1
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
2
|
Kurt F, Leventhal GE, Spalinger MR, Anthamatten L, Rogalla von Bieberstein P, Menzi C, Reichlin M, Meola M, Rosenthal F, Rogler G, Lacroix C, de Wouters T. Co-cultivation is a powerful approach to produce a robust functionally designed synthetic consortium as a live biotherapeutic product (LBP). Gut Microbes 2023; 15:2177486. [PMID: 36794804 PMCID: PMC9980632 DOI: 10.1080/19490976.2023.2177486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The success of fecal microbiota transplants (FMT) has provided the necessary proof-of-concept for microbiome therapeutics. Yet, feces-based therapies have many associated risks and uncertainties, and hence defined microbial consortia that modify the microbiome in a targeted manner have emerged as a promising safer alternative to FMT. The development of such live biotherapeutic products has important challenges, including the selection of appropriate strains and the controlled production of the consortia at scale. Here, we report on an ecology- and biotechnology-based approach to microbial consortium construction that overcomes these issues. We selected nine strains that form a consortium to emulate the central metabolic pathways of carbohydrate fermentation in the healthy human gut microbiota. Continuous co-culturing of the bacteria produces a stable and reproducible consortium whose growth and metabolic activity are distinct from an equivalent mix of individually cultured strains. Further, we showed that our function-based consortium is as effective as FMT in counteracting dysbiosis in a dextran sodium sulfate mouse model of acute colitis, while an equivalent mix of strains failed to match FMT. Finally, we showed robustness and general applicability of our approach by designing and producing additional stable consortia of controlled composition. We propose that combining a bottom-up functional design with continuous co-cultivation is a powerful strategy to produce robust functionally designed synthetic consortia for therapeutic use.
Collapse
Affiliation(s)
- Fabienne Kurt
- PharmaBiome AG, Schlieren, Switzerland
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Marianne Rebecca Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Anthamatten
- PharmaBiome AG, Schlieren, Switzerland
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol 2019; 16:733-747. [PMID: 31520080 DOI: 10.1038/s41575-019-0193-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
The inner workings of the intestines, in which the body and microbiome intersect to influence gut function and systemic health, remain elusive. Carbon dioxide, hydrogen, methane and hydrogen sulfide, as well as a variety of trace gases, are generated by the chemical interactions and microbiota within the gut. Profiling of these intestinal gases and their responses to dietary changes can reveal the products and functions of the gut microbiota and their influence on human health. Indeed, different tools for measuring these intestinal gases have been developed, including newly developed gas-sensing capsule technology. Gases can, according to their type, concentration and volume, induce or relieve abdominal symptoms, and might also have physiological, pathogenic and therapeutic effects. Thus, profiling and modulating intestinal gases could be powerful tools for disease prevention and/or therapy. As the interactions between the microbiota, chemical constituents and fermentative substrates of the gut are principally influenced by dietary intake, altering the diet, which, in turn, changes gas profiles, is the main therapeutic approach for gastrointestinal disorders. An improved understanding of the complex interactions within the intestines that generate gases will enhance our ability to prevent, diagnose, treat and monitor many gastrointestinal disorders.
Collapse
|
4
|
Gupta S, Lokesh J, Abdelhafiz Y, Siriyappagouder P, Pierre R, Sørensen M, Fernandes JMO, Kiron V. Macroalga-Derived Alginate Oligosaccharide Alters Intestinal Bacteria of Atlantic Salmon. Front Microbiol 2019; 10:2037. [PMID: 31572312 PMCID: PMC6753961 DOI: 10.3389/fmicb.2019.02037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023] Open
Abstract
Prebiotics are substrates intended to sculpt gut microbial communities as they are selectively utilized by the microorganisms to exert beneficial health effects on hosts. Macroalga-derived oligosaccharides are candidate prebiotics, and herein, we determined the effects of Laminaria sp.-derived alginate oligosaccharide (AlgOS) on the distal intestinal microbiota of Atlantic salmon (Salmo salar). Using a high-throughput 16S rRNA gene amplicon sequencing technique, we investigated the microbiota harbored in the intestinal content and mucus of the fish offered feeds supplemented with 0.5 and 2.5% AlgOS. We found that the prebiotic shifts the intestinal microbiota profile; alpha diversity was significantly reduced with 2.5% AlgOS while with 0.5% AlgOS the alteration occurred without impacting the bacterial diversity. Beta diversity analysis indicated the significant differences between control and prebiotic-fed groups. The low supplementation level of AlgOS facilitated the dominance of Proteobacteria (including Photobacterium phosphoreum, Aquabacterium parvum, Achromobacter insolitus), and Spirochaetes (Brevinema andersonii) in the content or mucus of the fish, and few of these bacteria (Aliivibrio logei, A. parvum, B. andersonii, A. insolitus) have genes associated with butyrate production. The results indicate that the low inclusion of AlgOS can plausibly induce a prebiotic effect on the distal intestinal microbiota of Atlantic salmon. These findings can generate further interest in the potential of macroalgae-derived oligosaccharides for food and feed applications.
Collapse
Affiliation(s)
- Shruti Gupta
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ronan Pierre
- CEVA (Centre d'Etude et de Valorisation des Algues), Pleubian, France
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
5
|
Cream Cheese-Derived Lactococcus chungangensis CAU 28 Modulates the Gut Microbiota and Alleviates Atopic Dermatitis in BALB/c Mice. Sci Rep 2019; 9:446. [PMID: 30679532 PMCID: PMC6345912 DOI: 10.1038/s41598-018-36864-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Atopic dermatitis (AD) has a drastic impact on human health owing to complex skin, gut microbiota, and immune responses. Some lactic acid bacteria (LAB) are effective in ameliorating AD; however, the alleviative effects of dairy products derived from these LAB remain unclear. In this study, the efficacies of Lactococcus chungangensis CAU 28 (CAU 28) cream cheese and L. chungangensis CAU 28 dry cells were evaluated for treating AD in an AD mouse model. Overall, CAU 28 cream cheese administration was more effective against AD than L. chungangensis CAU 28 dry cells. Faeces from CAU 28 cream cheese-administered mice had increased short chain fatty acid, butyrate, acetate, and lactic acid levels, as well as butyrate-producing bacteria, including Akkermansia, Bacteroides, Lactobacillus, and Ruminococcus. Furthermore, oral CAU 28 cream cheese administration resulted in regulatory T cell (Treg)-mediated suppression of T helper type 2 (Th2) immune responses in serum and mRNA expression levels in the ileum. Oral CAU 28 cream cheese further reduced IgE levels, in addition to eosinophil and mast cell numbers. Therefore, CAU 28 cream cheese administration induced a coordinated immune response involving short-chain fatty acids and gut microbiota, indicating its potential for use as a supplement for AD mitigation.
Collapse
|
6
|
Abstract
Hydrogen plays a key role in many microbial metabolic pathways in the human gastrointestinal tract (GIT) that have an impact on human nutrition, health and wellbeing. Hydrogen is produced by many members of the GIT microbiota, and may be subsequently utilized by cross-feeding microbes for growth and in the production of larger molecules. Hydrogenotrophic microbes fall into three functional groups: sulfate-reducing bacteria, methanogenic archaea and acetogenic bacteria, which can convert hydrogen into hydrogen sulfide, methane and acetate, respectively. Despite different energy yields per molecule of hydrogen used between the functional groups, all three can coexist in the human GIT. The factors affecting the numerical balance of hydrogenotrophs in the GIT remain unconfirmed. There is increasing evidence linking both hydrogen sulfide and methane to GIT diseases such as irritable bowel syndrome, and strategies for the mitigation of such health problems through targeting of hydrogenotrophs constitute an important field for further investigation.
Collapse
Affiliation(s)
- Nick W. Smith
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand,AgResearch, Grasslands Research Centre, Palmerston North, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Paul R. Shorten
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand,CONTACT Paul R. Shorten AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - Eric H. Altermann
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nicole C. Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand,Riddet Institute, Massey University, Palmerston North, New Zealand,High-Value Nutrition National Science Challenge, hosted by The University of Auckland, Auckland, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Segura A, Auffret P, Bibbal D, Bertoni M, Durand A, Jubelin G, Kérourédan M, Brugère H, Bertin Y, Forano E. Factors Involved in the Persistence of a Shiga Toxin-Producing Escherichia coli O157:H7 Strain in Bovine Feces and Gastro-Intestinal Content. Front Microbiol 2018; 9:375. [PMID: 29593666 PMCID: PMC5854682 DOI: 10.3389/fmicb.2018.00375] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/19/2018] [Indexed: 11/28/2022] Open
Abstract
Healthy cattle are the primary reservoir for O157:H7 Shiga toxin-producing E. coli responsible for human food-borne infections. Because farm environment acts as a source of cattle contamination, it is important to better understand the factors controlling the persistence of E. coli O157:H7 outside the bovine gut. The E. coli O157:H7 strain MC2, identified as a persistent strain in French farms, possessed the characteristics required to cause human infections and genetic markers associated with clinical O157:H7 isolates. Therefore, the capacity of E. coli MC2 to survive during its transit through the bovine gastro-intestinal tract (GIT) and to respond to stresses potentially encountered in extra-intestinal environments was analyzed. E. coli MC2 survived in rumen fluids, grew in the content of posterior digestive compartments and survived in bovine feces at 15°C predicting a successful transit of the bacteria along the bovine GIT and its persistence outside the bovine intestine. E. coli MC2 possessed the genetic information encoding 14 adherence systems including adhesins with properties related to colonization of the bovine intestine (F9 fimbriae, EhaA and EspP autotransporters, HCP pilus, FdeC adhesin) reflecting the capacity of the bacteria to colonize different segments of the bovine GIT. E. coli MC2 was also a strong biofilm producer when incubated in fecal samples at low temperature and had a greater ability to form biofilms than the bovine commensal E. coli strain BG1. Furthermore, in contrast to BG1, E. coli MC2 responded to temperature stresses by inducing the genes cspA and htrA during its survival in bovine feces at 15°C. E. coli MC2 also activated genes that are part of the GhoT/GhoS, HicA/HicB and EcnB/EcnA toxin/antitoxin systems involved in the response of E. coli to nutrient starvation and chemical stresses. In summary, the large number of colonization factors known to bind to intestinal epithelium and to biotic or abiotic surfaces, the capacity to produce biofilms and to activate stress fitness genes in bovine feces could explain the persistence of E. coli MC2 in the farm environment.
Collapse
Affiliation(s)
- Audrey Segura
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pauline Auffret
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Delphine Bibbal
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Marine Bertoni
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Alexandra Durand
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Grégory Jubelin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Monique Kérourédan
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Hubert Brugère
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Yolande Bertin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Evelyne Forano
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
8
|
Shortt C, Hasselwander O, Meynier A, Nauta A, Fernández EN, Putz P, Rowland I, Swann J, Türk J, Vermeiren J, Antoine JM. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr 2017; 57:25-49. [PMID: 29086061 PMCID: PMC5847024 DOI: 10.1007/s00394-017-1546-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE There is considerable interest in the effects of the intestinal microbiota (IM) composition, its activities in relation with the metabolism of dietary substrates and the impact these effects may have in the development and prevention of certain non-communicable diseases. It is acknowledged that a complex interdependence exists between the IM and the mammalian host and that the IM possesses a far greater diversity of genes and repertoire of metabolic and enzymatic capabilities than their hosts. However, full knowledge of the metabolic activities and interactions of the IM and the functional redundancy that may exist are lacking. Thus, the current review aims to assess recent literature relating to the role played by the IM in the absorption and metabolism of key nutrients and non-nutrients. METHODS A systematic review (PROSPERO registration: CRD42015019087) was carried out focussing on energy and the following candidate dietary substrates: protein, carbohydrate, fat, fibre, resistant starch (RS), and polyphenols to further understand the effect of the IM on the dietary substrates and the resulting by-products and host impacts. Particular attention was paid to the characterisation of the IM which are predominantly implicated in each case, changes in metabolites, and indirect markers and any potential impacts on the host. RESULTS Studies show that the IM plays a key role in the metabolism of the substrates studied. However, with the exception of studies focusing on fibre and polyphenols, there have been relatively few recent human studies specifically evaluating microbial metabolism. In addition, comparison of the effects of the IM across studies was difficult due to lack of specific analysis/description of the bacteria involved. Considerable animal-derived data exist, but experience suggests that care must be taken when extrapolating these results to humans. Nevertheless, it appears that the IM plays a role in energy homeostasis and that protein microbial breakdown and fermentation produced ammonia, amines, phenols and branch chain fatty acids, and a greater diversity in the microbes present. Few recent studies appear to have evaluated the effect of the IM composition and metabolism per se in relation with digestible dietary carbohydrate or fat in humans. Intakes of RS and prebiotics altered levels of specific taxa that selectively metabolised specific prebiotic/carbohydrate-type substances and levels of bifidobacteria and lactobacilli were observed to increase. In controlled human studies, consistent data exist that show a correlation between the intake of fibre and an increase in bifidobacteria and short-chain fatty acids, in particular butyrate, which leads to lower intestinal pH. Dietary polyphenols rely on modification either by host digestive enzymes or those derived from the IM for absorption to occur. In the polyphenol-related studies, a large amount of inter-individual variation was observed in the microbial metabolism and absorption of certain polyphenols. CONCLUSIONS The systematic review demonstrates that the IM plays a major role in the breakdown and transformation of the dietary substrates examined. However, recent human data are limited with the exception of data from studies examining fibres and polyphenols. Results observed in relation with dietary substrates were not always consistent or coherent across studies and methodological limitations and differences in IM analyses made comparisons difficult. Moreover, non-digestible components likely to reach the colon are often not well defined or characterised in studies making comparisons between studies difficult if not impossible. Going forward, further rigorously controlled randomised human trials with well-defined dietary substrates and utilizing omic-based technologies to characterise and measure the IM and their functional activities will advance the field. Current evidence suggests that more detailed knowledge of the metabolic activities and interactions of the IM hold considerable promise in relation with host health.
Collapse
Affiliation(s)
- Colette Shortt
- Johnson & Johnson EAME, Foundation Park, Maidenhead, SL6 3UG, UK.
| | - Oliver Hasselwander
- DuPont Nutrition and Health, c/o Danisco (UK) Ltd., 43 London Road, Reigate, Surrey, RH2 9PW, UK
| | | | - Arjen Nauta
- FrieslandCampina, Stationsplein 4, 3818 LE, Amersfoort, The Netherlands
| | | | - Peter Putz
- University of Applied Sciences, FH Campus Wien, 1100, Vienna, Austria
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Jonathan Swann
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jessica Türk
- Yakult Germany, Forumstraße 2, 41468, Neuss, Germany
| | - Joan Vermeiren
- Cargill R&D Centre Europe, Havenstraat 84, 1800, Vilvoorde, Belgium
| | | |
Collapse
|
9
|
Yang X, Liu L, Chen J, Xiao A. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice. Toxins (Basel) 2017; 9:toxins9100317. [PMID: 29023377 PMCID: PMC5666364 DOI: 10.3390/toxins9100317] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
In order to investigate the influence of aflatoxin B1 (AFB1) on intestinal bacterial flora, 24 Kunming mice (KM mice) were randomly placed into four groups, which were labeled as control, low-dose, medium-dose, and high-dose groups. They were fed intragastrically with 0.4 mL of 0 mg/L, 2.5 mg/L, 4 mg/L, or 10 mg/L of AFB1 solutions, twice a day for 2 months. The hypervariable region V3 + V4 on 16S rDNA of intestinal bacterial flora was sequenced by the use of a high-flux sequencing system on a Miseq Illumina platform; then, the obtained sequences were analyzed. The results showed that, when compared with the control group, both genera and phyla of intestinal bacteria in the three treatment groups decreased. About one third of the total genera and one half of the total phyla remained in the high-dose group. The dominant flora were Lactobacillus and Bacteroides in all groups. There were significant differences in the relative abundance of intestinal bacterial flora among groups. Most bacteria decreased as a whole from the control to the high-dose groups, but several beneficial and pathogenic bacterial species increased significantly with increasing dose of AFB1. Thus, the conclusion was that intragastric feeding with 2.5~10 mg/mL AFB1 for 2 months could decrease the majority of intestinal bacterial flora and induce the proliferation of some intestinal bacteria flora.
Collapse
Affiliation(s)
- Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Jing Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
10
|
Patrascu O, Béguet-Crespel F, Marinelli L, Le Chatelier E, Abraham AL, Leclerc M, Klopp C, Terrapon N, Henrissat B, Blottière HM, Doré J, Béra-Maillet C. A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep 2017; 7:40248. [PMID: 28091525 PMCID: PMC5238381 DOI: 10.1038/srep40248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
The digestion of dietary fibers is a major function of the human intestinal microbiota. So far this function has been attributed to the microorganisms inhabiting the colon, and many studies have focused on this distal part of the gastrointestinal tract using easily accessible fecal material. However, microbial fermentations, supported by the presence of short-chain fatty acids, are suspected to occur in the upper small intestine, particularly in the ileum. Using a fosmid library from the human ileal mucosa, we screened 20,000 clones for their activities against carboxymethylcellulose and xylans chosen as models of the major plant cell wall (PCW) polysaccharides from dietary fibres. Eleven positive clones revealed a broad range of CAZyme encoding genes from Bacteroides and Clostridiales species, as well as Polysaccharide Utilization Loci (PULs). The functional glycoside hydrolase genes were identified, and oligosaccharide break-down products examined from different polysaccharides including mixed-linkage β-glucans. CAZymes and PULs were also examined for their prevalence in human gut microbiome. Several clusters of genes of low prevalence in fecal microbiome suggested they belong to unidentified strains rather specifically established upstream the colon, in the ileum. Thus, the ileal mucosa-associated microbiota encompasses the enzymatic potential for PCW polysaccharide degradation in the small intestine.
Collapse
Affiliation(s)
- Orlane Patrascu
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Fabienne Béguet-Crespel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Ludovica Marinelli
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Anne-Laure Abraham
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marion Leclerc
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | - Nicolas Terrapon
- CNRS UMR 7257, Université Aix-Marseille, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Université Aix-Marseille, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Metagenopolis, INRA, 78350 Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Metagenopolis, INRA, 78350 Jouy-en-Josas, France
| | - Christel Béra-Maillet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
11
|
Pham VT, Lacroix C, Braegger CP, Chassard C. Early colonization of functional groups of microbes in the infant gut. Environ Microbiol 2016; 18:2246-58. [PMID: 27059115 DOI: 10.1111/1462-2920.13316] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/26/2016] [Indexed: 12/14/2022]
Abstract
The colonization of the infant gut is crucial for early life development. Although the composition and diversity of the infant gut microbiota (GM) has been well described at a taxonomic level, functional aspects of this ecosystem remain unexplored. In the infant gut, lactate is produced by a number of bacteria and plays an important role in the trophic chain of the fermentation process. However, little is known about the lactate-utilizing bacteria (LUB) community in infants and their impact on gut health. By combining culture-based and molecular methods, we intensively studied LUB in fecal samples of 40 healthy infants on both taxonomic and functional levels. We demonstrated metabolic cross-feeding of lactate and identified keystone species specified for lactate utilization. The interactions of such species and their metabolic outcome could have direct impacts on infant health, either beneficial (production of short chain fatty acids) or detrimental (accumulation of hydrogen or hydrogen sulfide). We identified mode of delivery as a strong determinant for lactate-producing and -utilizing bacteria levels. These findings present the early establishment of GM with a novel perspective and emphasize the importance of lactate utilization in infancy.
Collapse
Affiliation(s)
- Van T Pham
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH, Zurich, 8092, Zurich, Switzerland.,Division of Gastroenterology and Nutrition and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH, Zurich, 8092, Zurich, Switzerland
| | - Christian P Braegger
- Division of Gastroenterology and Nutrition and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH, Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
12
|
Yap TWC, Gan HM, Lee YP, Leow AHR, Azmi AN, Francois F, Perez-Perez GI, Loke MF, Goh KL, Vadivelu J. Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. PLoS One 2016; 11:e0151893. [PMID: 26991500 PMCID: PMC4798770 DOI: 10.1371/journal.pone.0151893] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome. Methods As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18–30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline. Results We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000–170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders. Conclusions Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.
Collapse
Affiliation(s)
- Theresa Wan-Chen Yap
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Han-Ming Gan
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yin-Peng Lee
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Alex Hwong-Ruey Leow
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Najib Azmi
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 55100, Kuala Lumpur, Malaysia
| | - Fritz Francois
- New York University Cancer Institute, New York, NY, 10016, United States of America
- Department of Medicine, New York University School of Medicine, New York, NY 10016, United States of America
| | - Guillermo I. Perez-Perez
- Department of Medicine, New York University School of Medicine, New York, NY 10016, United States of America
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, United States of America
| | - Mun-Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
13
|
Ringel-Kulka T, Choi CH, Temas D, Kim A, Maier DM, Scott K, Galanko JA, Ringel Y. Altered Colonic Bacterial Fermentation as a Potential Pathophysiological Factor in Irritable Bowel Syndrome. Am J Gastroenterol 2015; 110:1339-46. [PMID: 26303129 PMCID: PMC4983766 DOI: 10.1038/ajg.2015.220] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/20/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Dysbiosis leading to abnormal intestinal fermentation has been suggested as a possible etiological mechanism in irritable bowel syndrome (IBS). We aimed to investigate the location and magnitude of altered intestinal bacterial fermentation in IBS and its clinical subtypes. METHODS IBS patients who satisfied the Rome III criteria (114) and 33 healthy controls (HC) were investigated. Intestinal fermentation was assessed using two surrogate measures: intestinal intraluminal pH and fecal short-chain fatty acids (SCFAs). Intraluminal pH and intestinal transit times were measured in the small and large bowel using a wireless motility capsule (SmartPill) in 47 IBS and 10 HC. Fecal SCFAs including acetate, propionate, butyrate, and lactate were analyzed by capillary gas chromatography in all enrolled subjects. Correlations between intestinal pH, fecal SCFAs, intestinal transit time, and IBS symptom scores were analyzed. RESULTS Colonic intraluminal pH levels were significantly lower in IBS patients compared with HC (total colonic pH, 6.8 for IBS vs. 7.3 for HC, P=0.042). There were no differences in total and segmental pH levels in the small bowel between IBS patients and HC (6.8 vs. 6.8, P=not significant). The intraluminal colonic pH differences were consistent in all IBS subtypes. Total SCFA level was significantly lower in C-IBS patients than in D-IBS and M-IBS patients and HC. The total SCFA level in all IBS subjects was similar with that of HC. Colonic pH levels correlated positively with colon transit time (CTT) and IBS symptoms severity. Total fecal SCFAs levels correlated negatively with CTT and positively with stool frequency. CONCLUSIONS Colonic intraluminal pH is decreased, suggesting higher colonic fermentation, in IBS patients compared with HC. Fecal SCFAs are not a sensitive marker to estimate intraluminal bacterial fermentation.
Collapse
Affiliation(s)
- Tamar Ringel-Kulka
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Chang Hwan Choi
- Division of Gastroenterology and Hepatology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Daniel Temas
- Division of Gastroenterology and Hepatology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ari Kim
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Obstetrics and Gynecology, Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Republic of Korea
| | - Daniele M Maier
- Division of Gastroenterology and Hepatology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karen Scott
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Joseph A Galanko
- Division of Gastroenterology and Hepatology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yehuda Ringel
- Division of Gastroenterology and Hepatology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Christopherson MR, Dawson JA, Stevenson DM, Cunningham AC, Bramhacharya S, Weimer PJ, Kendziorski C, Suen G. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. BMC Genomics 2014; 15:1066. [PMID: 25477200 PMCID: PMC4300822 DOI: 10.1186/1471-2164-15-1066] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/24/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bacteria in the genus Ruminococcus are ubiquitous members of the mammalian gastrointestinal tract. In particular, they are important in ruminants where they digest a wide range of plant cell wall polysaccharides. For example, Ruminococcus albus 7 is a primary cellulose degrader that produces acetate usable by its bovine host. Moreover, it is one of the few organisms that ferments cellulose to form ethanol at mesophilic temperatures in vitro. The mechanism of cellulose degradation by R. albus 7 is not well-defined and is thought to involve pilin-like proteins, unique carbohydrate-binding domains, a glycocalyx, and cellulosomes. Here, we used a combination of comparative genomics, fermentation analyses, and transcriptomics to further clarify the cellulolytic and fermentative potential of R. albus 7. RESULTS A comparison of the R. albus 7 genome sequence against the genome sequences of related bacteria that either encode or do not encode cellulosomes revealed that R. albus 7 does not encode for most canonical cellulosomal components. Fermentation analysis of R. albus 7 revealed the ability to produce ethanol and acetate on a wide range of fibrous substrates in vitro. Global transcriptomic analysis of R. albus 7 grown at identical dilution rates on cellulose and cellobiose in a chemostat showed that this bacterium, when growing on cellulose, utilizes a carbohydrate-degrading strategy that involves increased transcription of the rare carbohydrate-binding module (CBM) family 37 domain and the tryptophan biosynthetic operon. CONCLUSIONS Our data suggest that R. albus 7 does not use canonical cellulosomal components to degrade cellulose, but rather up-regulates the expression of CBM37-containing enzymes and tryptophan biosynthesis. This study contributes to a revised model of carbohydrate degradation by this key member of the rumen ecosystem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, 5159 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706-1521, USA.
| |
Collapse
|
15
|
de Aguiar SC, Zeoula LM, do Prado OPP, Arcuri PB, Forano E. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis. World J Microbiol Biotechnol 2014; 30:2917-26. [PMID: 25172217 DOI: 10.1007/s11274-014-1719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 08/07/2014] [Indexed: 01/20/2023]
Abstract
Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.
Collapse
Affiliation(s)
- Sílvia Cristina de Aguiar
- Departamento de Zootecnia, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá, PR, 87020-900, Brazil
| | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. RECENT FINDINGS This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. SUMMARY A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.
Collapse
Affiliation(s)
- Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
17
|
Medical microbiological approach to Archaea in oral infectious diseases. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Colonic methane production modifies gastrointestinal toxicity associated with adjuvant 5-fluorouracil chemotherapy for colorectal cancer. J Clin Gastroenterol 2013; 47:45-51. [PMID: 23090038 DOI: 10.1097/mcg.0b013e3182680201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
GOALS To investigate the association of colonic methane, formed by methanogenic achaea, and pH with gastrointestinal symptoms during colorectal cancer chemotherapy. BACKGROUND Adjuvant 5-fluorouracil chemotherapy reduces recurrences in colorectal cancer, but causes severe gastrointestinal toxicity, partly related to disturbed intestinal microbiota. STUDY Resected colorectal cancer patients (n=143) were analyzed for colonic methanogenesis and pH before and during the 24 weeks of 5-fluorouracil chemotherapy and for gastrointestinal symptoms during chemotherapy. This study was performed within the setting of an intervention study on the effects of Lactobacillus on chemotherapy-related gastrointestinal toxicity. The site of resected cancer, resection type, stoma, chemotherapy regimen, hypolactasia, and Lactobacillus intervention were considered as possible confounding factors, and multivariate models were constructed. RESULTS Baseline methane producers had less frequent diarrhea (more than or equal to moderate) during chemotherapy than nonproducers [odds ratio (OR), 0.42; 95% confidence interval (CI), 0.20 to 0.88; P=0.022] and more frequent constipation (OR, 4.56; 95% CI, 2.01 to 10.32; P<0.001). Baseline fecal pH was also associated with symptoms during chemotherapy; higher the pH, the lower the risk of diarrhea (OR, 0.56; 95% CI, 0.31 to 1.02; P=0.058) and higher the risk of constipation (OR, 2.23; 95% CI, 1.35 to 3.68; P=0.002). In multivariate stepwise models, methanogenesis was a significant explaining factor with inverse association with diarrhea and positive association with constipation. Fecal pH, which was significantly associated with methane production, was no longer a significant explaining factor when methanogensis was included in the model. CONCLUSIONS Methane producer status has a role in determining whether patient experiences diarrhea or constipation during 5-fluorouracil therapy. This underscores the importance of intestinal microbiota in the development of intestinal toxicity during 5-fluorouracil therapy.
Collapse
|
19
|
Development of the Digestive System-Experimental Challenges and Approaches of Infant Lipid Digestion. ACTA ACUST UNITED AC 2012; 3:63-77. [PMID: 23293684 PMCID: PMC3528963 DOI: 10.1007/s13228-012-0025-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/17/2012] [Indexed: 12/26/2022]
Abstract
At least during the first 6 months after birth, the nutrition of infants should ideally consist of human milk which provides 40–60 % of energy from lipids. Beyond energy, human milk also delivers lipids with a specific functionality, such as essential fatty acids (FA), phospholipids, and cholesterol. Healthy development, especially of the nervous and digestive systems, depends fundamentally on these. Epidemiological data suggest that human milk provides unique health benefits during early infancy that extend to long-lasting benefits. Preclinical findings show that qualitative changes in dietary lipids, i.e., lipid structure and FA composition, during early life may contribute to the reported long-term effects. Little is known in this respect about the development of digestive function and the digestion and absorption of lipids by the newborn. This review gives a detailed overview of the distinct functionalities that dietary lipids from human milk and infant formula provide and the profound differences in the physiology and biochemistry of lipid digestion between infants and adults. Fundamental mechanisms of infant lipid digestion can, however, almost exclusively be elucidated in vitro. Experimental approaches and their challenges are reviewed in depth.
Collapse
|
20
|
Bertin Y, Chaucheyras-Durand F, Robbe-Masselot C, Durand A, de la Foye A, Harel J, Cohen PS, Conway T, Forano E, Martin C. Carbohydrate utilization by enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. Environ Microbiol 2012; 15:610-22. [PMID: 23126484 DOI: 10.1111/1462-2920.12019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/16/2022]
Abstract
The bovine gastrointestinal (GI) tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients preferentially used by EHEC in the bovine intestine would help to develop ecological strategies to reduce EHEC carriage. However, the carbon sources that support the growth of EHEC in the bovine intestine are poorly documented. In this study, a very low concentration of glucose, the most abundant monomer included in the cattle dietary polysaccharides, was detected in bovine small intestine contents (BSIC) collected from healthy cows at the slaughterhouse. Six carbohydrates reported to be included in the mucus layer covering the enterocytes [galactose, N-acetyl-glucosamine (GlcNAc), N-acetyl- galactosamine (GalNAc), fucose, mannose and N-acetyl neuraminic acid (Neu5Ac)] have been quantified for the first time in BSIC and accounted for a total concentration of 4.2 mM carbohydrates. The genes required for enzymatic degradation of the six mucus-derived carbohydrates are highly expressed during the exponential growth of the EHEC strain O157:H7 EDL933 in BSIC and are more strongly induced in EHEC than in bovine commensal E. coli. In addition, EDL933 consumed the free monosaccharides present in the BSIC more rapidly than the resident microbiota and commensal E. coli, indicating a competitive ability of EHEC to catabolize mucus-derived carbohydrates in the bovine gut. Mutations of EDL933 genes required for the catabolism of each of these sugars have been constructed, and growth competitions of the mutants with the wild-type strain clearly demonstrated that mannose, GlcNAc, Neu5Ac and galactose catabolism confers a high competitive growth advantage to EHEC in BSIC and probably represents an ecological niche for EHEC strains in the bovine small intestine. The utilization of these mucus-derived monosaccharides by EDL933 is apparently required for rapid growth of EHEC in BSIC, and for maintaining a competitive growth rate as compared with that of commensal E. coli. The results suggest a strategy for O157:H7 E. coli survival in the bovine intestine, whereby EHEC rapidly consumes mucus-derived carbohydrates that are poorly consumed by bacteria belonging to the resident intestinal microbiota, including commensal E. coli.
Collapse
Affiliation(s)
- Yolande Bertin
- INRA, UR454 Microbiologie, 63122, Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Colonic gases are among the most tangible features of digestion, yet physicians are typically unable to offer long-term relief from clinical complaints of excessive gas. Studies characterizing colonic gases have linked changes in volume or composition with bowel disorders and shown hydrogen gas (H(2)), methane, hydrogen sulphide, and carbon dioxide to be by-products of the interplay between H(2)-producing fermentative bacteria and H(2) consumers (reductive acetogens, methanogenic archaea and sulphate-reducing bacteria [SRB]). Clinically, H(2) and methane measured in breath can indicate lactose and glucose intolerance, small intestinal bacterial overgrowth and IBS. Methane levels are increased in patients with constipation or IBS. Hydrogen sulphide is a by-product of H(2) metabolism by SRB, which are ubiquitous in the colonic mucosa. Although higher hydrogen sulphide and SRB levels have been detected in patients with IBD, and to a lesser extent in colorectal cancer, this colonic gas might have beneficial effects. Moreover, H(2) has been shown to have antioxidant properties and, in the healthy colon, physiological H(2) concentrations might protect the mucosa from oxidative insults, whereas an impaired H(2) economy might facilitate inflammation or carcinogenesis. Therefore, standardized breath gas measurements combined with ever-improving molecular methodologies could provide novel strategies to prevent, diagnose or manage numerous colonic disorders.
Collapse
|
22
|
Matarazzo F, Ribeiro AC, Faveri M, Taddei C, Martinez MB, Mayer MPA. The domain Archaea in human mucosal surfaces. Clin Microbiol Infect 2012; 18:834-40. [PMID: 22827611 DOI: 10.1111/j.1469-0691.2012.03958.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Archaea present distinct features from bacteria and eukaryotes, and thus constitute one of the branches of the phylogenetic tree of life. Members of this domain colonize distinct niches in the human body, arranged in complex communities, especially in the intestines and the oral cavity. The diversity of archaea within these niches is limited to a few phylotypes, constituted in particular by methane-producing archaeal organisms. Although they are possibly symbionts, methanogens may play a role in the establishment of mucosal diseases by favouring the growth of certain bacterial groups.
Collapse
Affiliation(s)
- F Matarazzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Buzoianu SG, Walsh MC, Rea MC, O’Sullivan O, Crispie F, Cotter PD, Ross RP, Gardiner GE, Lawlor PG. The effect of feeding Bt MON810 maize to pigs for 110 days on intestinal microbiota. PLoS One 2012; 7:e33668. [PMID: 22574106 PMCID: PMC3344822 DOI: 10.1371/journal.pone.0033668] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
Objective To assess the effects of feeding Bt MON810 maize to pigs for 110 days on the intestinal microbiota. Methodology/Principal Findings Forty male pigs (∼40 days old) were blocked by weight and litter ancestry and assigned to one of four treatments; 1) Isogenic maize-based diet for 110 days (Isogenic); 2) Bt maize-based diet (MON810) for 110 days (Bt); 3) Isogenic maize-based diet for 30 days followed by a Bt maize-based diet for 80 days (Isogenic/Bt); 4) Bt maize-based diet for 30 days followed by an isogenic maize-based diet for 80 days (Bt/Isogenic). Enterobacteriaceae, Lactobacillus and total anaerobes were enumerated in the feces using culture-based methods on days 0, 30, 60 and 100 of the study and in ileal and cecal digesta on day 110. No differences were found between treatments for any of these counts at any time point. The relative abundance of cecal bacteria was also determined using high-throughput 16 S rRNA gene sequencing. No differences were observed in any bacterial taxa between treatments, with the exception of the genus Holdemania which was more abundant in the cecum of pigs fed the isogenic/Bt treatment compared to pigs fed the Bt treatment (0.012 vs 0.003%; P≤0.05). Conclusions/Significance Feeding pigs a Bt maize-based diet for 110 days did not affect counts of any of the culturable bacteria enumerated in the feces, ileum or cecum. Neither did it influence the composition of the cecal microbiota, with the exception of a minor increase in the genus Holdemania. As the role of Holdemania in the intestine is still under investigation and no health abnormalities were observed, this change is not likely to be of clinical significance. These results indicate that feeding Bt maize to pigs in the context of its influence on the porcine intestinal microbiota is safe.
Collapse
Affiliation(s)
- Stefan G. Buzoianu
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland
- Department of Chemical and Life Sciences, Waterford Institute of Technology, Waterford, Ireland
| | - Maria C. Walsh
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland
| | - Mary C. Rea
- Teagasc, Food Research Centre, Moorepark, Fermoy, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | - Fiona Crispie
- Teagasc, Food Research Centre, Moorepark, Fermoy, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Food Research Centre, Moorepark, Fermoy, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Teagasc, Food Research Centre, Moorepark, Fermoy, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Gillian E. Gardiner
- Department of Chemical and Life Sciences, Waterford Institute of Technology, Waterford, Ireland
- * E-mail:
| | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
24
|
Chassard C, Dapoigny M, Scott KP, Crouzet L, Del'homme C, Marquet P, Martin JC, Pickering G, Ardid D, Eschalier A, Dubray C, Flint HJ, Bernalier-Donadille A. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 2012; 35:828-38. [PMID: 22315951 DOI: 10.1111/j.1365-2036.2012.05007.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 01/12/2012] [Indexed: 12/08/2022]
Abstract
BACKGROUND The role of the gut microbiota in patho-physiology of irritable bowel syndrome (IBS) is suggested by several studies. However, standard cultural and molecular methods used to date have not revealed specific and consistent IBS-related groups of microbes. AIM To explore the constipated-IBS (C-IBS) gut microbiota using a function-based approach. METHODS The faecal microbiota from 14 C-IBS women and 12 sex-match healthy subjects were examined through a combined strictly anaerobic cultural evaluation of functional groups of microbes and fluorescent in situ hybridisation (16S rDNA gene targeting probes) to quantify main groups of bacteria. Starch fermentation by C-IBS and healthy faecal samples was evaluated in vitro. RESULTS In C-IBS, the numbers of lactate-producing and lactate-utilising bacteria and the number of H(2) -consuming populations, methanogens and reductive acetogens, were at least 10-fold lower (P < 0.05) compared with control subjects. Concomitantly, the number of lactate- and H(2) -utilising sulphate-reducing population was 10 to 100 fold increased in C-IBS compared with healthy subjects. The butyrate-producing Roseburia - E. rectale group was in lower number (0.01 < P < 0.05) in C-IBS than in control. C-IBS faecal microbiota produced more sulphides and H(2) and less butyrate from starch fermentation than healthy ones. CONCLUSIONS A major functional dysbiosis was observed in constipated-irritable bowel syndrome gut microbiota, reflecting altered intestinal fermentation. Sulphate-reducing population increased in the gut of C-IBS and were accompanied by alterations in other microbial groups. This could be responsible for changes in the metabolic output and enhancement in toxic sulphide production which could in turn influence gut physiology and contribute to IBS pathogenesis.
Collapse
Affiliation(s)
- C Chassard
- INRA, UR Microbiology Unit, Clermont-Ferrand Research Centre, Saint Genès-Champanelle, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Holma R, Osterlund P, Sairanen U, Blom M, Rautio M, Korpela R. Colonic methanogenesis in vivo and in vitro and fecal pH after resection of colorectal cancer and in healthy intact colon. Int J Colorectal Dis 2012; 27:171-8. [PMID: 22006492 DOI: 10.1007/s00384-011-1323-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE We compared colonic methanogenesis in vivo and in vitro as well as fecal pH in healthy subjects and in patients with resected colorectal cancer thus without the possible confounding effects of the tumor. METHODS A total of 144 subjects, 96 with resected colorectal cancer (of whom, 48 were with metastatic disease), 48 healthy subjects with intact colon, were analyzed for breath methane, fecal methanogenesis in vitro and fecal pH. In addition, the association between methanogenesis and pH with cancer site, operation technique and abdominal discomfort was investigated. RESULTS In vivo and in vitro methane measurements were in agreement. The percentage of breath methane excretors and fecal pH did not significantly differ in participants resected for colorectal cancer, either with (46%, 6.76) or without (46%, 6.77) metastatic disease, from healthy participants (40%, 6.80). Breath methane excretors had higher fecal pH than nonexcretors (7.05 versus 6.57, P< 0.001) and less abdominal discomfort (30% versus 54%, P = 0.016). Among patients with resected right-sided cancer (n = 15), there were less breath methane excretors (20%) than among those with resected left-sided cancer (51%, n = 81, P = 0.029) as well as lower fecal pH than among those with resected left-sided cancer (6.27 versus 6.86, P = 0.002) and among healthy subjects (6.80, P = 0.010). CONCLUSIONS Patients with resected colorectal cancer were as frequently methane producers as healthy subjects with intact colon, and there was no difference in their fecal pH. Low methanogenesis was found in patients with abdominal discomfort and is a possible characteristic, along with low fecal pH, to right-sided colorectal cancer.
Collapse
Affiliation(s)
- Reetta Holma
- Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
26
|
Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochem Soc Trans 2011; 39:1073-8. [PMID: 21787350 DOI: 10.1042/bst0391073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human colonic microbiota degrades dietary substrates that are indigestible in the upper GIT (gastrointestinal tract), releasing bacterial metabolites, some of which are important for gut health. Advances in molecular biology techniques have facilitated detailed analyses of the composition of the bacterial community resident in the lower GIT. Such analyses have indicated that more than 500 different bacterial species colonize an individual, and that, although there is much functional consistency in the resident bacterial groups, there is considerable inter-individual variation at the species/strain level. The bacterial community develops during early childhood until it reaches an adult-like composition. Whereas colonization and host factors influence the species composition, dietary factors also have an important impact, with specific bacterial groups changing in response to specific dietary interventions. Since bacterial species have different metabolic activities, specific diets have various consequences for health, dependent on the effect exerted on the bacterial population.
Collapse
|
27
|
Matarazzo F, Ribeiro AC, Feres M, Faveri M, Mayer MPA. Diversity and quantitative analysis of Archaea in aggressive periodontitis and periodontally healthy subjects. J Clin Periodontol 2011; 38:621-7. [DOI: 10.1111/j.1600-051x.2011.01734.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Chassard C, Delmas E, Robert C, Lawson PA, Bernalier-Donadille A. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 2011; 62:138-143. [PMID: 21357460 DOI: 10.1099/ijs.0.027375-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A strictly anaerobic, cellulolytic strain, designated 18P13(T), was isolated from a human faecal sample. Cells were Gram-positive non-motile cocci. Strain 18P13(T) was able to degrade microcrystalline cellulose but the utilization of soluble sugars was restricted to cellobiose. Acetate and succinate were the major end products of cellulose and cellobiose fermentation. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Ruminococcus of the family Ruminococcaceae. The closest phylogenetic relative was the ruminal cellulolytic strain Ruminococcus flavefaciens ATCC 19208(T) (<95% 16S rRNA gene sequence similarity). The DNA G+C content of strain 18P13(T) was 53.05±0.7 mol%. On the basis of phylogenetic analysis, and morphological and physiological data, strain 18P13(T) can be differentiated from other members of the genus Ruminococcus with validly published names. The name Ruminococcus champanellensis sp. nov. is proposed, with 18P13(T) (=DSM 18848(T)=JCM 17042(T)) as the type strain.
Collapse
Affiliation(s)
- Christophe Chassard
- Unité de Microbiologie, INRA, Centre de Recherches de Clermont Ferrand - Theix, 63 122 Saint Genès-Champanelle, France
| | - Eve Delmas
- Unité de Microbiologie, INRA, Centre de Recherches de Clermont Ferrand - Theix, 63 122 Saint Genès-Champanelle, France
| | - Céline Robert
- Unité de Microbiologie, INRA, Centre de Recherches de Clermont Ferrand - Theix, 63 122 Saint Genès-Champanelle, France
| | - Paul A Lawson
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Annick Bernalier-Donadille
- Unité de Microbiologie, INRA, Centre de Recherches de Clermont Ferrand - Theix, 63 122 Saint Genès-Champanelle, France
| |
Collapse
|
29
|
Bertin Y, Girardeau JP, Chaucheyras-Durand F, Lyan B, Pujos-Guillot E, Harel J, Martin C. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol 2010; 13:365-77. [PMID: 20849446 DOI: 10.1111/j.1462-2920.2010.02334.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.
Collapse
Affiliation(s)
- Yolande Bertin
- Institut National de la Recherche Agronomique, Unité de Microbiologie UR 454, Centre de Recherche de Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bernalier-Donadille A. Fermentative metabolism by the human gut microbiota. ACTA ACUST UNITED AC 2010; 34 Suppl 1:S16-22. [DOI: 10.1016/s0399-8320(10)70016-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Chassard C, Delmas E, Robert C, Bernalier-Donadille A. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol Ecol 2010; 74:205-13. [PMID: 20662929 DOI: 10.1111/j.1574-6941.2010.00941.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cellulose-degrading microorganisms involved in the breakdown of plant cell wall material in the human gut remain rather unexplored despite their role in intestinal fermentation. Microcrystalline cellulose-degrading bacteria were previously identified in faeces of methane-excreting individuals, whereas these microorganisms were undetectable in faecal samples from non-methane excretors. This suggested that the structure and activity of the cellulose-degrading community differ in methane- and non-methane-excreting individuals. The purpose of this study was to characterize in depth this cellulose-degrading community in individuals of both CH(4) statuses using both culture-dependent and molecular methods. A new real-time PCR analysis was developed to enumerate microcrystalline cellulose-degrading ruminococci and used to confirm the predominance of these hydrolytic ruminococci in methane excretors. Culture-dependent methods using cell wall spinach (CWS) residue revealed the presence of CWS-degrading microorganisms in all individuals. Characterization of CWS-degrading isolates further showed that the main cellulose-degrading bacteria belong essentially to Bacteroidetes in non-methane-excreting subjects, while they are predominantly represented by Firmicutes in methane-excreting individuals. This taxonomic diversity was associated with functional diversity: the ability to degrade different types of cellulose and to produce H(2) from fermentation differed depending on the species. The structure of the cellulolytic community was shown to vary depending on the presence of methanogens in the human gut.
Collapse
Affiliation(s)
- Christophe Chassard
- Unité de Microbiologie UR454, INRA, Centre de Recherches de Clermont-Ferrand/Theix, Saint Genès-Champanelle, France
| | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To describe the recent developments and insights gained in the role played by the colonic microbiota in energy and carbohydrate metabolism related to obesity in humans. RECENT FINDINGS Previous findings that the ratio of Firmicutes and Bacteriodetes is important in energy harvesting and obesity have not been confirmed in recent studies. In fact, sometimes, the opposite results were obtained. Nevertheless, it is clear that the microbiota plays a role in energy extraction from nondigested carbohydrates in the form of production of short-chain fatty acids. Also, the microbiota plays a role in host metabolism by influencing and modulating host gene expression in various tissues. SUMMARY Despite numerous recent studies trying to link the composition of the microbiota to obesity, the picture is far from clear, and it remains to be seen whether changes in microbiota composition are the cause or the consequence of obesity. Molecular studies reveal the enzyme machineries used by individual members of the microbiota to break down and ferment polysaccharides. Also, the mechanisms of host-microbe mutualism are becoming unraveled. Using stable-isotope-labeled substrates, the exact microorganisms involved in fermentation of the substrates and the exact metabolites that are produced from the substrate can be deciphered.
Collapse
Affiliation(s)
- Koen Venema
- TNO Quality of Life, Department of Biosciences, Zeist, The Netherlands.
| |
Collapse
|
33
|
Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 2010; 87:2097-105. [PMID: 20532756 DOI: 10.1007/s00253-010-2694-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 01/08/2023]
Abstract
A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K (m) and V (max) of 1.6 mg ml(-1) and 118 micromol min(-1) mg(-1) on oat spelt xylan, and its optimal temperature and pH for activity were 37 degrees C and pH 6.0, respectively. Its catalytic properties (k (cat)/K (m) = 3,300 ml mg(-1) min(-1)) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.
Collapse
Affiliation(s)
- Caroline Mirande
- INRA, UR Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | | | | | | | | |
Collapse
|
34
|
Dai ZL, Zhang J, Wu G, Zhu WY. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 2010; 39:1201-15. [PMID: 20300787 DOI: 10.1007/s00726-010-0556-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022]
Abstract
This study determined the utilization of amino acids (AA) by bacteria from the lumen of the pig small intestine. Digesta samples from different segments of the small intestine were inoculated into media containing 10 mmol/L each of select AA (L-lysine, L-threonine, L-arginine, L-glutamate, L-histidine, L-leucine, L-isoleucine, L-valine, L-proline, L-methionine, L-phenylalanine or L-tryptophan) and incubated for 24 h. The previous 24-h culture served as an inoculum for a subsequent 24-h subculture during each of 30 subcultures. Results of the in vitro cultivation experiment indicated that the 24-h disappearance rates for lysine, arginine, threonine, glutamate, leucine, isoleucine, valine or histidine were 50-90% in the duodenum, jejunum or ileum groups. After 30 subcultures, the 24-h disappearance rates for lysine, threonine, arginine or glutamate remained greater than 50%. The denaturing gradient gel electrophoresis analysis showed that Streptococcus sp., Mitsuokella sp., and Megasphaera elsdenii-like bacteria were predominant in subcultures for utilizing lysine, threonine, arginine and glutamate. In contrast, Klebsiella sp. was not a major user of arginine or glutamate. Furthermore, analysis of AA composition and the incorporation of AA into polypeptides indicated that protein synthesis was a major pathway for AA metabolism in all the bacteria studied. The current work identified the possible predominant bacterial species responsible for AA metabolism in the pig small intestine. The findings provide a new framework for future studies to characterize the metabolic fate of AA in intestinal microbes and define their nutritional significance for both animals and humans.
Collapse
Affiliation(s)
- Zhao-Lai Dai
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | |
Collapse
|
35
|
Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille A, Forano E, Béra-Maillet C. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1A and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol 2010; 109:451-460. [PMID: 20105245 DOI: 10.1111/j.1365-2672.2010.04671.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To characterize fibre degradation, colonization and fermentation, and xylanase activity of two xylanolytic bacteria Bacteroides xylanisolvens XB1A(T) and Roseburia intestinalis XB6B4 from the human colon. METHODS AND RESULTS The bacteria grew well on all the substrates chosen to represent dietary fibres: wheat and corn bran, pea, cabbage and leek fibres, and also on purified xylans. Roseburia intestinalis colonized the substrates more efficiently than Bact. xylanisolvens. For the two bacteria, 80-99% of the total xylanase activity was associated with the cells whatever the substrate and time of growth. Optimal specific activities of cells were obtained on oat spelt xylan; they were higher than those previously measured for xylanolytic bacteria from the human gut. Roseburia intestinalis produced high molecular mass xylanases (100-70 kDa), while Bact. xylanisolvens produced lower molecular mass enzymes, including a cell-associated xylanase of 37 kDa. CONCLUSIONS The two bacteria display very high xylanolytic activity on the different substrates. Differences were observed on substrate attachment and enzyme systems, suggesting that the two species occupy different niches within the gut microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study characterizes xylan degradation by two major species of the human intestine.
Collapse
Affiliation(s)
- C Mirande
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - E Kadlecikova
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - M Matulova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - P Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - A Bernalier-Donadille
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - E Forano
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - C Béra-Maillet
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| |
Collapse
|
36
|
In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl Environ Microbiol 2009; 75:5884-92. [PMID: 19633122 DOI: 10.1128/aem.00876-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Kinetic analyses of bacterial growth, carbohydrate consumption, and metabolite production of five butyrate-producing clostridial cluster XIVa colon bacteria grown on acetate plus fructose, oligofructose, inulin, or lactate were performed. A gas chromatography method was set up to assess H2 and CO2 production online and to ensure complete coverage of all metabolites produced. Method accuracy was confirmed through the calculation of electron and carbon recoveries. Fermentations with Anaerostipes caccae DSM 14662(T), Roseburia faecis DSM 16840(T), Roseburia hominis DSM 16839(T), and Roseburia intestinalis DSM 14610(T) revealed similar patterns of metabolite production with butyrate, CO2, and H2 as the main metabolites. R. faecis DSM 16840(T) and R. intestinalis DSM 14610(T) were able to degrade oligofructose, displaying a nonpreferential breakdown mechanism. Lactate consumption was only observed with A. caccae DSM 14662(T). Roseburia inulinivorans DSM 16841(T) was the only strain included in the present study that was able to grow on fructose, oligofructose, and inulin. The metabolites produced were lactate, butyrate, and CO2, without H2 production, indicating an energy metabolism distinct from that of other Roseburia species. Oligofructose degradation was nonpreferential. In a coculture of R. inulinivorans DSM 16841(T) with the highly competitive strain Bifidobacterium longum subsp. longum LMG 11047 on inulin, hardly any production of butyrate and CO2 was detected, indicating a lack of competitiveness of the butyrate producer. Complete recovery of metabolites during fermentations of clostridial cluster XIVa butyrate-producing colon bacteria allowed stoichiometric balancing of the metabolic pathway for butyrate production, including H2 formation.
Collapse
|
37
|
Krogius-Kurikka L, Kassinen A, Paulin L, Corander J, Mäkivuokko H, Tuimala J, Palva A. Sequence analysis of percent G+C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria. BMC Microbiol 2009; 9:68. [PMID: 19351420 PMCID: PMC2679024 DOI: 10.1186/1471-2180-9-68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/08/2009] [Indexed: 01/08/2023] Open
Abstract
Background The human gastrointestinal (GI) tract microbiota is characterised by an abundance of uncultured bacteria most often assigned in phyla Firmicutes and Bacteroidetes. Diversity of this microbiota, even though approached with culture independent techniques in several studies, still requires more elucidation. The main purpose of this work was to study whether the genomic percent guanine and cytosine (%G+C) -based profiling and fractioning prior to 16S rRNA gene sequence analysis reveal higher microbiota diversity, especially with high G+C bacteria suggested to be underrepresented in previous studies. Results A phylogenetic analysis of the composition of the human GI microbiota of 23 healthy adult subjects was performed from a pooled faecal bacterial DNA sample by combining genomic %G+C -based profiling and fractioning with 16S rRNA gene cloning and sequencing. A total of 3199 partial 16S rRNA genes were sequenced. For comparison, 459 clones were sequenced from a comparable unfractioned sample. The most important finding was that the proportional amount of sequences affiliating with the phylum Actinobacteria was 26.6% in the %G+C fractioned sample but only 3.5% in the unfractioned sample. The orders Coriobacteriales, Bifidobacteriales and Actinomycetales constituted the 65 actinobacterial phylotypes in the fractioned sample, accounting for 50%, 47% and 3% of sequences within the phylum, respectively. Conclusion This study shows that the %G+C profiling and fractioning prior to cloning and sequencing can reveal a significantly larger proportion of high G+C content bacteria within the clones recovered, compared with the unfractioned sample in the human GI tract. Especially the order Coriobacteriales within the phylum Actinobacteria was found to be more abundant than previously estimated with conventional sequencing studies.
Collapse
Affiliation(s)
- Lotta Krogius-Kurikka
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Marchesi J, Prosser JI. Gut microbiology: the black box and beyond. FEMS Microbiol Ecol 2008; 66:485-6. [DOI: 10.1111/j.1574-6941.2008.00607.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|