces hansenii ganjang isolates KD2 and C11 showed halotolerance to concentrations of up to 15% NaCl and improved growth in the presence of salt. Ploidy and whole-genome sequencing analyses indicated that the KD2 genome is haploid, whereas the C11 genome is heterozygous diploid with two distinctive subgenomes. Interestingly, phylogenetic analysis using intron sequences indicated that the C11 strain was generated via hybridization between D. hansenii and D. tyrocola ancestor strains. The D. hansenii KD2 and D. hansenii-hybrid C11 produced various volatile flavor compounds associated with butter, caramel, cheese, and fruits, and showed high bioconversion activity from ferulic acid to 4-vinylguaiacol, a characteristic flavor compound of soybean products. Both KD2 and C11 exhibited viability in the presence of bile salts and at low pH and showed immunomodulatory activity to induce high levels of the anti-inflammatory cytokine IL-10. The safety of the yeast isolates was confirmed by analyzing virulence and acute oral toxicity. Together, the D. hansenii ganjang isolates possess physiological properties beneficial for improving the flavor and nutritional value of fermented products.
Collapse
Affiliation(s)
- Da Min Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
12
|
Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses. J Microbiol 2022; 60:832-842. [DOI: 10.1007/s12275-022-2059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
13
|
Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus
Sporisorium scitamineum. Microbiol Spectr 2022; 10:e0057022. [PMID: 35862944 PMCID: PMC9431617 DOI: 10.1128/spectrum.00570-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sugarcane smut caused by the basidiomycetous fungus Sporisorium scitamineum leads to severe economic losses globally. Sexual mating/filamentation of S. scitamineum is critical for its pathogenicity, as only the dikaryotic hyphae formed after sexual mating are capable of invading the host cane. Our comparative transcriptome analysis showed that the mitogen-activated protein kinase (MAPK) pathway and the AGC kinase Agc1 (orthologous to yeast Rim15), both governing S. scitamineum mating/filamentation, were induced by elevated tryptophol level, supporting a positive regulation of S. scitamineum mating/filamentation by tryptophol. However, the biosynthesis pathway of tryptophol remains unknown in S. scitamineum. Here, we identified an aminotransferase orthologous to the established tryptophan aminotransferase Tam1/Aro8, catalyzing the first step of tryptophan-dependent indole-3-acetic acid (IAA) production as well as that of the Ehrlich pathway for tryptophol production. We designated this S. scitamineum aminotransferase as SsAro8 and found that it was essential for mating/filamentation. Comparative metabolomics analysis revealed that SsAro8 was involved in tryptophan metabolism, likely for producing important intermediate products, including tryptophol. Exogenous addition of tryptophan or tryptophol could differentially restore mating/filamentation in the ssaro8Δ mutant, indicating that in addition to tryptophol, other product(s) of tryptophan catabolism may also be involved in S. scitamineum mating/filamentation regulation. S. scitamineum could also produce IAA, partially dependent on SsAro8 function. Surprisingly, photodestruction of IAA produced the compound(s) able to suppress S. scitamineum growth/differentiation. Lastly, we found that SsAro8 was required for proper biofilm formation, oxidative stress tolerance, and full pathogenicity in S. scitamineum. Overall, our study establishes the aminotransferase SsAro8 as an essential regulator of S. scitamineum pathogenic differentiation, as well as fungus-host interaction, and therefore of great potential as a molecular target for sugarcane smut disease control. IMPORTANCE Sugarcane smut caused by the basidiomycete fungus S. scitamineum leads to massive economic losses in sugarcane plantation globally. Dikaryotic hyphae formation (filamentous growth) and biofilm formation are two important aspects in S. scitamineum pathogenesis, yet the molecular regulation of these two processes was not as extensively investigated as that in the model pathogenic fungi, e.g., Candida albicans, Ustilago maydis, or Cryptococcus neoformans. In this study, a tryptophan aminotransferase ortholog was identified in S. scitamineum, designated SsAro8. Functional characterization showed that SsAro8 positively regulates both filamentous growth and biofilm formation, respectively, via tryptophol-dependent and -independent manners. Furthermore, SsAro8 is required for full pathogenicity and, thus, is a promising molecular target for designing anti-smut strategy.
Collapse
|
14
|
Spoilage Potential of Contaminating Yeast Species Kluyveromyces marxianus, Pichia kudriavzevii and Torulaspora delbrueckii during Cold Storage of Skyr. Foods 2022; 11:foods11121776. [PMID: 35741978 PMCID: PMC9223127 DOI: 10.3390/foods11121776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the spoilage potential of yeast strains Kluyveromyces marxianus (Km1, Km2 and Km3), Pichia kudriavzevii Pk1 and Torulaspora delbrueckii Td1 grown in skyr in cold storage. Yeast strains were isolated from skyr and identified by sequencing of the 26S rRNA gene. K. marxianus yeasts were grown in skyr to high numbers, generating large amounts of volatile organic compounds (VOC) associated with off-flavours, among them were alcohols (3-methyl-1-butanol, 2-methyl-1-propanol and 1-hexanol), esters (ethyl acetate and 3-methylbutyl acetate) and aldehydes (hexanal, methylbutanal and methylpropanal). Growth of P. kudriavzevii Pk1 led to moderate increases in several alcohols and esters (mostly, 3-methyl-1-butanol and ethyl acetate), whereas only minor shifts in VOCs were associated with T. delbrueckii Td2. The levels of the key aroma compounds, diacetyl and acetoin, were significantly decreased by all K. marxianus strains and P. kudriavzevii Pk1. In contrast to the other yeast species, K. marxianus was able to utilize lactose, producing ethanol and carbon dioxide. Based on the overall results, K. marxianus was characterised by the highest spoilage potential. The study revealed the differences between the yeast species in fermentative and spoilage activities, and clarified the role of yeast metabolites for off-flavour formation and quality defects in skyr during cold storage.
Collapse
|
15
|
Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples. Toxins (Basel) 2022; 14:toxins14020134. [PMID: 35202161 PMCID: PMC8878695 DOI: 10.3390/toxins14020134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/07/2022] Open
Abstract
Cheese represents a dairy product extremely inclined to fungal growth and mycotoxin production. The growth of fungi belonging to Aspergillus, Penicillium, Fusarium, Claviceps, Alternaria, and Trichoderma genera in or on cheese leads to undesirable changes able to affect the quality of the final products. In the present investigation, a total of 68 types of commercial and traditional Slovak cheeses were analyzed to investigate the occurrence of fungal metabolites. Altogether, 13 fungal metabolites were identified and quantified. Aflatoxin M1, the only mycotoxin regulated in milk and dairy products, was not detected in any case. However, the presence of metabolites that have never been reported in cheeses, such as tryptophol at a maximum concentration level from 13.4 to 7930 µg/kg (average: 490 µg/kg), was recorded. Out of all detected metabolites, enniatin B represents the most frequently detected mycotoxin (0.06–0.71 µg/kg) in the analyzed samples. Attention is drawn to the lack of data on mycotoxins’ origin from Slovak cheeses; in fact, this is the first reported investigation. Our results indicate the presence of fungal mycotoxin contamination for which maximum permissible levels are not established, highlighting the importance of monitoring the source and producers of contamination in order to protect consumers’ health.
Collapse
|
16
|
Oh SH, Schliep K, Isenhower A, Rodriguez-Bobadilla R, Vuong VM, Fields CJ, Hernandez AG, Hoyer LL. Using Genomics to Shape the Definition of the Agglutinin-Like Sequence ( ALS) Family in the Saccharomycetales. Front Cell Infect Microbiol 2021; 11:794529. [PMID: 34970511 PMCID: PMC8712946 DOI: 10.3389/fcimb.2021.794529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
The Candida albicans agglutinin-like sequence (ALS) family is studied because of its contribution to cell adhesion, fungal colonization, and polymicrobial biofilm formation. The goal of this work was to derive an accurate census and sequence for ALS genes in pathogenic yeasts and other closely related species, while probing the boundaries of the ALS family within the Order Saccharomycetales. Bioinformatic methods were combined with laboratory experimentation to characterize 47 novel ALS loci from 8 fungal species. AlphaFold predictions suggested the presence of a conserved N-terminal adhesive domain (NT-Als) structure in all Als proteins reported to date, as well as in S. cerevisiae alpha-agglutinin (Sag1). Lodderomyces elongisporus, Meyerozyma guilliermondii, and Scheffersomyces stipitis were notable because each species had genes with C. albicans ALS features, as well as at least one that encoded a Sag1-like protein. Detection of recombination events between the ALS family and gene families encoding other cell-surface proteins such as Iff/Hyr and Flo suggest widespread domain swapping with the potential to create cell-surface diversity among yeast species. Results from the analysis also revealed subtelomeric ALS genes, ALS pseudogenes, and the potential for yeast species to secrete their own soluble adhesion inhibitors. Information presented here supports the inclusion of SAG1 in the ALS family and yields many experimental hypotheses to pursue to further reveal the nature of the ALS family.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Klaus Schliep
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Allyson Isenhower
- Department of Biology, Millikin University, Decatur, IL, United States
| | | | - Vien M. Vuong
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher J. Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lois L. Hoyer
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
17
|
Huang C, Zhang L, Johansen PG, Petersen MA, Arneborg N, Jespersen L. Debaryomyces hansenii Strains Isolated From Danish Cheese Brines Act as Biocontrol Agents to Inhibit Germination and Growth of Contaminating Molds. Front Microbiol 2021; 12:662785. [PMID: 34211441 PMCID: PMC8239395 DOI: 10.3389/fmicb.2021.662785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The antagonistic activities of native Debaryomyces hansenii strains isolated from Danish cheese brines were evaluated against contaminating molds in the dairy industry. Determination of chromosome polymorphism by use of pulsed-field gel electrophoresis (PFGE) revealed a huge genetic heterogeneity among the D. hansenii strains, which was reflected in intra-species variation at the phenotypic level. 11 D. hansenii strains were tested for their ability to inhibit germination and growth of contaminating molds, frequently occurring at Danish dairies, i.e., Cladosporium inversicolor, Cladosporium sinuosum, Fusarium avenaceum, Mucor racemosus, and Penicillium roqueforti. Especially the germination of C. inversicolor and P. roqueforti was significantly inhibited by cell-free supernatants of all D. hansenii strains. The underlying factors behind the inhibitory effects of the D. hansenii cell-free supernatants were investigated. Based on dynamic headspace sampling followed by gas chromatography-mass spectrometry (DHS-GC-MS), 71 volatile compounds (VOCs) produced by the D. hansenii strains were identified, including 6 acids, 22 alcohols, 15 aldehydes, 3 benzene derivatives, 8 esters, 3 heterocyclic compounds, 12 ketones, and 2 phenols. Among the 71 identified VOCs, inhibition of germination of C. inversicolor correlated strongly with three VOCs, i.e., 3-methylbutanoic acid, 2-pentanone as well as acetic acid. For P. roqueforti, two VOCs correlated with inhibition of germination, i.e., acetone and 2-phenylethanol, of which the latter also correlated strongly with inhibition of mycelium growth. Low half-maximal inhibitory concentrations (IC50) were especially observed for 3-methylbutanoic acid, i.e., 6.32-9.53 × 10-5 and 2.00-2.67 × 10-4 mol/L for C. inversicolor and P. roqueforti, respectively. For 2-phenylethanol, a well-known quorum sensing molecule, the IC50 was 1.99-7.49 × 10-3 and 1.73-3.45 × 10-3 mol/L for C. inversicolor and P. roqueforti, respectively. For acetic acid, the IC50 was 1.35-2.47 × 10-3 and 1.19-2.80 × 10-3 mol/L for C. inversicolor and P. roqueforti, respectively. Finally, relative weak inhibition was observed for 2-pentanone and acetone. The current study shows that native strains of D. hansenii isolated from Danish brines have antagonistic effects against specific contaminating molds and points to the development of D. hansenii strains as bioprotective cultures, targeting cheese brines and cheese surfaces.
Collapse
Affiliation(s)
| | | | | | | | | | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Adhesion Properties, Biofilm Forming Potential, and Susceptibility to Disinfectants of Contaminant Wine Yeasts. Microorganisms 2021; 9:microorganisms9030654. [PMID: 33809953 PMCID: PMC8004283 DOI: 10.3390/microorganisms9030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, yeasts isolated from filter membranes used for the quality control of bottled wines were identified and tested for their resistance to some cleaning agents and potassium metabisulphite, adhesion to polystyrene and stainless-steel surfaces, and formation of a thin round biofilm, referred to as a MAT. A total of 40 strains were identified by rRNA internal transcribed spacer (ITS) restriction analysis and sequence analysis of D1/D2 domain of 26S rRNA gene. Strains belong to Pichia manshurica (12), Pichia kudriavzevii (9), Pichia membranifaciens (1), Candida sojae (6), Candida parapsilosis (3), Candida sonorensis (1), Lodderomyces elongisporus (2), Sporopachydermia lactativora (3), and Clavispora lusitaniae (3) species. Regarding the adhesion properties, differences were observed among species. Yeasts preferred planktonic state when tested on polystyrene plates. On stainless-steel supports, adhered cells reached values of about 6 log CFU/mL. MAT structures were formed only by yeasts belonging to the Pichia genus. Yeast species showed different resistance to sanitizers, with peracetic acid being the most effective and active at low concentrations, with minimum inhibitory concentration (MIC) values ranging from 0.08% (v/v) to 1% (v/v). C. parapsilosis was the most sensible species. Data could be exploited to develop sustainable strategies to reduce wine contamination and establish tailored sanitizing procedures.
Collapse
|
19
|
|
20
|
Nath BJ, Mishra AK, Sarma HK. Assessment of quorum sensing effects of tyrosol on fermentative performance by chief ethnic fermentative yeasts from northeast India. J Appl Microbiol 2020; 131:728-742. [PMID: 33103297 DOI: 10.1111/jam.14908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
AIM Tyrosol, a quorum sensing molecule in yeasts, was reported to reduce lag phase and induces hyphae formation during cell proliferation. However, evidence of any enhancing effect of tyrosol in cellular proliferation within fermentative environment is unclear. In this investigation, selected yeast cells were assessed for their ability to synthesize tyrosol followed by examining the role of the molecule during fermentation. METHODS AND RESULTS Tyrosols were characterized in four fermentative yeasts viz., Saccharomyces cerevisiae, Wickerhamomyces anomalus, Candida glabrata and Candida tropicalis isolated from traditional fermentative cakes of northeast India. All the isolates synthesized tyrosol while C. tropicalis exhibited filamentous growth in response to tyrosols retrieved from other isolates. Purified tyrosols showed protective behaviour in C. tropicalis and S. cerevisiae under ethanol mediated oxidative stress. During fermentation, tyrosol significantly enhanced growth of W. anomalus in starch medium while C. tropicalis exhibited growth enhancement in starch and glucose sources. The chief fermentative yeast S. cerevisiae showed notable enhancement in fermentative capacity in starch medium under the influence of tyrosol con-commitment of ethanol production. CONCLUSION The study concludes that tyrosol exerts unusual effect in cellular growth and fermentative ability of both Saccharomyces and non-Saccharomyces yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of expression of tyrosol by non-conventional yeasts, where the molecule was found to exert enhancing effect during fermentation, thereby augmenting the process of metabolite production during traditional fermentation.
Collapse
Affiliation(s)
- B J Nath
- Microbial Communication and Fungal Biology Group, Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - A K Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - H K Sarma
- Microbial Communication and Fungal Biology Group, Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
21
|
Britton SJ, Neven H, Maskell DL. Microbial Small-Talk: Does Quorum Sensing Play a Role in Beer Fermentation? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Scott J. Britton
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Hedwig Neven
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- Centre for Food and Microbial Technology (CLMT), Department M2S, KU Leuven, Leuven, Belgium
| | - Dawn L. Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
22
|
Winters M, Arneborg N, Appels R, Howell K. Can community-based signalling behaviour in Saccharomyces cerevisiae be called quorum sensing? A critical review of the literature. FEMS Yeast Res 2020; 19:5528315. [PMID: 31271429 DOI: 10.1093/femsyr/foz046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing is a well-described mechanism of intercellular signalling among bacteria, which involves cell-density-dependent chemical signal molecules. The concentration of these quorum-sensing molecules increases in proportion to cell density until a threshold value is exceeded, which triggers a community-wide response. In this review, we propose that intercellular signalling mechanisms can be associated with a corresponding ecological interaction type based on similarities between how the interaction affects the signal receiver and producer. Thus, we do not confine quorum sensing, a specific form of intercellular signalling, to only cooperative behaviours. Instead, we define it as cell-density-dependent responses that occur at a critical concentration of signal molecules and through a specific signalling pathway. For fungal species, the medically important yeast Candida albicans has a well-described quorum sensing system, while this system is not well described in Saccharomyces cerevisiae, which is involved in food and beverage fermentations. The more precise definition for quorum sensing proposed in this review is based on the studies suggesting that S. cerevisiae may undergo intercellular signalling through quorum sensing. Through this lens, we conclude that there is a lack of evidence to support a specific signalling mechanism and a critical signal concentration of these behaviours in S. cerevisiae, and, thus, these features require further investigation.
Collapse
Affiliation(s)
- Michela Winters
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville 3010, Australia
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Rudi Appels
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville 3010, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
23
|
Huang C, Qian Y, Viana T, Siegumfeldt H, Arneborg N, Larsen N, Jespersen L. The quorum-sensing molecule 2-phenylethanol impaired conidial germination, hyphal membrane integrity and growth of Penicillium expansum and Penicillium nordicum. J Appl Microbiol 2020; 129:278-286. [PMID: 32097516 DOI: 10.1111/jam.14621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 02/23/2020] [Indexed: 01/23/2023]
Abstract
AIMS The aim of the study was to investigate the antifungal effects of a quorum sensing-molecule, 2-phenylethanol, against the food spoilage moulds Penicillium expansum and Penicillium nordicum. METHODS AND RESULTS Conidial germination of the tested Penicillium spp. (three strains in total) were inhibited by treatments with 2-phenylethanol in a concentration-dependent manner. Germinated conidia was significantly reduced from 4·4-16·7% at 7·5 mmol l-1 and completely inhibited at 15 mmol l-1 2-phenylethanol. Integrity of conidial cell membranes was unaffected by 2-phenylethanol resulting in reversible inhibition pattern of germination. In contrast, membrane permeability of actively growing hyphae was severely compromised, showing 63·5 - 75·7% membrane damage upon treatment with 15 mmol l-1 2-phenylethanol. The overall inhibitory effect of 2-phenylethanol on colony development and growth of P. expansum and P. nordicum was additionally confirmed. CONCLUSIONS 2-phenylethanol inhibits conidial germination and growth of P. expansum and P. nordicum in a nonlethal, reversible and concentration-dependent manner. SIGNIFICANCE AND IMPACT OF THE STUDY The study indicates that 2-phenylethanol can find potential application as an antifungal agent for biological control of moulds in the food industry.
Collapse
Affiliation(s)
- C Huang
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Y Qian
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - T Viana
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - H Siegumfeldt
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - N Arneborg
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - N Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - L Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
24
|
Overproduction of hydroxytyrosol in Saccharomyces cerevisiae by heterologous overexpression of the Escherichia coli 4-hydroxyphenylacetate 3-monooxygenase. Food Chem 2020; 308:125646. [DOI: 10.1016/j.foodchem.2019.125646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
|
25
|
Perpetuini G, Tittarelli F, Mattarelli P, Modesto M, Cilli E, Suzzi G, Tofalo R. Intraspecies polymorphisms of Kluyveromyces marxianus strains from Yaghnob valley. FEMS Microbiol Lett 2019; 365:4834011. [PMID: 29401260 DOI: 10.1093/femsle/fny028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, 29 strains of Kluyveromyces marxianus with peculiar genetic and phenotypic traits previously isolated from a fermented goat milk of Yaghnob valley were investigated for chromosome length polymorphism (CLP) by PFGE, adhesion properties and carbon usage by Biolog analysis. Obtained data showed that strains differed in terms of number and size of chromosome bands. The number of bands ranged from 5 to 7, suggesting a probable genome size from 1.4 to 2.6 Mb. Strains showed a certain level of cell surface hydrophobicity ranging from 32% to 77.7%. Strains were also tested for their ability to form a biofilm on polystyrene plates: planktonic cells ranged from 6.3 cfu/mL to 7.95 cfu/mL, while sessile from 7.11 cfu/mL to 8.6 cfu/mL. The strains able to adhere to polystyrene plates were also able to form a mature MAT. Biolog analysis revealed that almost all strains were able to use putrescine, malic acid, α-D lactose, phenylethylamine, β-methyl D-gucoside and xylose; 5 strains were able to grow on cellobiose and 3 were able to catabolise α-ketobutyric. The obtained data highlighted a number of interesting features underlying the peculiar capacities of these strains for industrial applications.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy.,Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Fabrizia Tittarelli
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, I-48121 Ravenna, Italy
| | | | - Rosanna Tofalo
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy
| |
Collapse
|
26
|
Perpetuini G, Tittarelli F, Suzzi G, Tofalo R. Cell Wall Surface Properties of Kluyveromyces marxianus Strains From Dairy-Products. Front Microbiol 2019; 10:79. [PMID: 30766524 PMCID: PMC6366010 DOI: 10.3389/fmicb.2019.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 01/30/2023] Open
Abstract
Thirty-three Kluyveromyces marxianus strains were tested for the ability to form biofilm and mat structures in YPD and whey and for cell surface hydrophobicity. To identify genes potentially involved in adhesion properties, a RT-qPCR analysis was performed. Eight strains were able to adhere on polystyrene plates in both media and formed a mature mat structure. These strains showed a different level of hydrophobicity ranging from 55 to 66% in YPD and from 69 to 81% in whey. Four K. marxianus orthologs genes (FLO11, STE12, TPK3, and WSC4), known from studies in other yeast to be involved in biofilm formation, have been studied. FLO11 and STE12 showed the highest fold changes in all conditions tested and especially in whey: 15.05 and 11.21, respectively. TPK3 was upregulated only in a strain, and WSC4 in 3 strains. In YPD, fold changes were lower than in whey with STE12 and FLO11 genes showing the highest fold changes. In mat structures FLO11 and STE12 fold changes ranged from 3.6-1.3 to 2-1.17, respectively. Further studies are necessary to better understand the role of these genes in K. marxianus adhesion ability.
Collapse
Affiliation(s)
| | | | | | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
27
|
Verbrugghe E, Adriaensen C, Martel A, Vanhaecke L, Pasmans F. Growth Regulation in Amphibian Pathogenic Chytrid Fungi by the Quorum Sensing Metabolite Tryptophol. Front Microbiol 2019; 9:3277. [PMID: 30671052 PMCID: PMC6331427 DOI: 10.3389/fmicb.2018.03277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
Amphibians face many threats leading to declines and extinctions, but the chytrid fungal skin pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) have been identified as the causative factors leading to one of the greatest disease-driven losses of amphibian biodiversity worldwide. Infection may lead to different clinical outcomes, and lethal infections are commonly associated with unrestricted, exponential fungal growth in the amphibian epidermis. Mechanisms underpinning Bd and Bsal growth in the amphibian host are poorly understood. Here, we describe a quorum sensing mechanism that allows cell-to-cell communication by Bd and Bsal in order to regulate fungal densities and infection strategies. Addition of chytrid culture supernatant to chytrid cultures resulted in a concentration-dependent growth reduction and using dialysis, small metabolites were shown to be the causative factor. U-HPLC-MS/MS and in vitro growth tests identified the aromatic alcohol tryptophol as a key metabolite in regulating fungal growth. We determined tryptophol kinetics in both Bd and Bsal and confirmed the autostimulatory mode of action of this quorum sensing metabolite. Finally, we linked expression of genes that might be involved in tryptophol production, with in vitro and in vivo chytrid growth. Our results show that Bd and Bsal fungi use tryptophol to act as multicellular entities in order to regulate their growth.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Connie Adriaensen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
28
|
Zajc J, Gostinčar C, Černoša A, Gunde-Cimerman N. Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential. Genes (Basel) 2019; 10:genes10010042. [PMID: 30646593 PMCID: PMC6357073 DOI: 10.3390/genes10010042] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 01/26/2023] Open
Abstract
Stress-tolerant fungi that can thrive under various environmental extremes are highly desirable for their application to biological control, as an alternative to chemicals for pest management. However, in fungi, the mechanisms of stress tolerance might also have roles in mammal opportunism. We tested five species with high biocontrol potential in agriculture (Aureobasidium pullulans, Debayomyces hansenii, Meyerozyma guilliermondii, Metschnikowia fructicola, Rhodotorula mucilaginosa) and two species recognized as emerging opportunistic human pathogens (Exophiala dermatitidis, Aureobasidium melanogenum) for growth under oligotrophic conditions and at 37 °C, and for tolerance to oxidative stress, formation of biofilms, production of hydrolytic enzymes and siderophores, and use of hydrocarbons as sole carbon source. The results show large overlap between traits desirable for biocontrol and traits linked to opportunism (growth under oligotrophic conditions, production of siderophores, high oxidative stress tolerance, and specific enzyme activities). Based on existing knowledge and these data, we suggest that oligotrophism and thermotolerance together with siderophore production at 37 °C, urease activity, melanization, and biofilm production are the main traits that increase the potential for fungi to cause opportunistic infections in mammals. These traits should be carefully considered when assessing safety of potential biocontrol agents.
Collapse
Affiliation(s)
- Janja Zajc
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
- Institut 'Jožef Stefan', Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Anja Černoša
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
29
|
González B, Vázquez J, Morcillo-Parra MÁ, Mas A, Torija MJ, Beltran G. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol 2018; 74:64-74. [DOI: 10.1016/j.fm.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
|
30
|
González B, Vázquez J, Cullen PJ, Mas A, Beltran G, Torija MJ. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species. Front Microbiol 2018; 9:670. [PMID: 29696002 PMCID: PMC5904269 DOI: 10.3389/fmicb.2018.00670] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes.
Collapse
Affiliation(s)
- Beatriz González
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jennifer Vázquez
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
31
|
Kim SR, Yeon KM. Quorum Sensing as Language of Chemical Signals. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
33
|
Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans – more than just communication. Crit Rev Microbiol 2017; 44:230-243. [DOI: 10.1080/1040841x.2017.1337711] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ines Leonhardt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
34
|
Brexó RP, Sant'Ana ADS. Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role? Crit Rev Biotechnol 2017; 38:231-244. [PMID: 28574287 DOI: 10.1080/07388551.2017.1332570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microbial interactions represent important modulatory role in the dynamics of biological processes. During bioethanol production from sugar cane must, the presence of lactic acid bacteria (LAB) and wild yeasts is inevitable as they originate from the raw material and industrial environment. Increasing the concentration of ethanol, organic acids, and other extracellular metabolites in the fermentation must are revealed as wise strategies for survival by certain microorganisms. Despite this, the co-existence of LAB and yeasts in the fermentation vat and production of compounds such as organic acids and other extracellular metabolites result in reduction in the final yield of the bioethanol production process. In addition to the competition for nutrients, reduction of cellular viability of yeast strain responsible for fermentation, flocculation, biofilm formation, and changes in cell morphology are listed as important factors for reductions in productivity. Although these consequences are scientifically well established, there is still a gap about the physiological and molecular mechanisms governing these interactions. This review aims to discuss the potential occurrence of quorum sensing mechanisms between bacteria (mainly LAB) and yeasts and to highlight how the understanding of such mechanisms can result in very relevant and useful tools to benefit the biofuels industry and other sectors of biotechnology in which bacteria and yeast may co-exist in fermentation processes.
Collapse
Affiliation(s)
- Ramon Peres Brexó
- a Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| | - Anderson de Souza Sant'Ana
- a Department of Food Science, Faculty of Food Engineering , University of Campinas , Campinas , SP , Brazil
| |
Collapse
|
35
|
Fleischmann J, Broeckling CD, Lyons S. Candida krusei form mycelia along agar surfaces towards each other and other Candida species. BMC Microbiol 2017; 17:60. [PMID: 28284180 PMCID: PMC5346196 DOI: 10.1186/s12866-017-0972-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Candida krusei has been known to exhibit communal interactions such as pellicle formation and crawling out of nutritional broth. We noticed another possible interaction on agar surfaces, where C. krusei yeast cells formed mycelia along agar surfaces toward each other. We report here the results of experiments to study this interaction. RESULTS When C.krusei yeast cells are plated in parallel streaks, they form mycelia along agar surfaces toward other yeasts. They also detect the presence of Candida albicans and Candida glabrata across agar surfaces, while the latter two react neither to their own kind, nor to C. krusei. Secreted molecule(s) are likely involved as C.krusei does not react to heat killed C. krusei. Timing and rate of mycelia formation across distances suggests that mycelia start forming when a secreted molecule(s) on agar surface reaches a certain concentration. We detected farnesol, tyrosol and tryptophol molecules that may be involved with mycelial formation, on the agar surfaces between yeast streaks. Unexpectedly the amounts detected between streaks were significantly higher than would have expected from additive amounts of two streaks. All three Candida species secreted these molecules. When tested on agar surface however, none of these molecules individually or combined induced mycelia formation by C. krusei. CONCLUSIONS Our data confirms another communal interaction by C. krusei, manifested by formation of mycelia by yeast cells toward their own kind and other yeasts on agar surfaces. We detected secretion of farnesol, tyrosol and tryptophol by C. krusei but none of these molecules induced this activity on agar surface making it unlikely that they are the ones utilized by this yeast for this activity.
Collapse
Affiliation(s)
- Jacob Fleischmann
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,Research Division of GLA VA, Los Angeles, CA, USA.
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Sarah Lyons
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
36
|
|
37
|
Quorum-sensing in yeast and its potential in wine making. Appl Microbiol Biotechnol 2016; 100:7841-52. [DOI: 10.1007/s00253-016-7758-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
38
|
In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J Microbiol Biotechnol 2016; 32:141. [DOI: 10.1007/s11274-016-2109-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
|
39
|
Arias LS, Delbem ACB, Fernandes RA, Barbosa DB, Monteiro DR. Activity of tyrosol against single and mixed-species oral biofilms. J Appl Microbiol 2016; 120:1240-9. [PMID: 26801208 DOI: 10.1111/jam.13070] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/24/2015] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to evaluate the effect of tyrosol on the formation of single and mixed biofilms of Candida albicans ATCC 10231, Candida glabrata ATCC 90030 and Streptococcus mutans ATCC 25175 formed on acrylic resin (AR) and hydroxyapatite (HA) surfaces. METHODS AND RESULTS Single and mixed biofilms were formed on AR and HA in the presence of tyrosol at 50, 100 and 200 mmol l(-1), during 48 h. Next, antimicrobial activity was assessed through metabolic activity (XTT reduction assay) and the number of colony-forming units (CFUs). Scanning electron microscopy observations were performed in order to analyse biofilm structure. Tyrosol, mainly at 200 mmol l(-1), significantly decreased the metabolic activity and number of CFUs for all single and mixed-species biofilms formed on both surfaces. SEM images suggested cell damage caused by tyrosol. CONCLUSION Tyrosol showed inhibitory effects against biofilms formed by important oral pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study showing the antibiofilm effect of tyrosol on Candida species and Strep. mutans in single and mixed cultures. These results may be useful in the development of topical therapies focused on preventing biofilm-associated oral diseases, such as denture stomatitis and dental caries.
Collapse
Affiliation(s)
- L S Arias
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - A C B Delbem
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - R A Fernandes
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - D B Barbosa
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - D R Monteiro
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| |
Collapse
|
40
|
Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. J Basic Microbiol 2016; 56:440-7. [PMID: 26972663 DOI: 10.1002/jobm.201500759] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 01/19/2023]
Abstract
When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Potjaman Pumeesat
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakorn Pathom, Thailand
| |
Collapse
|
41
|
Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.11.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Monteiro DR, Feresin LP, Arias LS, Barão VAR, Barbosa DB, Delbem ACB. Effect of tyrosol on adhesion ofCandida albicansandCandida glabratato acrylic surfaces. Med Mycol 2015; 53:656-65. [DOI: 10.1093/mmy/myv052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/01/2015] [Indexed: 11/12/2022] Open
|
43
|
Rul F, Monnet V. How microbes communicate in food: a review of signaling molecules and their impact on food quality. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Pu L, Jingfan F, Kai C, Chao-an L, Yunjiang C. Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeastKloeckera apiculatafor the control of blue mold on citrus. FEMS Yeast Res 2014; 14:536-46. [DOI: 10.1111/1567-1364.12139] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liu Pu
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
- Key Laboratory of Pomology; Anhui Agricultural University; Hefei China
| | - Fang Jingfan
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| | - Chen Kai
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| | - Long Chao-an
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| | - Cheng Yunjiang
- National Center of Citrus Breeding; Key Laboratory of Horticultural Plant Biology of Ministry of Education; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
45
|
Zupan J, Avbelj M, Butinar B, Kosel J, Šergan M, Raspor P. Monitoring of quorum-sensing molecules during minifermentation studies in wine yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2496-2505. [PMID: 23413824 DOI: 10.1021/jf3051363] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
At high cell density or under low nutrient conditions, yeasts collectively adapt their metabolism by secreting aromatic alcohols in what is known as quorum sensing. However, the mechanisms and role of quorum sensing in yeast are poorly understood, and the methodology behind this process is not well established. This paper describes an effective approach to study quorum sensing in yeast fermentations. The separation, detection, and quantification of the putative quorum-sensing molecules 2-phenylethanol, tryptophol, and tyrosol have been optimized on a simple HPLC-based system. With the use of a phenyl HPLC column and a fluorescence detector, the sensitivity of the system was significantly increased. This allowed extraction and concentration procedures to be eliminated and the process to be scaled down to 2 mL minifermentations. Additionally, an innovative method for rapid viable-cell counting is presented. This study forms the basis for detailed studies in kinetics and regulation of quorum sensing in yeast fermentation.
Collapse
Affiliation(s)
- Jure Zupan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana , Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
46
|
Pérez-Bibbins B, Salgado JM, Torrado A, Aguilar-Uscanga MG, Domínguez JM. Culture parameters affecting xylitol production by Debaryomyces hansenii immobilized in alginate beads. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Bandara HMHN, Lam OLT, Jin LJ, Samaranayake L. Microbial chemical signaling: a current perspective. Crit Rev Microbiol 2012; 38:217-49. [PMID: 22300377 DOI: 10.3109/1040841x.2011.652065] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Communication among microorganisms is mediated through quorum sensing. The latter is defined as cell-density linked, coordinated gene expression in microbial populations as a response to threshold signal concentrations followed by induction of a synchronized population response. This phenomenon is used by a variety of microbes to optimize their survival in a constantly challenging, dynamic milieu, by correlating individual cellular functions to community-based requirements. The synthesis, secretion, and perception of quorum-sensing molecules and their target response play a pivotal role in quorum sensing and are tightly controlled by complex, multilayered and interconnected signal transduction pathways that regulate diverse cellular functions. Quorum sensing exemplifies interactive social behavior innate to the microbial world that controls features such as, virulence, biofilm maturation, antibiotic resistance, swarming motility, and conjugal plasmid transfer. Over the past two decades, studies have been performed to rationalize bacterial cell-to-cell communication mediated by structurally and functionally diverse small molecules. This review describes the theoretical aspects of cellular and quorum-sensing mechanisms that affect microbial physiology and pathobiology.
Collapse
Affiliation(s)
- H M H N Bandara
- Oral Biosciences, Prince Philip Dental Hospital, 34, Hospital Road, Sai Ying Pun, Hong Kong
| | | | | | | |
Collapse
|