1
|
Şimşir B, Yan J, Im J, Graves D, Löffler FE. Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4821-4830. [PMID: 28328216 PMCID: PMC6944067 DOI: 10.1021/acs.est.6b05554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Contaminant discharge from fractured bedrock formations remains a remediation challenge. We applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C1-C3 chlorinated solvents to less-chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of known dechlorinator biomarker genes within the creek sediment and demonstrated that multiple dechlorinator populations degrading chlorinated C1-C3 alkanes and alkenes co-inhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 m horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 ± 0.4 × 105 and 5.4 ± 0.9 × 106 16S rRNA gene copies per g of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.
Collapse
Affiliation(s)
- Burcu Şimşir
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jeongdae Im
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Duane Graves
- Geosyntec Consultants, Knoxville, Tennessee 37922, United States
| | - Frank E. Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Puigserver D, Herrero J, Torres M, Cortés A, Nijenhuis I, Kuntze K, Parker BL, Carmona JM. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18724-41. [PMID: 27314420 DOI: 10.1007/s11356-016-7068-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 05/20/2023]
Abstract
In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).
Collapse
Affiliation(s)
- Diana Puigserver
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain
| | - Jofre Herrero
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain
| | - Mònica Torres
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain
| | - Amparo Cortés
- Departament de Productes Naturals, Biologia Vegetal i Edafologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n., 08028, Barcelona, Spain
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15., 04318, Leipzig, Germany
| | - Kevin Kuntze
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15., 04318, Leipzig, Germany
| | - Beth L Parker
- School of Engineering, University of Guelph, 50, Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - José M Carmona
- Department de Gequímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès, s/n, 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Tang S, Wang PH, Higgins SA, Löffler FE, Edwards EA. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates. Front Microbiol 2016; 7:100. [PMID: 26903979 PMCID: PMC4751268 DOI: 10.3389/fmicb.2016.00100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis pathway is present in the five Dehalobacter genomes. This pathway corresponds to a newly described alternative heme biosynthesis route first identified in Archaea. This analysis of organohalide-respiring Firmicutes and Chloroflexi reveals profound evolutionary differences despite very similar niche-specific metabolism and function.
Collapse
Affiliation(s)
- Shuiquan Tang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| | - Po Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| | - Steven A Higgins
- Department of Microbiology, University of TennesseeKnoxville, TN, USA; Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA; University of Tennessee and Oak Ridge National Laboratory Joint Institute for Biological Sciences and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Frank E Löffler
- Department of Microbiology, University of TennesseeKnoxville, TN, USA; Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA; University of Tennessee and Oak Ridge National Laboratory Joint Institute for Biological Sciences and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA; Department of Civil and Environmental Engineering, University of TennesseeKnoxville, TN, USA
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
4
|
Martín-González L, Mortan SH, Rosell M, Parladé E, Martínez-Alonso M, Gaju N, Caminal G, Adrian L, Marco-Urrea E. Stable Carbon Isotope Fractionation During 1,2-Dichloropropane-to-Propene Transformation by an Enrichment Culture Containing Dehalogenimonas Strains and a dcpA Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8666-8674. [PMID: 26111261 DOI: 10.1021/acs.est.5b00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A stable enrichment culture derived from Besòs river estuary sediments stoichiometrically dechlorinated 1,2-dichloropropane (1,2-DCP) to propene. Sequential transfers in defined anaerobic medium with the inhibitor bromoethanesulfonate produced a sediment-free culture dechlorinating 1,2-DCP in the absence of methanogenesis. Application of previously published genus-specific primers targeting 16S rRNA gene sequences revealed the presence of a Dehalogenimonas strain, and no amplification was obtained with Dehalococcoides-specific primers. The partial sequence of the 16S rRNA amplicon was 100% identical with Dehalogenimonas alkenigignens strain IP3-3. Also, dcpA, a gene described to encode a corrinoid-containing 1,2-DCP reductive dehalogenase was detected. Resistance of the dehalogenating activity to vancomycin, exclusive conversion of vicinally chlorinated alkanes, and tolerance to short-term oxygen exposure is consistent with the hypothesis that a Dehalogenimonas strain is responsible for 1,2-DCP conversion in the culture. Quantitative PCR showed a positive correlation between the number of Dehalogenimonas 16S rRNA genes copies in the culture and consumption of 1,2-DCP. Compound specific isotope analysis revealed that the Dehalogenimonas-catalyzed carbon isotopic fractionation (εC(bulk)) of the 1,2-DCP-to-propene reaction was -15.0 ± 0.7‰ under both methanogenic and nonmethanogenic conditions. This study demonstrates that carbon isotope fractionation is a valuable approach for monitoring in situ 1,2-DCP reductive dechlorination by Dehalogenimonas strains.
Collapse
Affiliation(s)
- L Martín-González
- †Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - S Hatijah Mortan
- †Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - M Rosell
- ‡Departament de Crystal-lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028. Barcelona, Spain
| | - E Parladé
- §Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - M Martínez-Alonso
- §Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - N Gaju
- §Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - G Caminal
- ∥Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L Adrian
- ⊥Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, Germany
| | - E Marco-Urrea
- †Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| |
Collapse
|
5
|
Duque AF, Bessa VS, Castro PML. Bacterial community dynamics in a rotating biological contactor treating 2-fluorophenol-containing wastewater. ACTA ACUST UNITED AC 2014; 41:97-104. [DOI: 10.1007/s10295-013-1381-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
Abstract
Abstract
One of the main factors affecting the performance of rotating biological contactors (RBC) is the biofilm characteristics. Therefore, a deep understanding of the microbial population dynamics and structure of the biofilm is mandatory if optimization of organic matter and nutrients removal is targeted. This study focused on the effects of organic shock loads of 2-fluorophenol (2-FP) on the microbial diversity present in an RBC biofilm. The RBC was seeded with activated sludge from a conventional wastewater treatment plant and was operated during 496 days. During the first 126 days, the RBC was subjected to intermittent 2-FP shocks of 25 mg l−1 and no degradation occurred. Therefore, the reactor was subsequently augmented with a 2-FP-degrading strain (FP1). Afterwards, the RBC had a stable performance when subjected to 2-FP shocks up to 50 mg l−1 and to a starvation period, as indicated by removal of the compound. Denaturing gradient gel electrophoresis (DGGE) revealed large shifts in microbial communities present in the first and fifth stages, although no clear relation between the sample collection time and spatial factor was found. Phylogenetic affiliation of some predominant members was assessed by direct sequencing of correspondent DGGE bands. Affiliations to α-, β- and δ-Proteobacteria were found. Several bacterial strains isolated from the reactor showed capacity for 2-FP degradation. Strain FP1 was successfully recovered from the biofilm by plating and by DGGE, reinforcing that bioaugmentation was successfully achieved.
Collapse
Affiliation(s)
- Anouk F Duque
- grid.7831.d 000000010410653X Laboratório Associado, Escola Superior de Biotecnologia, CBQF, Centro de Biotecnologia e Química Fina Universidade Católica Portuguesa/Porto Rua Dr. António Bernardino Almeida 4200-072 Porto Portugal
| | - Vânia S Bessa
- grid.7831.d 000000010410653X Laboratório Associado, Escola Superior de Biotecnologia, CBQF, Centro de Biotecnologia e Química Fina Universidade Católica Portuguesa/Porto Rua Dr. António Bernardino Almeida 4200-072 Porto Portugal
| | - Paula M L Castro
- grid.7831.d 000000010410653X Laboratório Associado, Escola Superior de Biotecnologia, CBQF, Centro de Biotecnologia e Química Fina Universidade Católica Portuguesa/Porto Rua Dr. António Bernardino Almeida 4200-072 Porto Portugal
| |
Collapse
|
6
|
Zhang K, Cao X, Sheng Y, Cao H. Spatial distribution of bacterial community in EGSB reactor treating synthetic sulfate-containing wastewater at low organic loading rate. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-0043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring chloroflexi. Appl Environ Microbiol 2013; 80:808-18. [PMID: 24242248 DOI: 10.1128/aem.02927-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dehalococcoides mccartyi strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic, and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated a D. mccartyi cell increase during growth with 1,2-D and suggested that both D. mccartyi strains carried a single dcpA gene copy per genome. D. mccartyi strain RC and strain KS produced 1.8 × 10(7) ± 0.1 × 10(7) and 1.4 × 10(7) ± 0.5 × 10(7) cells per μmol of propene formed, respectively. The dcpA gene was identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which were captured by the dcpA gene-targeted qPCR assay, suggesting that the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites.
Collapse
|
8
|
Ding C, He J. Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. Microb Biotechnol 2012; 5:347-67. [PMID: 22070763 PMCID: PMC3821678 DOI: 10.1111/j.1751-7915.2011.00313.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022] Open
Abstract
Microbial treatment of environmental contamination by anthropogenic halogenated organic compounds has become popular in recent decades, especially in the subsurface environments. Molecular techniques such as polymerase chain reaction-based fingerprinting methods have been extensively used to closely monitor the presence and activities of dehalogenating microbes, which also lead to the discovery of new dehalogenating bacteria and novel functional genes. Nowadays, traditional molecular techniques are being further developed and optimized for higher sensitivity, specificity, and accuracy to better fit the contexts of dehalogenation. On the other hand, newly developed high throughput techniques, such as microarray and next-generation sequencing, provide unsurpassed detection ability, which has enabled large-scale comparative genomic and whole-genome transcriptomic analysis. The aim of this review is to summarize applications of various molecular tools in the field of microbially mediated dehalogenation of various halogenated organic compounds. It is expected that traditional molecular techniques and nucleic-acid-based biomarkers will still be favoured in the foreseeable future because of relative low costs and high flexibility. Collective analyses of metagenomic sequencing data are still in need of information from individual dehalogenating strains and functional reductive dehalogenase genes in order to draw reliable conclusions.
Collapse
Affiliation(s)
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
9
|
Han C, Mwirichia R, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin L, Pitluck S, Huntemann M, Liolios K, Ivanova N, Pagani I, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla EM, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC. Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyR). Stand Genomic Sci 2011; 4:371-80. [PMID: 21886864 PMCID: PMC3156405 DOI: 10.4056/sigs.2004684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Syntrophobotulus glycolicus Friedrich et al. 1996 is currently the only member of the genus Syntrophobotulus within the family Peptococcaceae. The species is of interest because of its isolated phylogenetic location in the genome-sequenced fraction of tree of life. When grown in pure culture with glyoxylate as carbon source the organism utilizes glyoxylate through fermentative oxidation, whereas, when grown in syntrophic co-culture with homoacetogenic or methanogenic bacteria, it is able to oxidize glycolate to carbon dioxide and hydrogen. No other organic or inorganic carbon source is utilized by S. glycolicus. The subdivision of the family Peptococcaceae into genera does not reflect the natural relationships, particularly regarding the genera most closely related to Syntrophobotulus. Both Desulfotomaculum and Pelotomaculum are paraphyletic assemblages, and the taxonomic classification is in significant conflict with the 16S rRNA data. S. glycolicus is already the ninth member of the family Peptococcaceae with a completely sequenced and publicly available genome. The 3,406,739 bp long genome with its 3,370 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
10
|
Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 2009; 75:2684-93. [PMID: 19270140 DOI: 10.1128/aem.02037-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dehalobacter and "Dehalococcoides" spp. were previously shown to be involved in the biotransformation of 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dichloroethane (1,2-DCA) to ethene in a mixed anaerobic enrichment culture. Here we report the further enrichment and characterization of a Dehalobacter sp. from this mixed culture in coculture with an Acetobacterium sp. Through a series of serial transfers and dilutions with acetate, H(2), and 1,2-DCA, a stable coculture of Acetobacterium and Dehalobacter spp. was obtained, where Dehalobacter grew during dechlorination. The isolated Acetobacterium strain did not dechlorinate 1,2-DCA. Quantitative PCR with specific primers showed that Dehalobacter cells did not grow in the absence of a chlorinated electron acceptor and that the growth yield with 1,2-DCA was 6.9 (+/-0.7) x 10(7) 16S rRNA gene copies/mumol 1,2-DCA degraded. PCR with degenerate primers targeting reductive dehalogenase genes detected three distinct Dehalobacter/Desulfitobacterium-type sequences in the mixed-parent culture, but only one of these was present in the 1,2-DCA-H(2) coculture. Reverse transcriptase PCR revealed the transcription of this dehalogenase gene specifically during the dechlorination of 1,2-DCA. The 1,2-DCA-H(2) coculture could dechlorinate 1,2-DCA but not 1,1,2-TCA, nor could it dechlorinate chlorinated ethenes. As a collective, the genus Dehalobacter has been show to dechlorinate many diverse compounds, but individual species seem to each have a narrow substrate range.
Collapse
|
11
|
Huang A, Chen H, Chen L, Dai Y, Zhao J. Effects of Cd(II) and cu(II) on microbial characteristics in 2-chlorophenol-degradation anaerobic bioreactors. J Environ Sci (China) 2008; 20:745-752. [PMID: 18763571 DOI: 10.1016/s1001-0742(08)62122-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effects of Cd2+ and Cu2+ at 300 mg/L on anaerobic microbial communities that degrade 2-cholorophenol (2-CP) were examined. Based on the polymerase chain reaction (PCR) of 16S rDNA, bacterial community diversity and archaeal community structure were analyzed with denaturing gradient gel electrophoresis (DGGE) and cloning, respectively. Degradation capabilities of the anaerobic microbial community were drastically abated and the degradation efficiency of 2-CP was reduced to 60% after shock by Cu2+ and Cd2+, respectively. The bacterial community structure was disturbed and the biodiversity was reduced after shock by Cu2+ and Cd2+ for 3 d. Some new metal-resistant microbes which could cope with the new condition appeared. The sequence analysis showed that there existed common Archaea species in control sludge and systems when treated with Cu2+ and Cd2+, such as Methanothrix soehngenii, Methanosaeta concilii, uncultured euryarchaeote, and so on. Both the abundance and diversity of archaeal species were altered with addition of Cd2+ and Cu2+ at high concentration. Although the abundance of the predominant archaeal species decreased with Cd2+ and Cu2+ addition for 3 d, they recovered to some extent after 10 d. The diversity of archaeal species was remarkably reduced after recovery for 10 d and the shift in archaeal composition seemed to be irreversible. The 2-CP-degradation anaerobic system was more sensitive to Cu2+ than Cd2+.
Collapse
Affiliation(s)
- Aiqun Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
12
|
Bedard DL, Ritalahti KM, Löffler FE. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl Environ Microbiol 2007; 73:2513-21. [PMID: 17308182 PMCID: PMC1855590 DOI: 10.1128/aem.02909-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial reductive dechlorination of commercial polychlorinated biphenyl (PCB) mixtures (e.g., Aroclors) in aquatic sediments is crucial to achieve detoxification. Despite extensive efforts over nearly two decades, the microorganisms responsible for Aroclor dechlorination remained elusive. Here we demonstrate that anaerobic bacteria of the Dehalococcoides group derived from sediment of the Housatonic River (Lenox, MA) simultaneously dechlorinate 64 PCB congeners carrying four to nine chlorines in Aroclor 1260 in the sediment-free JN cultures. Quantitative real-time PCR showed that the Dehalococcoides cell titer in JN cultures amended with acetate and hydrogen increased from 7.07 x 10(6) +/- 0.42 x 10(6) to 1.67 x 10(8) +/- 0.04 x 10(8) cells/ml, concomitant with a 64.2% decrease of the PCBs with six or more chlorines in Aroclor 1260. No Dehalococcoides growth occurred in parallel cultures without PCBs. Aroclor 1260 dechlorination supported the growth of 9.25 x 10(8) +/- 0.04 x 10(8) Dehalococcoides cells per mumol of chlorine removed. 16S rRNA gene-targeted PCR analysis of known dechlorinators (i.e., Desulfitobacterium, Dehalobacter, Desulfuromonas, Sulfurospirillum, Anaeromyxobacter, Geobacter, and o-17/DF-1-type Chloroflexi organisms) ruled out any involvement of these bacterial groups in the dechlorination. Our results suggest that the Dehalococcoides population present in the JN cultures also catalyzes in situ dechlorination of Aroclor 1260 in the Housatonic River. The identification of Dehalococcoides organisms as catalysts of extensive Aroclor 1260 dechlorination and our ability to propagate the JN cultures under defined conditions offer opportunities to study the organisms' ecophysiology, elucidate nutritional requirements, identify reductive dehalogenase genes involved in PCB dechlorination, and design molecular tools required for bioremediation applications.
Collapse
MESH Headings
- Aroclors/metabolism
- Base Sequence
- Chlorine/metabolism
- Chloroflexi/classification
- Chloroflexi/isolation & purification
- Chloroflexi/metabolism
- Colony Count, Microbial
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Geologic Sediments/microbiology
- Massachusetts
- Molecular Sequence Data
- Polychlorinated Biphenyls/metabolism
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 16S/genetics
- Rivers/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Water Microbiology
Collapse
Affiliation(s)
- Donna L Bedard
- Department of Biology, SC 1W14, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | | | |
Collapse
|
13
|
Bowman KS, Moe WM, Rash BA, Bae HS, Rainey FA. Bacterial diversity of an acidic Louisiana groundwater contaminated by dense nonaqueous-phase liquid containing chloroethanes and other solvents. FEMS Microbiol Ecol 2006; 58:120-33. [PMID: 16958913 DOI: 10.1111/j.1574-6941.2006.00146.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial concentration and diversity was assessed in a moderately acidic (pH 5.1) anaerobic groundwater contaminated by chlorosolvent-containing DNAPL at a Superfund site located near Baton Rouge, Louisiana. Groundwater analysis revealed a total aqueous-phase chlorosolvent concentration exceeding 1000 mg L(-1), including chloroethanes, vinyl chloride, 1,2-dichloropropane, and hexachloro-1,3-butadiene as the primary contaminants. Direct counting of stained cells revealed more than 3 x 10(7) cells mL(-1) in the groundwater, with 58% intact and potentially viable. Universal and 'Dehalococcoides'-specific 16S rRNA gene libraries were created and analyzed. Universal clones were grouped into 18 operational taxonomic units (OTUs), which were dominated by low-G+C Gram-positive bacteria (62%) and included several as yet uncultured or undescribed organisms. Several unique 16S rRNA gene sequences closely related to Dehalococcoides ethenogenes were detected. Anaerobically grown isolates (168 in total) were also sequenced. These were phylogenetically grouped into 18 OTUs, of which only three were represented in the clone library. Phylogenetic analysis of isolates and the clone sequences revealed close relationships with dechlorinators, fermenters, and hydrogen producers. Despite acidic conditions and saturation or near-saturation chlorosolvent concentrations, the data presented here demonstrate that large numbers of novel bacteria are present in groundwater within the DNAPL source zone, and the population appears to contain bacterial components necessary to carry out reductive dechlorination.
Collapse
Affiliation(s)
- Kimberly S Bowman
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
14
|
Grostern A, Edwards EA. A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 2006; 72:7849-56. [PMID: 17056695 PMCID: PMC1694251 DOI: 10.1128/aem.01269-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,1,1-trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter proliferated during dechlorination. Dehalobacter growth was dechlorination dependent, whereas Desulfovibrio growth was dechlorination independent. Experiments were also performed to test whether MS could enhance TCE degradation in the presence of inhibiting levels of 1,1,1-TCA. Dechlorination of cis-dichloroethene (cDCE) and vinyl chloride (VC) in KB-1, a chloroethene-degrading culture used for bioaugmentation, was inhibited with 1,1,1-TCA present. When KB-1 and MS were coinoculated, degradation of cDCE and VC to ethene proceeded as soon as the 1,1,1-TCA was dechlorinated to 1,1-DCA by MS. This demonstrated the potential application of the MS and KB-1 cultures for cobioaugmentation of sites cocontaminated with 1,1,1-TCA and TCE.
Collapse
Affiliation(s)
- Ariel Grostern
- Department of cell and Systems Biology, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | | |
Collapse
|
15
|
Yan T, LaPara TM, Novak PJ. The effect of varying levels of sodium bicarbonate on polychlorinated biphenyl dechlorination in Hudson River sediment cultures. Environ Microbiol 2006; 8:1288-98. [PMID: 16817937 PMCID: PMC1945130 DOI: 10.1111/j.1462-2920.2006.01037.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The addition of different concentrations of sodium bicarbonate had a profound effect on 2,3,4,5-chlorobiphenyl (2,3,4,5-CB) dechlorination in Hudson River sediment cultures. The most extensive dechlorination was observed in cultures to which 100 mg l(-1) bicarbonate was added. Cultures amended with 1000 mg l(-1) bicarbonate had the least extensive dechlorination, with 2,4-CB and 2,5-CB as predominant end-products. A significant loss of total chlorinated biphenyl mass was observed in cultures to which < or = 500 mg l(-1) bicarbonate was added, suggesting that degradation beyond chlorinated biphenyls occurred. The dynamics of acetate formation were different among the treatments, with high acetate concentrations detected throughout the 303-day experiment in cultures to which 1000 mg l(-1) bicarbonate had been added. Sodium bicarbonate addition also had a significant impact on bacterial community structure as detected by polymerase chain reaction-denaturant gradient gel electrophoresis (PCR-DGGE) of 16S rRNA gene fragments. Three putative polychlorinated biphenyl (PCB) dechlorinators were identified; one Dehalococcoides-like population was detected in all enrichment cultures, whereas two Dehalobacter-like populations were only detected in the enrichment cultures with the most extensive dechlorination. These results suggest that the availability of bicarbonate, and potentially sodium, may affect PCB dechlorination in Hudson River sediment and thus need to be taken into consideration when assessing the fate of PCBs or implementing bioremediation.
Collapse
Affiliation(s)
| | | | - Paige J. Novak
- *For correspondence. E-mail ; Tel. (+1) 612 626 9846; Fax (+1) 612 626 7750
| |
Collapse
|
16
|
Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 2006; 72:2765-74. [PMID: 16597981 PMCID: PMC1449079 DOI: 10.1128/aem.72.4.2765-2774.2006] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16S rRNA gene provides insufficient information to infer the range of chloroorganic electron acceptors used by different Dehalococcoides organisms. To overcome this limitation and provide enhanced diagnostic tools for growth measurements, site assessment, and bioremediation monitoring, a quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes and three Dehalococcoides reductive dehalogenase (RDase) genes with assigned function (i.e., tceA, bvcA, and vcrA) was designed and evaluated. qPCR standard curves generated for the RDase genes by use of genomic DNA from Dehalococcoides pure cultures correlated with standard curves obtained for both Bacteria- and Dehalococcoides-targeted 16S rRNA genes, suggesting that the RDase genes are useful targets for quantitative assessment of Dehalococcoides organisms. RDase gene probe/primer pairs were specific for the Dehalococcoides strains known to carry the diagnostic RDase gene sequences, and the qPCR method allowed the detection of as few as 1 to 20 and quantification of as few as 50 to 100 tceA, bvcA, or vcrA gene targets per PCR volume. The qPCR approach was applied to dechlorinating enrichment cultures, microcosms, and samples from a contaminated site. In characterized enrichment cultures where known Dehalococcoides strains were enumerated, the sum of the three RDase genes equaled the total Dehalococcoides cell numbers. In site samples and chloroethane-dechlorinating microcosms, the sum of the three RDase genes was much less than that predicted by Dehalococcoides-targeted qPCR, totaling 10 to 30% of the total Dehalococcoides cell numbers. Hence, a large number of Dehalococcoides spp. contain as-yet-unidentified RDase genes, indicating that our current understanding of the dechlorinating Dehalococcoides community is incomplete.
Collapse
Affiliation(s)
- Kirsti M Ritalahti
- Georgia Institute of Technology, School of Civil and Environmental Engineering, 311 Ferst Drive, 3230 ES&T Building, Atlanta, GA 30332-0512, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Grostern A, Edwards EA. Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 2006; 72:428-36. [PMID: 16391074 PMCID: PMC1352275 DOI: 10.1128/aem.72.1.428-436.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two genera of anaerobic bacteria that are known to respire with chlorinated ethenes, were detected through cloning of bacterial 16S rRNA genes. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments after starvation and subsequent reamendment of culture with 1,2-DCA showed that the Dehalobacter sp. grew during the dichloroelimination of 1,2-DCA to ethene, implicating this organism in degradation of 1,2-DCA in these cultures. Species-specific real-time quantitative PCR was further used to monitor proliferation of Dehalobacter and Dehalococcoides during the degradation of chlorinated ethanes and showed that in fact both microorganisms grew simultaneously during the degradation of 1,2-DCA. Conversely, Dehalobacter grew during the dichloroelimination of 1,1,2-TCA to vinyl chloride (VC) but not during the subsequent reductive dechlorination of VC to ethene, whereas Dehalococcoides grew only during the reductive dechlorination of VC but not during the dichloroelimination of 1,1,2-TCA. This demonstrated that in mixed cultures containing multiple dechlorinating microorganisms, these organisms can have either competitive or complementary dechlorination activities, depending on the chloro-organic substrate.
Collapse
Affiliation(s)
- Ariel Grostern
- Department of Botany, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | | |
Collapse
|
18
|
Ritalahti KM, Löffler FE. Populations implicated in anaerobic reductive dechlorination of 1,2-dichloropropane in highly enriched bacterial communities. Appl Environ Microbiol 2004; 70:4088-95. [PMID: 15240287 PMCID: PMC444787 DOI: 10.1128/aem.70.7.4088-4095.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,2-Dichloropropane (1,2-D), a widespread groundwater contaminant, can be reductively dechlorinated to propene by anaerobic bacteria. To shed light on the populations involved in the detoxification process, a comprehensive 16S rRNA gene-based bacterial community analysis of two enrichment cultures derived from geographically distinct locations was performed. Analysis of terminal restriction fragments, amplicons obtained with dechlorinator-specific PCR primers, and enumeration with quantitative real-time PCR as well as screening clone libraries all implied that Dehalococcoides populations were involved in 1,2-D dechlorination in both enrichment cultures. Physiological traits (e.g., dechlorination in the presence of ampicillin and a requirement for hydrogen as the electron donor) supported the involvement of Dehalococcoides populations in the dechlorination process. These findings expand the spectrum of chloroorganic compounds used by Dehalococcoides species as growth-supporting electron acceptors. The combined molecular approach allowed a comparison between different 16S rRNA gene-based approaches for the detection of Dehalococcoides populations.
Collapse
Affiliation(s)
- Kirsti M Ritalahti
- School of Civil and Environmental Engineering, 311 Ferst Dr., 3228 ES&T Building, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | | |
Collapse
|
19
|
Skovhus TL, Ramsing NB, Holmström C, Kjelleberg S, Dahllöf I. Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl Environ Microbiol 2004; 70:2373-82. [PMID: 15066834 PMCID: PMC383141 DOI: 10.1128/aem.70.4.2373-2382.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A real-time quantitative PCR (RTQ-PCR) method for measuring the abundance of Pseudoalteromonas species in marine samples is presented. PCR primers targeting a Pseudoalteromonas-specific region of the 16S rRNA gene were tested at three different levels using database searches (in silico), a selection of pure cultures (in vitro), and a combined denaturing gradient gel electrophoresis and cloning approach on environmental DNA (in situ). The RTQ-PCR method allowed for the detection of SYBR Green fluorescence from double-stranded DNA over a linear range spanning six orders of magnitude. The detection limit was determined as 1.4 fg of target DNA (1,000 gene copies) measured in the presence of 20 ng of nontarget DNA from salmon testes. In this study, we discuss the importance of robust post-PCR analyses to overcome pitfalls in RTQ-PCR when samples from different complex marine habitats are analyzed and compared on a nonroutine basis. Representatives of the genus Pseudoalteromonas were detected in samples from all investigated habitats, suggesting a widespread distribution of this genus across many marine habitats (e.g., seawater, rocks, macroalgae, and marine animals). Three sample types were analyzed by RTQ-PCR to determine the relative abundance of Pseudoalteromonas ribosomal DNA (rDNA) compared to the total abundance of eubacterial rDNA. The rDNA fractions of Pseudoalteromonas compared to all Eubacteria were 1.55% on the green alga Ulva lactuca, 0.10% on the tunicate Ciona intestinalis, and 0.06% on the green alga Ulvaria fusca.
Collapse
Affiliation(s)
- Torben L Skovhus
- Department of Microbial Ecology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
20
|
De Wildeman S, Diekert G, Van Langenhove H, Verstraete W. Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl Environ Microbiol 2003; 69:5643-7. [PMID: 12957955 PMCID: PMC194954 DOI: 10.1128/aem.69.9.5643-5647.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C(2) groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.
Collapse
Affiliation(s)
- Stefaan De Wildeman
- Laboratory for Microbial Ecology and Technology, Ghent University, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz LR. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 2003; 69:5609-21. [PMID: 12957951 PMCID: PMC194924 DOI: 10.1128/aem.69.9.5609-5621.2003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 06/25/2003] [Indexed: 11/20/2022] Open
Abstract
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.
Collapse
Affiliation(s)
- Mostafa S Elshahed
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | | | | | | | | | |
Collapse
|