1
|
Venetz J, Żygadłowska OM, Lenstra WK, van Helmond NAGM, Nuijten GHL, Wallenius AJ, Dalcin Martins P, Slomp CP, Jetten MSM, Veraart AJ. Versatile methanotrophs form an active methane biofilter in the oxycline of a seasonally stratified coastal basin. Environ Microbiol 2023; 25:2277-2288. [PMID: 37381163 DOI: 10.1111/1462-2920.16448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
The potential and drivers of microbial methane removal in the water column of seasonally stratified coastal ecosystems and the importance of the methanotrophic community composition for ecosystem functioning are not well explored. Here, we combined depth profiles of oxygen and methane with 16S rRNA gene amplicon sequencing, metagenomics and methane oxidation rates at discrete depths in a stratified coastal marine system (Lake Grevelingen, The Netherlands). Three amplicon sequence variants (ASVs) belonging to different genera of aerobic Methylomonadaceae and the corresponding three methanotrophic metagenome-assembled genomes (MOB-MAGs) were retrieved by 16S rRNA sequencing and metagenomic analysis, respectively. The abundances of the different methanotrophic ASVs and MOB-MAGs peaked at different depths along the methane oxygen counter-gradient and the MOB-MAGs show a quite diverse genomic potential regarding oxygen metabolism, partial denitrification and sulphur metabolism. Moreover, potential aerobic methane oxidation rates indicated high methanotrophic activity throughout the methane oxygen counter-gradient, even at depths with low in situ methane or oxygen concentration. This suggests that niche-partitioning with high genomic versatility of the present Methylomonadaceae might contribute to the functional resilience of the methanotrophic community and ultimately the efficiency of methane removal in the stratified water column of a marine basin.
Collapse
Affiliation(s)
- Jessica Venetz
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Olga M Żygadłowska
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Wytze K Lenstra
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Niels A G M van Helmond
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Guylaine H L Nuijten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Anna J Wallenius
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Caroline P Slomp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Annelies J Veraart
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Hwangbo M, Shao Y, Hatzinger PB, Chu KH. Acidophilic methanotrophs: Occurrence, diversity, and possible bioremediation applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 37041665 DOI: 10.1111/1758-2229.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanotrophs have been identified and isolated from acidic environments such as wetlands, acidic soils, peat bogs, and groundwater aquifers. Due to their methane (CH4 ) utilization as a carbon and energy source, acidophilic methanotrophs are important in controlling the release of atmospheric CH4 , an important greenhouse gas, from acidic wetlands and other environments. Methanotrophs have also played an important role in the biodegradation and bioremediation of a variety of pollutants including chlorinated volatile organic compounds (CVOCs) using CH4 monooxygenases via a process known as cometabolism. Under neutral pH conditions, anaerobic bioremediation via carbon source addition is a commonly used and highly effective approach to treat CVOCs in groundwater. However, complete dechlorination of CVOCs is typically inhibited at low pH. Acidophilic methanotrophs have recently been observed to degrade a range of CVOCs at pH < 5.5, suggesting that cometabolic treatment may be an option for CVOCs and other contaminants in acidic aquifers. This paper provides an overview of the occurrence, diversity, and physiological activities of methanotrophs in acidic environments and highlights the potential application of these organisms for enhancing contaminant biodegradation and bioremediation.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Yiru Shao
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul B Hatzinger
- Aptim Federal Services, LLC, 17 Princess Road, Lawrenceville, New Jersey, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Li C, Hambright KD, Bowen HG, Trammell MA, Grossart HP, Burford MA, Hamilton DP, Jiang H, Latour D, Meyer EI, Padisák J, Zamor RM, Krumholz LR. Global co-occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates. Environ Microbiol 2021; 23:6503-6519. [PMID: 34327792 DOI: 10.1111/1462-2920.15691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%-90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.
Collapse
Affiliation(s)
- Chuang Li
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, The University of Oklahoma, Norman, Ok, USA
| | - K David Hambright
- Plankton Ecology and Limnology Laboratory, Program in Ecology and Evolutionary Biology, and the Geographical Ecology Group, Department of Biology, The University of Oklahoma, Norman, OK, USA
| | - Hannah G Bowen
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Majoi A Trammell
- Biomedical Research Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Stechlin, and Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Michele A Burford
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Delphine Latour
- Université Clermont Auvergne CNRS, LMGE, Aubière Cedex, France
| | - Elisabeth I Meyer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Judit Padisák
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, Veszprém, Hungary
| | | | - Lee R Krumholz
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, The University of Oklahoma, Norman, Ok, USA
| |
Collapse
|
4
|
Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol 2019; 22:738-751. [PMID: 31769176 DOI: 10.1111/1462-2920.14877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Abstract
Lake methane (CH4 ) emissions are largely controlled by aerobic methane-oxidizing bacteria (MOB) which mostly belong to the classes Alpha- and Gammaproteobacteria (Alpha- and Gamma-MOB). Despite the known metabolic and ecological differences between the two MOB groups, their main environmental drivers and their relative contribution to CH4 oxidation rates across lakes remain unknown. Here, we quantified the two MOB groups through CARD-FISH along the water column of six temperate lakes and during incubations in which we measured ambient CH4 oxidation rates. We found a clear niche separation of Alpha- and Gamma-MOB across lake water columns, which is mostly driven by oxygen concentration. Gamma-MOB appears to dominate methanotrophy throughout the water column, but Alpha-MOB may also be an important player particularly in well-oxygenated bottom waters. The inclusion of Gamma-MOB cell abundance improved environmental models of CH4 oxidation rate, explaining part of the variation that could not be explained by environmental factors alone. Altogether, our results show that MOB composition is linked to CH4 oxidation rates in lakes and that information on the MOB community can help predict CH4 oxidation rates and thus emissions from lakes.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Shoji D Thottathil
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), Barcelona, E-08003, Spain
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
5
|
Crevecoeur S, Ruiz-González C, Prairie YT, Del Giorgio PA. Large-scale biogeography and environmental regulation of methanotrophic bacteria across boreal inland waters. Mol Ecol 2019; 28:4181-4196. [PMID: 31479544 DOI: 10.1111/mec.15223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023]
Abstract
Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here, we used high-throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic community composition and the environmental factors that influence their distribution and relative abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal landscape. Within one region, soil and soil water samples were additionally taken from the surrounding watersheds in order to cover the full terrestrial-aquatic continuum. The composition of methanotrophic communities across the boreal landscape showed only a modest degree of regional differentiation but a strong structuring along the hydrologic continuum from soil to lake communities, regardless of regions. This pattern along the hydrologic continuum was mostly explained by a clear niche differentiation between type I and type II methanotrophs along environmental gradients in pH, and methane concentrations. Our results suggest very different roles of type I and type II methanotrophs within inland waters, the latter likely having a terrestrial source and reflecting passive transport and dilution along the aquatic networks, but this is an unresolved issue that requires further investigation.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC, Canada
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC, Canada
| | - Paul A Del Giorgio
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Whiddon KT, Gudneppanavar R, Hammer TJ, West DA, Konopka MC. Fluorescence-based analysis of the intracytoplasmic membranes of type I methanotrophs. Microb Biotechnol 2019; 12:1024-1033. [PMID: 31264365 PMCID: PMC6680624 DOI: 10.1111/1751-7915.13458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/16/2019] [Indexed: 12/15/2022] Open
Abstract
Most methanotrophic bacteria maintain intracytoplasmic membranes which house the methane-oxidizing enzyme, particulate methane monooxygenase. Previous studies have primarily used transmission electron microscopy or cryo-electron microscopy to look at the structure of these membranes or lipid extraction methods to determine the per cent of cell dry weight composed of lipids. We show an alternative approach using lipophilic membrane probes and other fluorescent dyes to assess the extent of intracytoplasmic membrane formation in living cells. This fluorescence method is sensitive enough to show not only the characteristic shift in intracytoplasmic membrane formation that is present when methanotrophs are grown with or without copper, but also differences in intracytoplasmic membrane levels at intermediate copper concentrations. This technique can also be employed to monitor dynamic intracytoplasmic membrane changes in the same cell in real time under changing growth conditions. We anticipate that this approach will be of use to researchers wishing to visualize intracytoplasmic membranes who may not have access to electron microscopes. It will also have the capability to relate membrane changes in individual living cells to other measurements by fluorescence labelling or other single-cell analysis methods.
Collapse
Affiliation(s)
| | | | - Theodore J. Hammer
- Department of ChemistryThe University of AkronAkronOHUSA
- Department of Polymer ScienceThe University of AkronAkronOHUSA
| | | | | |
Collapse
|
7
|
Gao Y, Lu C, Shen D, Liu J, Ma Z, Yang B, Ling W, Waigi MG. Elimination of the risks of colistin resistance gene (mcr-1) in livestock manure during composting. ENVIRONMENT INTERNATIONAL 2019; 126:61-68. [PMID: 30776751 DOI: 10.1016/j.envint.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Since its discovery in Escherichia coli, the emergence and rapid spread of the plasmid-mediated colistin resistance gene mcr-1 have become a public health concern. Livestock manure is a potentially important reservoir of mcr-1 because colistin has been widely used in livestock production. Efforts made to accurately quantify the prevalence of mcr-1 in livestock manure and the dynamic changes therein during thermophilic composting have been few and far between. In this study, mcr-1 in 51 collected samples from four kinds of livestock manures was detected and quantified. In total, 16 manure samples were found to be mcr-1 positive, with a detection frequency of 31% in 51 samples. The numbers of mcr-1 gene copies in 12 positive manure samples with a high prevalence of mcr-1 were 107-109 copies/g dry weight. During composting, >90% of mcr-1 in the manure was eliminated in 15 days at high temperature (44-65 °C), and mcr-1 was completely undetectable after 22 days. The reduction of mcr-1 following manure composting may be ascribed to the decreased number of potential mcr-1-harboring bacteria, Enterobacteriaceae and Pseudomonas. The results indicated that thermophilic composting effectively eliminated mcr-1 and inhibited its spread from livestock manure to the environment.
Collapse
Affiliation(s)
- Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Shen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
8
|
Heinemeyer A, Swindles GT. Unraveling past impacts of climate change and land management on historic peatland development using proxy-based reconstruction, monitoring data and process modeling. GLOBAL CHANGE BIOLOGY 2018; 24:4131-4142. [PMID: 29738631 PMCID: PMC6849627 DOI: 10.1111/gcb.14298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Peatlands represent globally significant soil carbon stores that have been accumulating for millennia under water-logged conditions. However, deepening water-table depths (WTD) from climate change or human-induced drainage could stimulate decomposition resulting in peatlands turning from carbon sinks to carbon sources. Contemporary WTD ranges of testate amoebae (TA) are commonly used to predict past WTD in peatlands using quantitative transfer function models. Here we present, for the first time, a study comparing TA-based WTD reconstructions to instrumentally monitored WTD and hydrological model predictions using the MILLENNIA peatland model to examine past peatland responses to climate change and land management. Although there was very good agreement between monitored and modeled WTD, TA-reconstructed water table was consistently deeper. Predictions from a larger European TA transfer function data set were wetter, but the overall directional fit to observed WTD was better for a TA transfer function based on data from northern England. We applied a regression-based offset correction to the reconstructed WTD for the validation period (1931-2010). We then predicted WTD using available climate records as MILLENNIA model input and compared the offset-corrected TA reconstruction to MILLENNIA WTD predictions over an extended period (1750-1931) with available climate reconstructions. Although the comparison revealed striking similarities in predicted overall WTD patterns, particularly for a recent drier period (1965-1995), there were clear periods when TA-based WTD predictions underestimated (i.e. drier during 1830-1930) and overestimated (i.e. wetter during 1760-1830) past WTD compared to MILLENNIA model predictions. Importantly, simulated grouse moor management scenarios may explain the drier TA WTD predictions, resulting in considerable model predicted carbon losses and reduced methane emissions, mainly due to drainage. This study demonstrates the value of a site-specific and combined data-model validation step toward using TA-derived moisture conditions to understand past climate-driven peatland development and carbon budgets alongside modeling likely management impacts.
Collapse
Affiliation(s)
- Andreas Heinemeyer
- Environment DepartmentStockholm Environment InstituteUniversity of YorkYorkUK
| | | |
Collapse
|
9
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
10
|
Sherry A, Osborne KA, Sidgwick FR, Gray ND, Talbot HM. A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:122-31. [PMID: 26617278 PMCID: PMC4959530 DOI: 10.1111/1758-2229.12359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/19/2015] [Indexed: 05/08/2023]
Abstract
River Tyne (UK) estuarine sediments harbour a genetically and functionally diverse community of methane-oxidizing bacteria (methanotrophs), the composition and activity of which were directly influenced by imposed environmental conditions (pH, salinity, temperature) that extended far beyond those found in situ. In aerobic sediment slurries methane oxidation rates were monitored together with the diversity of a functional gene marker for methanotrophs (pmoA). Under near in situ conditions (4-30°C, pH 6-8, 1-15 g l(-1) NaCl), communities were enriched by sequences affiliated with Methylobacter and Methylomonas spp. and specifically a Methylobacter psychrophilus-related species at 4-21°C. More extreme conditions, namely high temperatures ≥ 40°C, high ≥ 9 and low ≤ 5 pH, and high salinities ≥ 35 g l(-1) selected for putative thermophiles (Methylocaldum), acidophiles (Methylosoma) and haloalkaliphiles (Methylomicrobium). The presence of these extreme methanotrophs (unlikely to be part of the active community in situ) indicates passive dispersal from surrounding environments into the estuary.
Collapse
Affiliation(s)
- Angela Sherry
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kate A Osborne
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Frances R Sidgwick
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Neil D Gray
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Helen M Talbot
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
11
|
Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol 2015; 24:4795-807. [DOI: 10.1111/mec.13342] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Anastasia Bragina
- Institute of Environmental Biotechnology; Graz University of Technology; Petersgasse 12 8010 Graz Austria
| | - Christian Berg
- Institue of Plant Sciences; University of Graz; Holteigasse 6 8010 Graz Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology; Graz University of Technology; Petersgasse 12 8010 Graz Austria
| |
Collapse
|
12
|
Chidambarampadmavathy K, Obulisamy P. K, Heimann K. Role of copper and iron in methane oxidation and bacterial biopolymer accumulation. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Karthigeyan Chidambarampadmavathy
- Collegeof Marine and Environmental ScienceJames Cook University Townsville Queensland Australia
- Centre for Sustainable Fisheries and AquacultureJames Cook University Townsville Queensland Australia
| | - Karthikeyan Obulisamy P.
- Collegeof Marine and Environmental ScienceJames Cook University Townsville Queensland Australia
- Centre for Sustainable Fisheries and AquacultureJames Cook University Townsville Queensland Australia
| | - Kirsten Heimann
- Collegeof Marine and Environmental ScienceJames Cook University Townsville Queensland Australia
- Centre for Sustainable Fisheries and AquacultureJames Cook University Townsville Queensland Australia
- Centre for Biodiscovery and Molecular Development of TherapeuticsJames Cook University Townsville Queensland Australia
- Comparative Genomics CentreJames Cook University Townsville Queensland Australia
| |
Collapse
|
13
|
Jhala YK, Vyas RV, Shelat HN, Patel HK, Patel HK, Patel KT. Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 2014; 30:1845-60. [PMID: 24469547 DOI: 10.1007/s11274-014-1606-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022]
Abstract
Methylotrophic bacteria which are known to utilize C1 compounds including methane. Research during past few decades increased the interest in finding out novel genera of methane degrading bacteria to efficiently utilize methane to decrease global warming effect. Moreover, evaluation of certain known plant growth promoting strains for their methane degrading potential may open up a new direction for multiple utility of such cultures. In this study, efficient methylotrophic cultures were isolated from wetland paddy fields of Gujarat. From the overall morphological, biochemical and molecular characterization studies, the isolates were identified and designated as Bacillus aerius AAU M 8; Rhizobium sp. AAU M 10; B. subtilis AAU M 14; Paenibacillus illinoisensis AAU M 17 and B. megaterium AAU M 29. Gene specific PCR analysis of the isolates, P. illinoisensis, B. aerius, Rhizobium sp. and B. subtilis showed presence of pmoA gene encoding α subunit particulate methane monooxygenase cluster. B. megaterium, P. illinoisensis, Rhizobium sp. and Methylobacterium extrorquens showed presence of mmoX gene encoding α subunit of the hydroxylase component of the soluble methane monooxygenase cluster. P. illinoisensis and Rhizobium sp. showed presence mxaF gene encoding α subunit region of methanol dehydrogenase gene cluster showing that both isolates are efficient utilizers of methane. To the best of our knowledge, this is the first time report showing presence of methane degradation enzymes and genes within the known PGPB group of organisms from wet land paddy agro-ecosystem, which is considered as one of the leading methane producer.
Collapse
Affiliation(s)
- Y K Jhala
- Department of Microbiology, Anand Agricultural University, Anand, Gujarat, India,
| | | | | | | | | | | |
Collapse
|
14
|
Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 2013; 16:255-64. [PMID: 24034209 DOI: 10.1111/1462-2920.12249] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Growth of Methylacidiphilum fumariolicum SolV, an extremely acidophilic methanotrophic microbe isolated from an Italian volcanic mudpot, is shown to be strictly dependent on the presence of lanthanides, a group of rare earth elements (REEs) such as lanthanum (Ln), cerium (Ce), praseodymium (Pr) and neodymium (Nd). After fractionation of the bacterial cells and crystallization of the methanol dehydrogenase (MDH), it was shown that lanthanides were essential as cofactor in a homodimeric MDH comparable with one of the MDHs of Methylobacterium extorquens AM1. We hypothesize that the lanthanides provide superior catalytic properties to pyrroloquinoline quinone (PQQ)-dependent MDH, which is a key enzyme for both methanotrophs and methylotrophs. Thus far, all isolated MxaF-type MDHs contain calcium as a catalytic cofactor. The gene encoding the MDH of strain SolV was identified to be a xoxF-ortholog, phylogenetically closely related to mxaF. Analysis of the protein structure and alignment of amino acids showed potential REE-binding motifs in XoxF enzymes of many methylotrophs, suggesting that these may also be lanthanide-dependent MDHs. Our findings will have major environmental implications as metagenome studies showed (lanthanide-containing) XoxF-type MDH is much more prominent in nature than MxaF-type enzymes.
Collapse
Affiliation(s)
- Arjan Pol
- Department of Microbiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Li M, Jain S, Baker BJ, Taylor C, Dick GJ. Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol 2013; 16:60-71. [PMID: 23826624 DOI: 10.1111/1462-2920.12182] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Particulate membrane-associated hydrocarbon monooxygenases (pHMOs) are critical components of the aerobic degradation pathway for low molecular weight hydrocarbons, including the potent greenhouse gas methane. Here, we analysed pHMO gene diversity in metagenomes and metatranscriptomes of hydrocarbon-rich hydrothermal plumes in the Guaymas Basin (GB) and nearby background waters in the deep Gulf of California. Seven distinct phylogenetic groups of pHMO were present and transcriptionally active in both plume and background waters, including several that are undetectable with currently available polymerase chain reaction (PCR) primers. The seven groups of pHMOs included those related to a putative ethane oxidizing Methylococcaceae-like group, a group of the SAR324 Deltaproteobacteria, three deep-sea clades (Deep sea-1/symbiont-like, Deep sea-2/PS-80 and Deep sea-3/OPU3) within gammaproteobacterial methanotrophs, one clade related to Group Z and one unknown group. Differential abundance of pHMO gene transcripts in plume and background suggests niche differentiation between groups. Corresponding 16S rRNA genes reflected similar phylogenetic and transcriptomic abundance trends. The novelty of transcriptionally active pHMOs we recovered from a hydrocarbon-rich hydrothermal plume suggests there are significant gaps in our knowledge of the diversity and function of these enzymes in the environment.
Collapse
Affiliation(s)
- Meng Li
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
16
|
Svenning MM, Wartiainen I, Hestnes AG, Binnerup SJ. Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol 2012; 44:347-54. [PMID: 19719615 DOI: 10.1016/s0168-6496(03)00073-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Abstract A new method for isolation of methane oxidising bacteria (methanotrophs) is presented. Soil samples from a wetland area and a landfill were plated on polycarbonate membranes, which were incubated in a methane-air atmosphere using a non-sterile soil suspension as the medium. The membrane acted as a permeable growth support. The membrane method resulted in selective growth conditions, which allowed isolation of methane oxidising bacteria. The method resulted in isolation of both type I and type II methanotrophs from natural wetland and landfill soils. The isolates obtained from the landfill were dominated by type II methanotrophs and included several isolates carrying the gene for soluble methane monooxygenase (sMMO). Repetitive element sequence-based PCR fingerprinting documented genotypic diversity at the strain level. The presented method is a promising tool for easy and rapid isolation of different indigenous methanotrophs from an environment of interest.
Collapse
Affiliation(s)
- Mette M Svenning
- Department of Biology, Faculty of Science, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | |
Collapse
|
17
|
Dedysh SN, Dunfield PF, Derakshani M, Stubner S, Heyer J, Liesack W. Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 2012; 43:299-308. [PMID: 19719661 DOI: 10.1111/j.1574-6941.2003.tb01070.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract Based on an extensive 16S rRNA sequence database for type II methanotrophic bacteria, a set of 16S rRNA-targeted oligonucleotide probes was developed for differential detection of specific phylogenetic groups of these bacteria by fluorescence in situ hybridisation (FISH). This set of oligonucleotides included a genus-specific probe for Methylocystis (Mcyst-1432) and three species-specific probes for Methylosinus sporium (Msins-647), Methylosinus trichosporium (Msint-1268) and the recently described acidophilic methanotroph Methylocapsa acidiphila (Mcaps-1032). These novel probes were applied to further characterise the type II methanotroph community that was detected in an acidic Sphagnum peat from West Siberia in a previous study (Dedysh et al. (2001) Appl. Environ. Microbiol. 67, 4850-4857). The largest detectable population of indigenous methanotrophs simultaneously hybridised with a group-specific probe targeting all currently known Methylosinus/Methylocystis spp. (M-450), with a genus-specific probe for Methylocystis spp. (Mcyst-1432), and with an additional probe (Mcyst-1261) that had been designed to target a defined phylogenetic subgroup of Methylocystis spp. The same subgroup of Methylocystis was also detected in acidic peat sampled from Sphagnum-dominated wetland in northern Germany. The population size of this peat-inhabiting Methylocystis subgroup was 2.0+/-0.1x10(6) cells g(-1) (wet weight) of peat from Siberia and 5.5+/-0.5x10(6) cells g(-1) of peat from northern Germany. This represented 60 and 95%, respectively, of the total number of methanotroph cells detected by FISH in these two wetland sites. Other major methanotroph populations were M. acidiphila and Methylocella palustris. Type I methanotrophs accounted for not more than 1% of total methanotroph cells. Neither M. trichosporium nor M. sporium were detected in acidic Sphagnum peat.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Institute of Microbiology, Russian Academy of Sciences, Moscow 117811, Russia
| | | | | | | | | | | |
Collapse
|
18
|
Maxfield PJ, Dildar N, Hornibrook ERC, Stott AW, Evershed RP. Stable isotope switching (SIS): a new stable isotope probing (SIP) approach to determine carbon flow in the soil food web and dynamics in organic matter pools. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:997-1004. [PMID: 22396038 DOI: 10.1002/rcm.6172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. J. Maxfield
- Organic Geochemistry Unit; Bristol Biogeochemistry Research Centre; School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - N. Dildar
- Organic Geochemistry Unit; Bristol Biogeochemistry Research Centre; School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - E. R. C. Hornibrook
- School of Earth Sciences; Bristol Biogeochemistry Research Centre and The Cabot Institute; University of Bristol; Wills Memorial Building, Queen's Road Bristol BS8 1RJ UK
| | - A. W. Stott
- Centre for Ecology & Hydrology; CEH-Lancaster, Lancaster Environment Centre; Library Avenue Bailrigg Lancaster LA1 4AP UK
| | - R. P. Evershed
- Organic Geochemistry Unit; Bristol Biogeochemistry Research Centre; School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
19
|
Dedysh SN. Exploring methanotroph diversity in acidic northern wetlands: Molecular and cultivation-based studies. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709060010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Gebert J, Singh BK, Pan Y, Bodrossy L. Activity and structure of methanotrophic communities in landfill cover soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:414-423. [PMID: 23765895 DOI: 10.1111/j.1758-2229.2009.00061.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The composition of the methanotrophic community in soil covers on five landfills in Northern and Eastern Germany was investigated by means of diagnostic microarray and terminal restriction fragment length polymorphism (T-RFLP), both targeting the pmoA gene of methanotrophs. Physical and chemical properties of the 15 sampled soil profiles varied greatly, thus providing for very different environmental conditions. The potential methane oxidation activity, assessed using undisturbed soil cores, varied between 0.2 and 28 µg CH4 gdw (-1) h(-1) , the latter amounting to 426 g CH4 m(-2) h(-1) . Total nitrogen was found to be the soil variable correlating most strongly with methanotrophic activity. Explaining close to 50% of the observed variability, this indicates that on the investigated sites activity and thus abundance of methanotrophs may have been nitrogen-limited. Variables that enhance organic matter and thus nitrogen accumulation, such as field capacity, also positively impacted methanotrophic activity. In spite of the great variability of soil properties and different geographic landfill location, both microarray and T-RFLP analysis suggested that the composition of the methanotrophic community on all five sites, in all profiles and across all depths was similar. Methylocystis, Methylobacter and Methylococcus species, including Methylococcus-related uncultivated methanotrophs, were predominantly detected among type II, Ia and Ib methanotrophs, respectively. This indicates that the high methane fluxes typical for landfill environments may be the most influential driver governing the community composition, or other variables not analysed in this study. Principal component analysis suggested that community diversity is most influenced by the site from which the samples were taken and second, from the location on the individual sites, i.e. the soil profile. Landfill and individual profiles reflect the combined impact of all effective variables, including those that were not measured in this study.
Collapse
Affiliation(s)
- Julia Gebert
- University of Hamburg, Institute of Soil Science, Allende-Platz 2, D-20146 Hamburg, Germany. The Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Austrian Institute of Technology, Institute of Bioresources, A-2444 Seibersdorf, Austria
| | | | | | | |
Collapse
|
21
|
Liebner S, Rublack K, Stuehrmann T, Wagner D. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. MICROBIAL ECOLOGY 2009; 57:25-35. [PMID: 18592300 DOI: 10.1007/s00248-008-9411-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/20/2008] [Indexed: 05/26/2023]
Abstract
With this study, we present first data on the diversity of aerobic methanotrophic bacteria (MOB) in an Arctic permafrost active layer soil of the Lena Delta, Siberia. Applying denaturing gradient gel electrophoresis and cloning of 16S ribosomal ribonucleic acid (rRNA) and pmoA gene fragments of active layer samples, we found a general restriction of the methanotrophic diversity to sequences closely related to the genera Methylobacter and Methylosarcina, both type I MOB. In contrast, we revealed a distinct species-level diversity. Based on phylogenetic analysis of the 16S rRNA gene, two new clusters of MOB specific for the permafrost active layer soil of this study were found. In total, 8 out of 13 operational taxonomic units detected belong to these clusters. Members of these clusters were closely related to Methylobacter psychrophilus and Methylobacter tundripaludum, both isolated from Arctic environments. A dominance of MOB closely related to M. psychrophilus and M. tundripaludum was confirmed by an additional pmoA gene analysis. We used diversity indices such as the Shannon diversity index or the Chao1 richness estimator in order to compare the MOB community near the surface and near the permafrost table. We determined a similar diversity of the MOB community in both depths and suggest that it is not influenced by the extreme physical and geochemical gradients in the active layer.
Collapse
Affiliation(s)
- Susanne Liebner
- Alfred Wegener Institute for Polar and Marine Research, Research Department Potsdam, Telegrafenberg A43, 14473, Potsdam, Germany.
| | | | | | | |
Collapse
|
22
|
Chen Y, Dumont MG, Neufeld JD, Bodrossy L, Stralis-Pavese N, McNamara NP, Ostle N, Briones MJI, Murrell JC. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environ Microbiol 2008; 10:2609-22. [PMID: 18631364 DOI: 10.1111/j.1462-2920.2008.01683.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.
Collapse
Affiliation(s)
- Yin Chen
- Department of Biological Sciences, the University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gebert J, Stralis-Pavese N, Alawi M, Bodrossy L. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ Microbiol 2008; 10:1175-88. [DOI: 10.1111/j.1462-2920.2007.01534.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 2007; 74:1305-15. [PMID: 18165358 DOI: 10.1128/aem.02233-07] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Pavese N, Murrell JC. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 2007; 10:446-59. [PMID: 18093158 DOI: 10.1111/j.1462-2920.2007.01466.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The active methanotroph community was investigated for the first time in heather (Calluna)-covered moorlands and Sphagnum/Eriophorum-covered UK peatlands. Direct extraction of mRNA from these soils facilitated detection of expression of methane monooxygenase genes, which revealed that particulate methane monooxygenase and not soluble methane monooxygenase was probably responsible for CH(4) oxidation in situ, because only pmoA transcripts (encoding a subunit of particulate methane monooxygenase) were readily detectable. Differences in methanotroph community structures were observed between the Calluna-covered moorland and Sphagnum/Eriophorum-covered gully habitats. As with many other Sphagnum-covered peatlands, the Sphagnum/Eriophorum-covered gullies were dominated by Methylocystis. Methylocella and Methylocapsa-related species were also present. Methylobacter-related species were found as demonstrated by the use of a pmoA-based diagnostic microarray. In Calluna-covered moorlands, in addition to Methylocella and Methylocystis, a unique group of peat-associated type I methanotrophs (Gammaproteobacteria) and a group of uncultivated type II methanotrophs (Alphaproteobacteria) were also found. The pmoA sequences of the latter were only distantly related to Methylocapsa and also to the RA-14 group of methanotrophs, which are believed to be involved in oxidation of atmospheric concentrations of CH(4). Soil samples were also labelled with (13)CH(4), and subsequent analysis of the (13)C-labelled phospholipid fatty acids (PLFAs) showed that 16:1 omega 7, 18:1 omega 7 and 18:1 omega 9 were the major labelled PLFAs. The presence of (13)C-labelled 18:1 omega 9, which was not a major PLFA of any extant methanotrophs, indicated the presence of novel methanotrophs in this peatland.
Collapse
Affiliation(s)
- Yin Chen
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Tynell Å, Börjesson G, Persson M. Microbial growth on pall rings. Appl Biochem Biotechnol 2007; 141:299-319. [DOI: 10.1007/bf02729069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/01/2006] [Accepted: 09/30/2006] [Indexed: 11/27/2022]
|
27
|
Slobodova NV, Kolganova TV, Boulygina ES, Kuznetsov BB, Tourova TP, Kravchenko IK. Comparative characterization of methanotrophic enrichments by serological and molecular methods. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706030167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Lin JL, Joye SB, Scholten JCM, Schäfer H, McDonald IR, Murrell JC. Analysis of methane monooxygenase genes in mono lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Appl Environ Microbiol 2005; 71:6458-62. [PMID: 16204580 PMCID: PMC1265977 DOI: 10.1128/aem.71.10.6458-6462.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mono Lake is an alkaline hypersaline lake that supports high methane oxidation rates. Retrieved pmoA sequences showed a broad diversity of aerobic methane oxidizers including the type I methanotrophs Methylobacter (the dominant genus), Methylomicrobium, and Methylothermus, and the type II methanotroph Methylocystis. Stratification of Mono Lake resulted in variation of aerobic methane oxidation rates with depth. Methanotroph diversity as determined by analysis of pmoA using new denaturing gradient gel electrophoresis primers suggested that variations in methane oxidation activity may correlate with changes in methanotroph community composition.
Collapse
Affiliation(s)
- Ju-Ling Lin
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, England
| | | | | | | | | | | |
Collapse
|
29
|
Jaatinen K, Tuittila ES, Laine J, Yrjälä K, Fritze H. Methane-oxidizing bacteria in a Finnish raised mire complex: effects of site fertility and drainage. MICROBIAL ECOLOGY 2005; 50:429-39. [PMID: 16283115 DOI: 10.1007/s00248-005-9219-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 03/09/2005] [Indexed: 05/05/2023]
Abstract
Methane-oxidizing bacteria (MOB) are the only biological sinks for methane (CH4). Drainage of peatlands is known to decrease overall CH4 emission, but the effect on MOB is unknown. The objective of this work was to characterize the MOB community and activity in two ecohydrologically different pristine peatland ecosystems, a fen and a bog, and their counterparts that were drained in 1961. Oligotrophic fens are groundwater-fed peatlands, but ombrotrophic bogs receive additional water and nutrients only from rainwater. The sites were sampled in August 2003 down to 10 cm below the water table (WT), and cores were divided into 10-cm subsamples. CH4 oxidation was measured by gas chromatography (GC) to characterize MOB activity. The MOB community structure was characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) and sequencing methods using partial pmoA and mmoX genes. The highest CH4 oxidation rates were measured from the subsamples 20-30 and 30-40 cm above WT at the pristine oligotrophic fen (12.7 and 10.5 micromol CH4 dm-3 h-1, respectively), but the rates decreased to almost zero in the vicinity of WT. In the pristine ombrotrophic bog, the highest oxidation rate at 0-10 cm was lower than in the fen (8.10 micromol CH4 dm-3 h-1), but in contrast to the fen, oxidation rates of 4.5 micromol CH4 dm-3 h-1 were observed at WT and 10 cm below WT. Drainage reduced the CH4 oxidation rates to maximum values of 1.67 and 5.77 micromol CH4 dm-3 h-1 at 30-40 and 20-30 cm of the fen and bog site, respectively. From the total of 13 pmoA-derived DGGE bands found in the study, 11, 3, 6, and 2 were observed in the pristine fen and bog and their drained counterparts, respectively. According to the nonmetric multidimensional scaling of the DGGE banding pattern, the MOB community of the pristine fen differed from the other sites. The majority of partial pmoA sequences belonged to type I MOB, whereas the partial mmoX bands that were observed only in the bog sites formed a distinct group relating more to type II MOB. This study indicates that fen and bog ecosystems differ in MOB activity and community structure, and both these factors are affected by drainage.
Collapse
Affiliation(s)
- K Jaatinen
- Finnish Forest Research Institute, Vantaa Research Centre, Finland.
| | | | | | | | | |
Collapse
|
30
|
McDonald IR, Smith K, Lidstrom ME. Methanotrophic populations in estuarine sediment from Newport Bay, California. FEMS Microbiol Lett 2005; 250:287-93. [PMID: 16085370 DOI: 10.1016/j.femsle.2005.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/12/2005] [Accepted: 07/15/2005] [Indexed: 11/18/2022] Open
Abstract
Methanotrophic populations have been studied in Newport Bay estuary, Southern California. Environmental clone banks were generated for 16S rRNA genes specific to methanotrophs and for a diagnostic functional gene, pmoA, encoding a conserved subunit of the particulate methane monooxygenase. These clone banks contained sequences specific to types I and II methanotrophs typically found in aquatic environments including freshwater lake and soda lake sediments, aquifers and rice paddies. However, a group of clones that were divergent (93% identity) from known methanotrophic 16S rRNA genes but represented in 16S rRNA gene libraries from other aquatic environments were detected. A group of pmoA sequences divergent (83% identity) from extant methanotrophs and not previously represented in any environmental clone libraries, were also detected. It is concluded that this environment contains significant methanotroph diversity and that some of these may represent novel groups of methanotrophic bacteria.
Collapse
Affiliation(s)
- Ian R McDonald
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand.
| | | | | |
Collapse
|
31
|
Castaldi S, Tedesco D. Methane production and consumption in an active volcanic environment of Southern Italy. CHEMOSPHERE 2005; 58:131-139. [PMID: 15571745 DOI: 10.1016/j.chemosphere.2004.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 07/27/2004] [Accepted: 08/10/2004] [Indexed: 05/24/2023]
Abstract
Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.
Collapse
Affiliation(s)
- Simona Castaldi
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy.
| | | |
Collapse
|
32
|
Wartiainen I, Hestnes AG, Svenning MM. Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway) - denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures. Can J Microbiol 2003; 49:602-12. [PMID: 14663494 DOI: 10.1139/w03-080] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The methanotrophic community in arctic soil from the islands of Svalbard, Norway (78°N) was analysed by combining group-specific PCR with PCR of the highly variable V3 region of the 16S rRNA gene and then by denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced for identification. The analyses were performed with DNA extracted directly from soil and from enrichment cultures at 10 and 20 °C. The two genera Methylobacter and Methylosinus were found in all localities studied. The DGGE band patterns were simple, and DNA fragments with single base differences were separated. The arctic tundra is a potential source of extensive methane emission due to climatic warming because of its large reservoirs of stored organic carbon. Higher temperatures due to climatic warming can cause increased methane production, and the abundance and activity of methane-oxidizing bacteria in the arctic soil may be important regulators for methane emission to the atmosphere.Key words: methanotrophic diversity, Svalbard, arctic wetland, denaturing gradient gel electrophoresis.
Collapse
Affiliation(s)
- Ingvild Wartiainen
- Department of Biology, Faculty of Science, University of Tromosø, Norway
| | | | | |
Collapse
|
33
|
Heyer J, Galchenko VF, Dunfield PF. Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2831-2846. [PMID: 12213929 DOI: 10.1099/00221287-148-9-2831] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type II methane-oxidizing bacteria (MOB) were isolated from diverse environments, including rice paddies, pristine and polluted freshwaters and sediments, mangrove roots, upland soils, brackish water ecosystems, moors, oil wells, water purification systems and livestock manure. Isolates were identified based on morphological traits as either Methylocystis spp., Methylosinus sporium or Methylosinus trichosporium. Molecular phylogenies were constructed based on nearly complete 16S rRNA gene sequences, and on partial sequences of genes encoding PmoA (a subunit of particulate methane monooxygenase), MxaF (a subunit of methanol dehydrogenase) and MmoX (a subunit of soluble methane monooxygenase). The maximum pairwise 16S rDNA difference between isolates was 4.2%, and considerable variability was evident within the Methylocystis (maximum difference 3.6%). Due to this variability, some of the published 'specific' oligonucleotide primers for type II MOB exhibit multiple mismatches with gene sequences from some isolates. The phylogenetic tree constructed from pmoA gene sequences closely mirrored that constructed from 16S rDNA sequences, and both supported the presently accepted taxonomy of type II MOB. Contrary to previously published phylogenetic trees, morphologically distinguishable species were generally monophyletic based on pmoA or 16S rRNA gene sequences. This was not true for phylogenies constructed from mmoX and mxaF gene sequences. The phylogeny of mxaF gene sequences suggested that horizontal transfer of this gene may have occurred across type II MOB species. Soluble methane monooxygenase could not be detected in many Methylocystis strains either by an enzyme activity test (oxidation of naphthalene) or by PCR-based amplification of an mmoX gene.
Collapse
Affiliation(s)
- Jürgen Heyer
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043 Marburg, Germany1
| | - Valery F Galchenko
- Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia2
| | - Peter F Dunfield
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043 Marburg, Germany1
| |
Collapse
|
34
|
Pacheco-Oliver M, McDonald IR, Groleau D, Murrell JC, Miguez CB. Detection of methanotrophs with highly divergent pmoA genes from Arctic soils. FEMS Microbiol Lett 2002; 209:313-9. [PMID: 12007824 DOI: 10.1111/j.1574-6968.2002.tb11150.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tundra soil samples from the Canadian Arctic community, Kuujjuaq, were analyzed for the presence of the soluble (sMMO) and particulate (pMMO) methane monooxygenase genes. Total genomic DNA extracted from these soils was used as template for PCR using sMMO- and pMMO-specific primers, mmoX1-mmoX2 and A189-A682, respectively. pMMO and sMMO genes were detected in the Kuujjuaq soil samples. Isolation of sMMO-possessing methanotrophic microorganisms from the three soils, as determined by the colony naphthalene oxidation assay, was carried out using direct plating (5 degrees C) and methane enrichment studies (5 degrees C and 25 degrees C). Direct plating did not yield sMMO-possessing methanotrophic bacteria, whereas methane enrichments yielded isolates possessing and expressing sMMO activity. Analysis of derived amino acid sequences of pmoA genes and partial 16S rRNA genes obtained by PCR, using DNA isolated directly from this environment and from isolates, revealed the presence of highly divergent PmoA/AmoA sequences and 16S rRNA sequences that cluster closely with but are distinct from the genes from the genera Methylosinus and Methylocystis.
Collapse
Affiliation(s)
- Maria Pacheco-Oliver
- Microbial and Enzyme Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council, 6100 Royalmount Ave., Montreal, QC H4P 2R2, Canada
| | | | | | | | | |
Collapse
|
35
|
Dedysh SN, Derakshani M, Liesack W. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 2001; 67:4850-7. [PMID: 11571193 PMCID: PMC93240 DOI: 10.1128/aem.67.10.4850-4857.2001] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.
Collapse
Affiliation(s)
- S N Dedysh
- Institute of Microbiology, Russian Academy of Sciences, Moscow 117811, Russia
| | | | | |
Collapse
|
36
|
Gulledge J, Ahmad A, Steudler PA, Pomerantz WJ, Cavanaugh CM. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl Environ Microbiol 2001; 67:4726-33. [PMID: 11571178 PMCID: PMC93225 DOI: 10.1128/aem.67.10.4726-4733.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57 degrees C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.
Collapse
Affiliation(s)
- J Gulledge
- The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
37
|
Bourne DG, McDonald IR, Murrell JC. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 2001; 67:3802-9. [PMID: 11525970 PMCID: PMC93094 DOI: 10.1128/aem.67.9.3802-3809.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three particulate methane monooxygenase PCR primer sets (A189-A682, A189-A650, and A189-mb661) were investigated for their ability to assess methanotroph diversity in soils from three sites, i.e., heath, oak, and sitka, each of which was capable of oxidizing atmospheric concentrations of methane. Each PCR primer set was used to construct a library containing 50 clones from each soil type. The clones from each library were grouped by restriction fragment length polymorphism, and representatives from each group were sequenced and analyzed. Libraries constructed with the A189-A682 PCR primer set were dominated by amoA-related sequences or nonspecific PCR products with nonsense open reading frames. The primer set could not be used to assess methanotroph diversity in these soils. A new pmoA-specific primer, A650, was designed in this study. The A189-A650 primer set demonstrated distinct biases both in clone library analysis and when incorporated into denaturing gradient gel electrophoresis analysis. The A189-mb661 PCR primer set demonstrated the largest retrieval of methanotroph diversity of all of the primer sets. However, this primer set did not retrieve sequences linked with novel high-affinity methane oxidizers from the soil libraries, which were detected using the A189-A650 primer set. A combination of all three primer sets appears to be required to examine both methanotroph diversity and the presence of novel methane monooxygenase sequences.
Collapse
Affiliation(s)
- D G Bourne
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, England
| | | | | |
Collapse
|
38
|
McCaig AE, Grayston SJ, Prosser JI, Glover LA. Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol Ecol 2001; 35:37-48. [PMID: 11248388 DOI: 10.1111/j.1574-6941.2001.tb00786.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.
Collapse
|
39
|
Upton M, Hill B, Edwards C, Saunders JR, Ritchie DA, Lloyd D. Combined molecular ecological and confocal laser scanning microscopic analysis of peat bog methanogen populations. FEMS Microbiol Lett 2000; 193:275-81. [PMID: 11111036 DOI: 10.1111/j.1574-6968.2000.tb09436.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Confocal laser scanning microscopy, using fluorescently labelled oligonucleotide probes targeting the 16S rRNA of different physiological groups of methanogens, was used to identify which methanogenic genera were present and to describe their in situ spatial locations in samples taken at different depths from blanket peat bog cores. Total bacterial DNA was also extracted and purified from the samples and used as template for amplification of 16S rRNA and regions of methyl CoM reductase-encoding genes using the polymerase chain reaction, as well as for oligonucleotide hybridisation experiments. These techniques, used in concert, demonstrated that methanogens of several physiological groups were present in highest numbers in the mid regions of 25 cm deep peat cores. Some discrepancies were apparent in the findings of the microscopic and molecular methods, though these may be partially accounted for by the different sensitivities of the techniques employed. The combined approaches used in this study gave an insight into the diversity and distribution of methanogens in peat environments not possible using molecular ecological methods alone.
Collapse
Affiliation(s)
- M Upton
- School of Biological Sciences, University of Liverpool, UK
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Methane-oxidizing bacteria (methanotrophs) have attracted considerable attention over the past 30 years. They have the unique ability to use methane as sole carbon and energy source, they are found in a wide variety of environments and play a crucial role in the global methane cycle. Methanotrophs also show considerable potential for bioremediation processes such as degradation of ground water pollutants, and for production of bulk chemicals from cheap substrates. We review here the cultivation-independent molecular biological methods that are available for the detection and characterization of methanotrophs in the natural environment.
Collapse
Affiliation(s)
- J C Murrell
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
41
|
Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 2000; 66:5053-65. [PMID: 11055963 PMCID: PMC92419 DOI: 10.1128/aem.66.11.5053-5065.2000] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2000] [Accepted: 08/29/2000] [Indexed: 01/08/2023] Open
Abstract
In a search for cosmopolitan phylogenetic clusters of freshwater bacteria, we recovered a total of 190 full and partial 16S ribosomal DNA (rDNA) sequences from three different lakes (Lake Gossenköllesee, Austria; Lake Fuchskuhle, Germany; and Lake Baikal, Russia). The phylogenetic comparison with the currently available rDNA data set showed that our sequences fall into 16 clusters, which otherwise include bacterial rDNA sequences of primarily freshwater and soil, but not marine, origin. Six of the clusters were affiliated with the alpha, four were affiliated with the beta, and one was affiliated with the gamma subclass of the Proteobacteria; four were affiliated with the Cytophaga-Flavobacterium-Bacteroides group; and one was affiliated with the class Actinobacteria (formerly known as the high-G+C gram-positive bacteria). The latter cluster (hgcI) is monophyletic and so far includes only sequences directly retrieved from aquatic environments. Fluorescence in situ hybridization (FISH) with probes specific for the hgcI cluster showed abundances of up to 1.7 x 10(5) cells ml(-1) in Lake Gossenköllesee, with strong seasonal fluctuations, and high abundances in the two other lakes investigated. Cell size measurements revealed that Actinobacteria in Lake Gossenköllesee can account for up to 63% of the bacterioplankton biomass. A combination of phylogenetic analysis and FISH was used to reveal 16 globally distributed sequence clusters and to confirm the broad distribution, abundance, and high biomass of members of the class Actinobacteria in freshwater ecosystems.
Collapse
Affiliation(s)
- F O Glöckner
- Max-Planck-Institut für Marine Mikrobiologie, Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Nold SC, Zhou J, Devol AH, Tiedje JM. Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria. Appl Environ Microbiol 2000; 66:4532-5. [PMID: 11010911 PMCID: PMC92337 DOI: 10.1128/aem.66.10.4532-4535.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of ammonia-oxidizing bacteria in aquatic sediments was studied by retrieving ammonia monooxygenase and methane monooxygenase gene sequences. Methanotrophs dominated freshwater sediments, while beta-proteobacterial ammonia oxidizers dominated marine sediments. These results suggest that gamma-proteobacteria such as Nitrosococcus oceani are minor members of marine sediment ammonia-oxidizing communities.
Collapse
Affiliation(s)
- S C Nold
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
43
|
Bourne DG, Holmes AJ, Iversen N, Murrell JC. Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. FEMS Microbiol Ecol 2000; 31:29-38. [PMID: 10620716 DOI: 10.1111/j.1574-6941.2000.tb00668.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oligonucleotide probes targeting the 16S rRNA of distinct phylogenetic groups of methanotrophs were designed for the in situ detection of these organisms. A probe, MG-64, detected specifically type I methanotrophs, while probes MA-221 and MA-621, detected type II methanotrophs in whole cell hybridisations. A probe Mc1029 was also designed which targeted only organisms from the Methylococcus genus after whole cell hybridisations. All probes were labelled with the fluorochrome Cy3 and optimum conditions for hybridisation were determined. Non-specific target sites of the type I (MG-64) and type II (MA-621) probes to non-methanotrophic organisms are highlighted. The probes are however used in studying enrichment cultures and environments where selective pressure favours the growth of methanotrophs over other organisms. The application of these probes was demonstrated in the detection of type I methanotrophs with the MG-64 probe in an enrichment culture from an estuarine sample demonstrating methane oxidation. The detection of type I methanotrophs was confirmed by a 16S rDNA molecular analysis of the estuarine enrichment culture which demonstrated that the most abundant bacterial clone type in the 16S rDNA library was most closely related to Methylobacter sp. strain BB5.1, a type I methanotroph also isolated from an estuarine environment.
Collapse
Affiliation(s)
- DG Bourne
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
44
|
Wise MG, McArthur JV, Shimkets LJ. Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 1999; 65:4887-97. [PMID: 10543800 PMCID: PMC91658 DOI: 10.1128/aem.65.11.4887-4897.1999] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and tested. These primers were used to amplify directly extracted soil DNA, and the products were used to construct type I and type II clone libraries. The second molecular approach, based on denaturing gradient gel electrophoresis (DGGE), provided profiles of the methanotrophic community members as distinguished by sequence differences in variable region 3 of the 16S ribosomal DNA. For the culturing studies, an extinction-dilution technique was employed to isolate slow-growing but numerically dominant strains. The key variables of the series of enrichment conditions were initial pH (4. 8 versus 6.8), air/CH(4)/CO(2) headspace ratio (50:45:5 versus 90:9:1), and concentration of the medium (1x nitrate minimal salts [NMS] versus 0.2x NMS). Screening of the isolates showed that the nutrient-rich 1x NMS selected for type I methanotrophs, while the nutrient-poor 0.2x NMS tended to enrich for type II methanotrophs. Partial sequencing of the 16S rRNA gene from selected clones and isolates revealed some of the same novel sequence types. Phylogenetic analysis of the type I clone library suggested the presence of a new phylotype related to the Methylobacter-Methylomicrobium group, and this was confirmed by isolating two members of this cluster. The type II clone library also suggested the existence of a novel group of related species distinct from the validly published Methylosinus and Methylocystis genera, and two members of this cluster were also successfully cultured. Partial sequencing of the pmoA gene, which codes for the 27-kDa polypeptide of the particulate methane monooxygenase, reaffirmed the phylogenetic placement of the four isolates. Finally, not all of the bands separated by DGGE could be accounted for by the clones and isolates. This polyphasic assessment of community structure demonstrates that much diversity among the obligate methane oxidizers has yet to be formally described.
Collapse
Affiliation(s)
- M G Wise
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605, USA
| | | | | |
Collapse
|
45
|
Costello AM, Lidstrom ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 1999; 65:5066-74. [PMID: 10543824 PMCID: PMC91682 DOI: 10.1128/aem.65.11.5066-5074.1999] [Citation(s) in RCA: 331] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16S rRNA and pmoA genes from natural populations of methane-oxidizing bacteria (methanotrophs) were PCR amplified from total community DNA extracted from Lake Washington sediments obtained from the area where peak methane oxidation occurred. Clone libraries were constructed for each of the genes, and approximately 200 clones from each library were analyzed by using restriction fragment length polymorphism (RFLP) and the tetrameric restriction enzymes MspI, HaeIII, and HhaI. The PCR products were grouped based on their RFLP patterns, and representatives of each group were sequenced and analyzed. Studies of the 16S rRNA data obtained indicated that the existing primers did not reveal the total methanotrophic diversity present when these data were compared with pure-culture data obtained from the same environment. New primers specific for methanotrophs belonging to the genera Methylomonas, Methylosinus, and Methylocystis were developed and used to construct more complete clone libraries. Furthermore, a new primer was designed for one of the genes of the particulate methane monooxygenase in methanotrophs, pmoA. Phylogenetic analyses of both the 16S rRNA and pmoA gene sequences indicated that the new primers should detect these genes over the known diversity in methanotrophs. In addition to these findings, 16S rRNA data obtained in this study were combined with previously described phylogenetic data in order to identify operational taxonomic units that can be used to identify methanotrophs at the genus level.
Collapse
Affiliation(s)
- A M Costello
- Environmental Engineering Science 138-78, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
46
|
Henckel, Friedrich, Conrad. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 1999; 65:1980-90. [PMID: 10223989 PMCID: PMC91286 DOI: 10.1128/aem.65.5.1980-1990.1999] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1998] [Accepted: 02/12/1999] [Indexed: 11/20/2022] Open
Abstract
Rice field soil with a nonsaturated water content induced CH4 consumption activity when it was supplemented with 5% CH4. After a lag phase of 3 days, CH4 was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH4 mixing ratios (i.e., 5 ppmv). The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type I methylotrophs (members of the gamma subdivision of the class Proteobacteria [gamma-Proteobacteria]) and type II methylotrophs (members of the alpha-Proteobacteria) were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH4 was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH4. The structure of the methylotroph community as determined with the specific primer sets was less complex; this community consisted of both type I and type II methanotrophs related to the genera Methylobacter, Methylococcus, and Methylocystis. DGGE profiles of PCR products amplified with functional gene primer sets that targeted the mxaF and pmoA genes revealed that there were pronounced community shifts when CH4 oxidation began. High CH4 concentrations stimulated both type I and II methanotrophs in rice field soil with a nonsaturated water content, as determined with both ribosomal and functional gene markers.
Collapse
Affiliation(s)
- Henckel
- Max-Planck-Institut fur terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | |
Collapse
|
47
|
McCaig AE, Glover LA, Prosser JI. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 1999; 65:1721-30. [PMID: 10103273 PMCID: PMC91243 DOI: 10.1128/aem.65.4.1721-1730.1999] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/1998] [Accepted: 01/25/1999] [Indexed: 11/20/2022] Open
Abstract
Bacterial community structure and diversity in rhizospheres in two types of grassland, distinguished by both plant species and fertilization regimen, were assessed by performing a 16S ribosomal DNA (rDNA) sequence analysis of DNAs extracted from triplicate soil plots. PCR products were cloned, and 45 to 48 clones from each of the six libraries were partially sequenced. Phylogenetic analysis of the resultant 275 clone sequences indicated that there was considerable variation in abundance in replicate unfertilized, unimproved soil samples and fertilized, improved soil samples but that there were no significant differences in the abundance of any phylogenetic group. Several clone sequences were identical in the 16S rDNA region analyzed, and the clones comprised eight pairs of duplicate clones and two sets of triplicate clones. Many clones were found to be most closely related to environmental clones obtained in other studies, although three clones were found to be identical to culturable species in databases. The clones were clustered into operational taxonomic units at a level of sequence similarity of >97% in order to quantify diversity. In all, 34 clusters containing two or more sequences were identified, and the largest group contained nine clones. A number of diversity, dominance, and evenness indices were calculated, and they all indicated that diversity was high, reflecting the low coverage of rDNA libraries achieved. Differences in diversity between sample types were not observed. Collector's curves, however, indicated that there were differences in the underlying community structures; in particular, there was reduced diversity of organisms of the alpha subdivision of the class Proteobacteria (alpha-proteobacteria) in improved soils.
Collapse
Affiliation(s)
- A E McCaig
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | |
Collapse
|
48
|
Dedysh SN, Panikov NS, Liesack W, Grosskopf R, Zhou J, Tiedje JM. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 1998; 282:281-4. [PMID: 9765151 DOI: 10.1126/science.282.5387.281] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acidic northern wetlands are an important source of methane, one of the gases that contributes to global warming. Methane oxidation in the surface of these acidic wetlands can reduce the methane flux to the atmosphere up to 90 percent. Here the isolation of three methanotrophic microorganisms from three boreal forest sites is reported. They are moderately acidophilic organisms and have a soluble methane monooxygenase. In contrast to the known groups of methanotrophs, 16S ribosomal DNA sequence analysis shows that they are affiliated with the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica.
Collapse
Affiliation(s)
- S N Dedysh
- Institute of Microbiology, Russian Academy of Sciences, Moscow 117811, Russia
| | | | | | | | | | | |
Collapse
|
49
|
Murrell J, McDonald IR, Bourne DG. Molecular methods for the study of methanotroph ecology. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00528.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Jensen S, ÃVreÃ¥s L, Daae FL, Torsvik V. Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb01557.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|