1
|
Neu TR, Lawrence JR. Investigation of microbial biofilm structure by laser scanning microscopy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:1-51. [PMID: 24840778 DOI: 10.1007/10_2014_272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microbial bioaggregates and biofilms are hydrated three-dimensional structures of cells and extracellular polymeric substances (EPS). Microbial communities associated with interfaces and the samples thereof may come from natural, technical, and medical habitats. For imaging such complex microbial communities confocal laser scanning microscopy (CLSM) is the method of choice. CLSM allows flexible mounting and noninvasive three-dimensional sectioning of hydrated, living, as well as fixed samples. For this purpose a broad range of objective lenses is available having different working distance and resolution. By means of CLSM the signals detected may originate from reflection, autofluorescence, reporter genes/fluorescence proteins, fluorochromes binding to specific targets, or other probes conjugated with fluorochromes. Recorded datasets can be used not only for visualization but also for semiquantitative analysis. As a result CLSM represents a very useful tool for imaging of microbiological samples in combination with other analytical techniques.
Collapse
Affiliation(s)
- Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brueckstrasse 3a, 39114, Magdeburg, Germany,
| | | |
Collapse
|
2
|
Tale VP, Maki JS, Struble CA, Zitomer DH. Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. WATER RESEARCH 2011; 45:5249-56. [PMID: 21855955 DOI: 10.1016/j.watres.2011.07.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/07/2011] [Accepted: 07/25/2011] [Indexed: 05/15/2023]
Abstract
Accumulation of acids in anaerobic digesters after organic overload can inhibit or stop CH4 production. Therefore, methods to reduce acid concentrations would be helpful. One potential method to improve recovery involves bioaugmentation, addition of specific microorganisms to improve performance. In this study, transiently overloaded digesters were bioaugmented with a propionate-degrading enrichment culture in an effort to decrease recovery time. Biomass samples from 14 different, full-scale anaerobic digesters were screened for specific methanogenic activity (SMA) against propionate; the microbial communities were also compared. SMA values spanned two orders of magnitude. Principal component analysis of denaturing gradient gel electrophoresis (DGGE) banding patterns for a functional gene (mcrA) suggested an underlying community structure-activity relationship; the presence of hydrogenotrophic methanogens closely related to Methanospirillum hungatei and Methanobacterium beijingense was associated with high propionate SMA values. The biomass sample demonstrating the highest SMA was enriched for propionate degrading activity and then used to bioaugment overloaded digesters. Bioaugmented digesters recovered more rapidly following the organic overload, requiring approximately 25 days (2.5 solids retention times (SRTs)) less to recover compared to non-bioaugmented digesters. Benefits of bioaugmentation continued for more than 12 SRTs after organic overload. Bioaugmentation is a promising approach to decrease recovery time after organic overload.
Collapse
Affiliation(s)
- V P Tale
- Department of Civil and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, United States.
| | | | | | | |
Collapse
|
3
|
Galand PE, Saarnio S, Fritze H, Yrjälä K. Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 2009; 42:441-9. [PMID: 19709303 DOI: 10.1111/j.1574-6941.2002.tb01033.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The annual rate of CH4 release and potential CH4 production has recently been studied in the Salmisuo fen in eastern Finland but the microbiota responsible for the CH4 production has not been examined. The diversity of the methane producing Archaea was analysed, at different depths, in the most representative microsite (Eriophorum lawn) of the fen. Methanogen populations were studied using primers amplifying a region of the methyl-coenzyme M reductase gene. PCR products were analysed by denaturing gradient gel electrophoresis and restriction fragment length polymorphism (RFLP) analysis of clone libraries. A representative of each RFLP group was sequenced. The study revealed a change of the methanogen populations with depth. Sequences from the upper layers of the fen grouped in a novel 'Fen cluster' and were related to Methanomicrobiales. Sequences retrieved from the deeper layers of the fen were related to Methanosarcinales via the Rice Cluster-I.
Collapse
Affiliation(s)
- Pierre E Galand
- Department of Biosciences, Division of General Microbiology, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
4
|
Earl J, Pickup RW, Ritchie DA, Edwards C. Development of temporal temperature gradient electrophoresis for characterising methanogen diversity. MICROBIAL ECOLOGY 2005; 50:327-36. [PMID: 16328656 DOI: 10.1007/s00248-005-0192-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 01/11/2005] [Indexed: 05/05/2023]
Abstract
Temporal temperature gradient electrophoretic (TTGE) analysis of 16S rDNA sequences was optimized to monitor the methanogen population present in water and sediments of a small eutrophic lake, Priest Pot, in the English Lake district. The production of nonrepresentative TTGE profiles due to the generation of polymerase chain reaction (PCR) artifacts initially proved problematical. The use of a proofreading polymerase in the PCR was found to be essential and fully optimized protocols were established and tested to ensure confidence that the TTGE profiles truly reflected sequence diversity. TTGE analysis revealed the methanogen population to be less diverse in water than in sediment. The most genetic diversity was observed in TTGE profiles of sediment DNA isolated in winter and the least was in sediment DNA isolated in summer. DNA sequencing analysis of bands recovered from TTGE gels revealed the presence of two methanogen communities. One clustered with Methanosaeta species and the other with the Methanomicrobiales. Many sequences showed low DNA sequence similarity to known methanogens, suggesting that Priest Pot harbors previously undescribed methanogen species.
Collapse
Affiliation(s)
- Julie Earl
- School of Biological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | | | | |
Collapse
|
5
|
Galand PE, Juottonen H, Fritze H, Yrjälä K. Methanogen communities in a drained bog: effect of ash fertilization. MICROBIAL ECOLOGY 2005; 49:209-17. [PMID: 15965727 DOI: 10.1007/s00248-003-0229-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 12/18/2003] [Indexed: 05/03/2023]
Abstract
Forestry practises such has drainage have been shown to decrease emissions of the greenhouse gas methane (CH(4)) from peatlands. The aim of the study was to examine the methanogen populations in a drained bog in northern Finland, and to assess the possible effect of ash fertilization on potential methane production and methanogen communities. Peat samples were collected from control and ash fertilized (15,000 kg/ha) plots 5 years after ash application, and potential CH(4) production was measured. The methanogen community structure was studied by DNA isolation, PCR amplification of the methyl coenzyme-M reductase (mcr) gene, denaturing gradient gel electrophoresis (DGGE), and restriction fragment length polymorphism (RFLP) analysis. The drained peatland showed low potential methane production and methanogen diversity in both control and ash-fertilized plots. Samples from both upper and deeper layers of peat were dominated by three groups of sequences related to Rice cluster-I hydrogenotroph methanogens. Even though pH was marginally greater in the ash-treated site, the occurrence of those sequences was not affected by ash fertilization. Interestingly, a less common group of sequences, related to the Fen cluster, were found only in the fertilized plots. The study confirmed the depth related change of methanogen populations in peatland.
Collapse
Affiliation(s)
- P E Galand
- Department of Biological and Environmental Sciences, Division of General Microbiology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
6
|
Friedrich MW. Methyl‐Coenzyme M Reductase Genes: Unique Functional Markers for Methanogenic and Anaerobic Methane‐Oxidizing Archaea. Methods Enzymol 2005; 397:428-42. [PMID: 16260307 DOI: 10.1016/s0076-6879(05)97026-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In many anoxic environments, methanogenesis is the predominant terminal electron accepting process involved in the mineralization of organic matter, which is catalyzed by methanogenic Archaea. These organisms represent a unique but phylogenetically diverse guild of prokaryotes, which can be conveniently tracked in the environment by targeting the mcrA gene as a functional marker. This gene encodes the alpha subunit of the methyl-coenzyme M reductase (MCR), which catalyzes the last step in methanogenesis and is present in all methanogens. Cultivation-independent analysis of methanogenic communities involves the polymerase chain reaction (PCR) amplification of the mcrA gene from extracted community DNA, comparative analysis of mcrA clone libraries, or PCR-based fingerprinting analysis by terminal restriction fragment polymorphism analysis (T-RFLP). It has also been suggested that anaerobic methane-oxidizing Archaea possess MCR, which facilitates detection of this novel group of "reverse methanogens" as well using the mcrA gene as a functional marker.
Collapse
|
7
|
Castro H, Ogram A, Reddy KR. Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Environ Microbiol 2004; 70:6559-68. [PMID: 15528519 PMCID: PMC525246 DOI: 10.1128/aem.70.11.6559-6568.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
Agricultural activities have produced well-documented changes in the Florida Everglades, including establishment of a gradient in phosphorus concentrations in Water Conservation Area 2A (WCA-2A) of the northern Everglades. An effect of increased phosphorus concentrations is increased methanogenesis in the eutrophic regions compared to the oligotrophic regions of WCA-2A. The goal of this study was to identify relationships between eutrophication and composition and activity of methanogenic assemblages in WCA-2A soils. Distributions of two genes associated with methanogens were characterized in soils taken from WCA-2A: the archaeal 16S rRNA gene and the methyl coenzyme M reductase gene. The richness of methanogen phylotypes was greater in eutrophic than in oligotrophic sites, and sequences related to previously cultivated and uncultivated methanogens were found. A preferential selection for the order Methanomicrobiales was observed in mcrA clone libraries, suggesting primer bias for this group. A greater diversity within the Methanomicrobiales was observed in mcrA clone libraries than in 16S rRNA gene libraries. 16S rRNA phylogenetic analyses revealed a dominance of clones related to Methanosaeta spp., an acetoclastic methanogen dominant in environments with low acetate concentrations. A significant number of clones were related to Methanomicrobiales, an order characterized by species utilizing hydrogen and formate as methanogenic substrates. No representatives of the orders Methanobacteriales and Methanococcales were found in any 16S rRNA clone library, although some Methanobacteriales were found in mcrA libraries. Hydrogenotrophs are the dominant methanogens in WCA-2A, and acetoclastic methanogen genotypes that proliferate in low acetate concentrations outnumber those that typically dominate in higher acetate concentrations.
Collapse
Affiliation(s)
- Hector Castro
- Soil and Water Department, University of Florida, Gainesville, Florida 32611-0290, USA
| | | | | |
Collapse
|
8
|
Lloyd D. Noninvasive methods for the investigation of organisms at low oxygen levels. ADVANCES IN APPLIED MICROBIOLOGY 2003; 51:155-83. [PMID: 12236057 DOI: 10.1016/s0065-2164(02)51005-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David Lloyd
- School of Biosciences (Microbiology), Main Building, Cardiff University, P. O. Box 915, Cardiff CF10 3TL, Wales, United Kingdom
| |
Collapse
|
9
|
Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3521-3530. [PMID: 12427943 DOI: 10.1099/00221287-148-11-3521] [Citation(s) in RCA: 493] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inferred amino acid sequences of the methyl coenzyme-M reductase (mcrA) gene from five different methanogen species were aligned and two regions with a high degree of homology flanking a more variable region were identified. Analysis of the DNA sequences from the conserved regions yielded two degenerate sequences from which a forward primer, a 32-mer, and a reverse primer, a 23-mer, could be derived for use in the specific PCR-based detection of methanogens. The primers were successfully evaluated against 23 species of methanogen representing all five recognized orders of this group of Archaea, generating a PCR product between 464 and 491 bp. Comparisons between the mcrA and 16S small subunit rRNA gene sequences using PHYLIP demonstrated that the tree topologies were strikingly similar. Methods were developed to enable the analysis of methanogen populations in landfill using the mcrA gene as the target. Two landfill sites were examined and 63 clones from a site in Mucking, Essex, and 102 from a site in Odcombe, Somerset, were analysed. Analysis revealed a far greater diversity in the methanogen population within landfill material than has been seen previously.
Collapse
Affiliation(s)
- Philip E Luton
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Jonathan M Wayne
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Richard J Sharp
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| | - Paul W Riley
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK1
| |
Collapse
|
10
|
Ketola RA, Kotiaho T, Cisper ME, Allen TM. Environmental applications of membrane introduction mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:457-476. [PMID: 12112751 DOI: 10.1002/jms.327] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The purpose of this review is to highlight the versatility of membrane introduction mass spectrometry (MIMS) in environmental applications, summarize the measurements of environmental volatile organic compounds (VOCs) accomplished using MIMS, present developments in the detection of semi-volatile organic compounds (SVOCs) and forecast possible future directions of MIMS in environmental applications.
Collapse
|
11
|
Lloyd D, Thomas KL, Cowie G, Tammam JD, Williams AG. Direct interface of chemistry to microbiological systems: membrane inlet mass spectrometry. J Microbiol Methods 2002; 48:289-302. [PMID: 11777577 DOI: 10.1016/s0167-7012(01)00331-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Direct measurement of dissolved gases and low molecular weight volatiles through permeable membranes (e.g. 50-microm-thick silicone rubber), provides an invaluable tool for the investigation of the activities of microorganisms in the laboratory and in their natural environments. Multiple molecular species are monitored at a single point. Fast response times (t(90%)<1 min) and long-term stability, (<1% week(-1)); high specificity and high sensitivity (e.g. 0.2 microM for O(2), <0.5 mM for ethanol), provides a technique that can provide information on the kinetics of processes over many decades (10(0)-10(6)) of minutes. Spatial resolution of <1 mm enables 3D mapping of gases in complex ecosystems (sediments, peat, soils, biofilms, foodstuffs). Results with membrane inlet mass spectrometry (MIMS) when used in conjunction with confocal scanning laser microscopy, provides a powerful approach to the analysis of kinetic and spatial aspects of natural environments. Examples discussed are peat cores and cheese.
Collapse
Affiliation(s)
- David Lloyd
- BIOSI 1 (Microbiology), Cardiff University, P.O. Box 915, Cardiff CF10 3TL, Wales, UK.
| | | | | | | | | |
Collapse
|
12
|
Upton M, Hill B, Edwards C, Saunders JR, Ritchie DA, Lloyd D. Combined molecular ecological and confocal laser scanning microscopic analysis of peat bog methanogen populations. FEMS Microbiol Lett 2000; 193:275-81. [PMID: 11111036 DOI: 10.1111/j.1574-6968.2000.tb09436.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Confocal laser scanning microscopy, using fluorescently labelled oligonucleotide probes targeting the 16S rRNA of different physiological groups of methanogens, was used to identify which methanogenic genera were present and to describe their in situ spatial locations in samples taken at different depths from blanket peat bog cores. Total bacterial DNA was also extracted and purified from the samples and used as template for amplification of 16S rRNA and regions of methyl CoM reductase-encoding genes using the polymerase chain reaction, as well as for oligonucleotide hybridisation experiments. These techniques, used in concert, demonstrated that methanogens of several physiological groups were present in highest numbers in the mid regions of 25 cm deep peat cores. Some discrepancies were apparent in the findings of the microscopic and molecular methods, though these may be partially accounted for by the different sensitivities of the techniques employed. The combined approaches used in this study gave an insight into the diversity and distribution of methanogens in peat environments not possible using molecular ecological methods alone.
Collapse
Affiliation(s)
- M Upton
- School of Biological Sciences, University of Liverpool, UK
| | | | | | | | | | | |
Collapse
|
13
|
Johnson RC, Cooks RG, Allen TM, Cisper ME, Hemberger PH. Membrane introduction mass spectrometry: trends and applications. MASS SPECTROMETRY REVIEWS 2000; 19:1-37. [PMID: 10715830 DOI: 10.1002/(sici)1098-2787(2000)19:1<1::aid-mas1>3.0.co;2-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent advances in membrane introduction mass spectrometry (MIMS) are reviewed. On-line monitoring is treated by focusing on critical variables, including the nature and dimensions of the membrane, and the analyte vapor pressure, diffusivity, and solubility in the membrane barrier. Sample introduction by MIMS is applied in (i) on-line monitoring of chemical and biological reactors, (ii) analysis of volatile organic compounds in environmental matrices, including air, water and soil, and (iii) in more fundamental studies, such as measurements of thermochemical properties, reaction mechanisms, and kinetics. New semipermeable membranes are discussed, including those consisting of thin polymers, low vapor pressure liquids, and zeolites. These membranes have been used to monitor polar compounds, selectively differentiate compounds through affinity-binding, and provide isomer differentiation based on molecular size. Measurements at high spatial resolution, for example, using silicone-capped hypodermic needle inlets, are also covered, as is electrically driven sampling through microporous membranes. Other variations on the basic MIMS experiment include analyte preconcentration through cryotrapping (CT-MIMS) or trapping in the membrane (trap-and-release), as well as differential thermal release methods and reverse phase (i.e., organic solvent) MIMS. Method limitations center on semivolatile compounds and complex mixture analysis, and novel solutions are discussed. Semivolatile compounds have been monitored with thermally assisted desorption, ultrathin membranes and derivatization techniques. Taking advantage of the differences in time of membrane permeation, mixtures of structurally similar compounds have been differentiated by using sample modulation techniques and by temperature-programmed desorption from a membrane interface. Selective ionization techniques that increase instrument sensitivity towards polar compounds are also described, and comparisons are made with other direct sampling (nonchromatographic) methods that are useful in mixture analysis.
Collapse
Affiliation(s)
- R C Johnson
- Chemistry Department, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
14
|
Felske A. Reviewing the DA001-files: a 16S rRNA chase on suspect #X99967, a Bacillus and Dutch underground activist. J Microbiol Methods 1999; 36:77-93. [PMID: 10353802 DOI: 10.1016/s0167-7012(99)00013-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A variant of 'the rRNA approach' on uncultured soil bacteria is discussed, which is mainly based on 16S rRNA rather than on genomic 16S rDNA. While the rDNA only reflects the presence of bacteria, the rRNA indicates much more the activity of bacteria. Hence, the presented strategy can indicate the involvement of uncultured bacteria to the metabolic activity of the total microbial community. The potentials and limitations of the applied techniques will be discussed: isolation of ribosomes from soil, temperature gradient gel electrophoresis, cloning and sequencing, and the verification of these data by V6 Southern blot hybridization, dot blot hybridization and in situ hybridization. By this and another novel rRNA quantification approach, the multiple competitive RT-PCR, it could be found that an uncultured Bacillus, recognized as ribotype DA001, contributes approximately 5-10% to all bacterial ribosomes in Dutch Drentse A grassland soils. These bacteria should be major operators of biogeochemical processes in soil.
Collapse
Affiliation(s)
- A Felske
- Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla, Spain.
| |
Collapse
|