1
|
Liu Y, Li X, Wu S, Tan Z, Yang C. Enhancing anaerobic digestion process with addition of conductive materials. CHEMOSPHERE 2021; 278:130449. [PMID: 34126684 DOI: 10.1016/j.chemosphere.2021.130449] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is widely used for the treatment of wastewater for its low costs and bioenergy production, but the performances of anaerobic digestion often need improving in practical applications. The addition of conductive materials could lead to direct interspecies electron transfer (DIET) among the anaerobic microorganisms, and consequently enhance the efficiencies of anaerobic digestion. In this paper, the effects of DIET via conductive materials on chemical organic demand (COD) removal, volatile fatty acid (VFA) consumption and methane production were reviewed. The reports on the increase of conductive microorganisms due to the addition of conductive materials were discussed. Results regarding activities of microorganisms and morphology and properties of sludge were described and commented, and future research needs were also proposed which included better understanding of the roles of DIET in each step of anaerobic digestion, mechanisms of metabolism of pollutants in DIET-established systems and inhibition of excessive dosage of conductive materials.
Collapse
Affiliation(s)
- Yiwei Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Zhao Tan
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| |
Collapse
|
2
|
Oliveros-Muñoz JM, Martínez-Villalba JA, Jiménez-Islas H, Luna-Porres MY, Escamilla-Alvarado C, Ríos-Fránquez FJ. Luus-Jaakola method and ADM1 based optimization of hydrogen sulfide in anaerobic digestion of cow manure. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Improvement of Anaerobic Digestion of Hydrolysed Corncob Waste by Organosolv Pretreatment for Biogas Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper describes an organosolv pretreatment of corncob waste to improve its anaerobic digestion for biogas production. Through a thermochemical process based on the use of ethanol and acetic acid, it was possible to separate the fractions of lignin, considered to be a natural inhibitor of anaerobic digestion processes. In addition, with this organosolv pretreatment, the available sugars in the carbohydrates present as monosaccharides, or simple sugars, were depolymerised, facilitating the digestion process. The obtained results include the chemical characterisation of the corncob, the hydrolysate, and the mixture with cow manure, finding that these substrates have potential to be used in anaerobic digestion. The total reducing sugars consumed were 96.8%, and total sugars were 85.75%. It was clearly observed that with the use of pretreatment with organosolv, the production of biogas was superior, because 484 NmL/gVS was obtained compared to the other reported treatments. It was also observed that adding the hydrolysate organosolv increased the production because the values of the control without hydrolysate were 120 NmL/gVS in the bottle experiment. When the experiment was scaled to the 5L reactor, the total volumes of biogas that were accumulated in 15 days of production were 5050 NmL/gVS and 1212 NmL/gVS with and without hydrolysate, respectively. This indicates that the organosolv pretreatment of corncob waste is effective in improving biogas production.
Collapse
|
4
|
Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants. Microorganisms 2020; 8:microorganisms8020277. [PMID: 32085468 PMCID: PMC7074800 DOI: 10.3390/microorganisms8020277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
Anaerobic digestion (AD) has been used for wastewater treatment and production of renewable energy or biogas. Propionate accumulation is one of the important problems leading to an unstable system and low methane production. Revealing propionate-degrading microbiome is necessary to gain a better knowledge for alleviation of the problem. Herein, we systematically investigated the propionate-degrading cultures enriched from various anaerobic sludge sources of agro-industrial wastewater treatment plants using 16S rRNA gene sequencing. Different microbial profiles were shown even though the methanogenic activities of all cultures were similar. Interestingly, non-classical propionate-degrading key players Smithella, Syntrophomonas, and Methanosaeta were observed as common prevalent taxa in our enriched cultures. Moreover, different hydrogenotrophic methanogens were found specifically to the different sludge sources. The enriched culture of high salinity sludge showed a distinct microbial profile compared to the others, containing mainly Thermovirga, Anaerolinaceae, Methanosaeta, Syntrophobactor, and Methanospirillum. Our microbiome analysis revealed different propionate-degrading community profiles via mainly the Smithella pathway and offers inside information for microbiome manipulation in AD systems to increase biogas production corresponding to their specific microbial communities.
Collapse
|
5
|
Prem EM, Markt R, Lackner N, Illmer P, Wagner AO. Microbial and Phenyl Acid Dynamics during the Start-up Phase of Anaerobic Straw Degradation in Meso- and Thermophilic Batch Reactors. Microorganisms 2019; 7:E657. [PMID: 31817383 PMCID: PMC6956005 DOI: 10.3390/microorganisms7120657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Aromatic compounds like phenyl acids derived from lignocellulose degradation have been suspected to negatively influence biogas production processes. However, results on this topic are still inconclusive. To study phenyl acid formation in batch reactors during the start-up phase of anaerobic degradation, different amounts of straw from grain were mixed with mesophilic and thermophilic sludge, respectively. Molecular biological parameters were assessed using next-generation sequencing and qPCR analyses. Metagenomic predictions were done via the program, piphillin. Methane production, concentrations of phenylacetate, phenylpropionate, phenylbutyrate, and volatile fatty acids were monitored chromatographically. Methanosarcina spp. was the dominant methanogen when high straw loads were effectively degraded, and thus confirmed its robustness towards overload conditions. Several microorganisms correlated negatively with phenyl acids; however, a negative effect, specifically on methanogens, could not be proven. A cascade-like increase/decrease from phenylacetate to phenylpropionate, and then to phenylbutyrate could be observed when methanogenesis was highly active. Due to these results, phenylacetate was shown to be an early sign for overload conditions, whereas an increase in phenylbutyrate possibly indicated a switch from degradation of easily available to more complex substrates. These dynamics during the start-up phase might be relevant for biogas plant operators using complex organic wastes for energy exploitation.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, A-6020 Innsbruck, Austria; (R.M.); (N.L.); (P.I.); (A.O.W.)
| | | | | | | | | |
Collapse
|
6
|
Wagner AO, Markt R, Mutschlechner M, Lackner N, Prem EM, Praeg N, Illmer P. Medium Preparation for the Cultivation of Microorganisms under Strictly Anaerobic/Anoxic Conditions. J Vis Exp 2019:10.3791/60155. [PMID: 31475968 PMCID: PMC6796894 DOI: 10.3791/60155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In contrast to aerobic organisms, strictly anaerobic microorganisms require the absence of oxygen and usually a low redox potential to initiate growth. As oxygen is ubiquitous in air, retaining O2-free conditions during all steps of cultivation is challenging but a prerequisite for anaerobic culturing. The protocol presented here demonstrates the successful cultivation of an anaerobic mixed culture derived from a biogas plant using a simple and inexpensive method. A precise description of the entire anoxic culturing process is given including media preparation, filling of cultivation flasks, supplementation with redox indicator and reducing agents to provide low redox potentials as well as exchanging the headspace to keep media free from oxygen. Furthermore, a detailed overview of aseptically inoculating gas tight serum flasks (by using sterile syringes and needles) and suitable incubation conditions is provided. The present protocol further deals with gas and liquid sampling for subsequent analyses regarding gas composition and volatile fatty acid concentrations using gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively, and the calculation of biogas and methane yield considering the ideal gas law.
Collapse
Affiliation(s)
| | - Rudolf Markt
- Department of Microbiology, Universität Innsbruck
| | | | - Nina Lackner
- Department of Microbiology, Universität Innsbruck
| | - Eva M Prem
- Department of Microbiology, Universität Innsbruck
| | - Nadine Praeg
- Department of Microbiology, Universität Innsbruck
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck
| |
Collapse
|
7
|
Wagner AO, Prem EM, Markt R, Kaufmann R, Illmer P. Formation of phenylacetic acid and phenylpropionic acid under different overload conditions during mesophilic and thermophilic anaerobic digestion. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:26. [PMID: 30787959 PMCID: PMC6368962 DOI: 10.1186/s13068-019-1370-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/03/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Substrate spectra for anaerobic digestion have been broadened in the past decade, inter alia, due to the application of different pretreatment strategies and now include materials rich in lignocellulose, protein, and/or fat. The application of these substrates, however, also entails risks regarding the formation of undesired by-products, among which phenolic compounds are known to accumulate under unfavorable digestion conditions. METHODS Different states of overload were simulated in batch experiments while reviewing the generation of phenyl acids out of different lab-use substrates in order to evaluate the impact on biogas and methane production as well as some additional process performance parameters under defined laboratory conditions. Investigations were conducted under both mesophilic and thermophilic conditions. RESULTS It could be shown that the tested input materials led to the formation of phenyl acids in a substrate-dependent manner with the formation itself being less temperature driven. Once formed, the formation of phenyl acids turned out to be a reversible process. CONCLUSIONS Although a mandatory negative impact of phenyl acids per se on the anaerobic digestion process in general and the methanogenesis process in particular could not be proven, phenyl acids, however, seem to play an important role in the microbial response to overloaded biogas systems.
Collapse
Affiliation(s)
- Andreas Otto Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Rudolf Markt
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Rüdiger Kaufmann
- Department of Ecology, Universität Innsbruck, Sternwartestr. 15/Technikerstraße 25/5, 6020 Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Wagner AO, Markt R, Puempel T, Illmer P, Insam H, Ebner C. Sample preparation, preservation, and storage for volatile fatty acid quantification in biogas plants. Eng Life Sci 2016; 17:132-139. [PMID: 32624760 DOI: 10.1002/elsc.201600095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
Volatile fatty acids (VFA) represent short-chain fatty acids consisting of six or fewer carbon atoms that can be distilled at atmospheric pressure. In anaerobic digestion processes VFAs are of central importance for maintaining stable reactor performance and biogas production, are used as indicators for arising problems and are important process monitoring parameters. In the present study, sludge derived form a full-scale anaerobic digester of a wastewater treatment plant was spiked with formate, acetate, propionate, and butyrate in order to evaluate various commonly used techniques for VFA extraction, preservation, and storage. It was shown that VFA extraction after centrifugation warranted the highest recovery rates for spiked VFAs. Moreover, experiments clearly indicated the importance of a fast sample handling, including the necessity of immediate cooling of the samples. Chemical sample preservation within a narrow time frame or deep freezing emerged as an alternative to instant VFA extraction. Short-time storage of extracted VFA samples at + 4°C is an option for up to 7 days, for longer periods storage at -20°C was found to be applicable.
Collapse
Affiliation(s)
- Andreas O Wagner
- Institute of Microbiology University of Innsbruck Innsbruck Austria
| | - Rudolf Markt
- Institute of Microbiology University of Innsbruck Innsbruck Austria.,alpS GmbH Innsbruck Austria
| | - Thomas Puempel
- Institute of Microbiology University of Innsbruck Innsbruck Austria
| | - Paul Illmer
- Institute of Microbiology University of Innsbruck Innsbruck Austria
| | - Heribert Insam
- Institute of Microbiology University of Innsbruck Innsbruck Austria
| | | |
Collapse
|
9
|
Lins P, Reitschuler C, Illmer P. Impact of several antibiotics and 2-bromoethanesulfonate on the volatile fatty acid degradation, methanogenesis and community structure during thermophilic anaerobic digestion. BIORESOURCE TECHNOLOGY 2015; 190:148-158. [PMID: 25935395 DOI: 10.1016/j.biortech.2015.04.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The main aim of the present study was to gain insight into the stability of an anaerobic digestion process suffering from exposure to antibiotics and the methanogenic inhibitor 2-bromoethanesulfonate (BES). For this purpose, eleven antibiotics and BES were investigated with regard to the degradation of volatile fatty acids (VFAs), methanogenesis, and impact on the microbial community structure. Only neomycin, gentamicin, rifampicin, and BES showed complete inhibitions of VFA degradations. This points to distinct interferences with important trophic degradation cascades. Based upon DGGE and sequencing approaches, Methanosarcina spp. were severely influenced by the treatments while hydrogenotrophic methanogens were less affected. Interestingly, BES and neomycin inhibited the degradation of acetate while only BES inhibited methanogenesis completely. It seems that Methanosarcina spp. were mandatory for the degradation of acetate at high rates. The present results highly emphasize the detrimental effects of antimicrobial compounds with the potential to significantly inhibit the anaerobic digestion.
Collapse
Affiliation(s)
- Philipp Lins
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, A-6020 Innsbruck, Austria.
| | - Christoph Reitschuler
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, A-6020 Innsbruck, Austria
| | - Paul Illmer
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Wagner AO, Reitschuler C, Illmer P. Effect of different acetate:propionate ratios on the methanogenic community during thermophilic anaerobic digestion in batch experiments. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Illmer P, Reitschuler C, Wagner AO, Schwarzenauer T, Lins P. Microbial succession during thermophilic digestion: the potential of Methanosarcina sp. PLoS One 2014; 9:e86967. [PMID: 24586260 PMCID: PMC3929350 DOI: 10.1371/journal.pone.0086967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
A distinct succession from a hydrolytic to a hydrogeno- and acetotrophic community was well documented by DGGE (denaturing gradient gel electrophoresis) and dHPLC (denaturing high performance liquid chromatography), and confirmed by qPCR (quantitative PCR) measurements and DNA sequence analyses. We could prove that Methanosarcina thermophila has been the most important key player during the investigated anaerobic digestion process. This organism was able to terminate a stagnation phase, most probable caused by a decreased pH and accumulated acetic acid following an initial hydrolytic stage. The lack in Methanosarcina sp. could not be compensated by high numbers of Methanothermobacter sp. or Methanoculleus sp., which were predominant during the initial or during the stagnation phase of the fermentation, respectively.
Collapse
Affiliation(s)
- Paul Illmer
- University Innsbruck, Institute of Microbiology, Innsbruck, Austria
- * E-mail:
| | | | | | | | - Philipp Lins
- University Innsbruck, Institute of Microbiology, Innsbruck, Austria
| |
Collapse
|
12
|
Lins P, Reitschuler C, Illmer P. Methanosarcina spp., the key to relieve the start-up of a thermophilic anaerobic digestion suffering from high acetic acid loads. BIORESOURCE TECHNOLOGY 2013; 152:347-354. [PMID: 24315939 DOI: 10.1016/j.biortech.2013.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
This paper investigates if it is possible to produce inocula to counteract high acetic acid (CH3COO(-)) concentrations during thermophilic anaerobic digestion. To this end, fermenter sludge was exposed for different durations to either gradually increasing CH3COO(-) concentrations or directly exposed to a high concentration (150 mM). Altogether, these enrichments led to inocula with a distinct decrease of representatives of Methanobacteriales, while those of Methanoculleus spp. were hardly affected by any treatment. After the inoculation, good agreements of the abundance of Methanosarcinales and Methanoculleus spp. with total DNA content and methane production rate were apparent. In addition, a gradual adaptation of the inoculum for at least 4 weeks led to a significant increase of Methanosarcina spp. during the subsequent fermentation. These results demonstrate the potential of bioaugmentation to relieve the start-up of an anaerobic digestion suffering from high CH3COO(-) loads, especially pointing to the robust acetoclastic genus Methanosarcina.
Collapse
Affiliation(s)
- Philipp Lins
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Christoph Reitschuler
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Illmer
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Primer evaluation and adaption for cost-efficient SYBR Green-based qPCR and its applicability for specific quantification of methanogens. World J Microbiol Biotechnol 2013; 30:293-304. [PMID: 23918633 DOI: 10.1007/s11274-013-1450-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
Abstract
In the present study nine promising primer sets, targeting Archaea and methanogenic Archaea in particular, were evaluated in silico, in vitro and in situ concerning specificity, accuracy and applicability in end-point (ep-) and especially quantitative (q-)PCR research. The main goal was to adapt and evaluate already adapted primer sets, which were partially designed in combination with TaqMan probes, in substantially cheaper SYBR Green-based qPCR applications. An initial 16S rRNA gene bank-based in silico evaluation revealed high coverage potentials for all primers within targeted groups, ranging from 71 to 90%, except the Methanosaeta specific set showing a low potential of 37%. Mentionable cross-reacting potentials could be detected for the Methanothermobacter, Methanomicrobiales and Methanoculleus sets. The in vitro evaluation with selected reference organisms revealed a specific behavior for most primer sets, while the Methanosarcina and Methanothermobacter sets showed most problematic cross-reactions in epPCR application. We were able to show that primers for detecting the total archaeal community, methanogenic orders Methanosarcinales, Methanobacteriales, Methanococcales and the genus Methanoculleus performed in a highly specific way and allowed an accurate quantification of targeted organisms without the use of expensive TaqMan probes. However, primer pairs designed for detecting Methanomicrobiales, Methanothermobacter, Methanosarcina and Methanosaeta are not suitable for SYBR Green applications. The reliability of in situ quantifications was assessed for a typical methanogenic community, derived from a thermophilic fermenter, and confirmed via denaturing gradient gel band quantification and sequencing. Thereby, we revealed high abundances of methanogenic Archaea, mainly comprising Methanoculleus and Methanosarcinales, while Methanobacteriales only formed a minor fraction.
Collapse
|
14
|
Wagner AO, Lins P, Malin C, Reitschuler C, Illmer P. Impact of protein-, lipid- and cellulose-containing complex substrates on biogas production and microbial communities in batch experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 458-460:256-66. [PMID: 23660521 DOI: 10.1016/j.scitotenv.2013.04.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 05/08/2023]
Abstract
In the present study, nine complex organic substrates from three classes (protein-, lipid-, and cellulose-rich) were investigated in batch experiments and compared with a control in order to evaluate their potential for utilisation as substrates for biogas production. High methane production was observed from protein-rich substrates; problems arose from lipid-containing, lactose and cellulose fermentation. Using DGGE analysis it could be shown that different classes of substrate resulted in different microbial communities, whereupon similar substrates tended to show a similar microbial structure. By means of qPCR Methanoculleus sp., a hydrogenotrophic methanogen was found to be the most abundant organism in the batch experiments. Additionally, it could be demonstrated that methanogenic organisms withstood adverse environmental conditions for at least an incubation period of 55 days, pointing to a high stability of the archaeal community even in times of decreasing or even failing fermenter performance.
Collapse
Affiliation(s)
- Andreas Otto Wagner
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
15
|
Hao L, Lü F, Li L, Wu Q, Shao L, He P. Self-adaption of methane-producing communities to pH disturbance at different acetate concentrations by shifting pathways and population interaction. BIORESOURCE TECHNOLOGY 2013; 140:319-327. [PMID: 23711940 DOI: 10.1016/j.biortech.2013.04.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
To investigate the competition among acetate-utilizing microorganisms at different acetate levels, bioconversion processes of 50, 100, 150 and 200 mM acetate in the presence and absence of methanogenic inhibitor CH3F were monitored in thermophilic methanogenic system. The successive response of methane-producing community during the deteriorative and recovery phases caused by pH disturbance was analyzed. High acetate concentration (>50mM) inhibited the activity of acetoclastic methanogenesis (AM). The increasing pH (>7.5) enhanced this inhibition. The syntrophic acetate oxidizing (SAO) bacteria and hydrogenotrophic methanogens including Methanomicrobiales and Methanobacteirales were more tolerant to the stress from high acetate concentration and high pH. Resumption from alkali condition to normal pH stimulated the growth of acetate oxidizing syntrophs. The reaction rate of SAO-HM was lower than that of AM. These results point to the possibility to regenerate the deteriorated anaerobic digesters by addition of acclimatized inocula rich in acetate-oxidizing syntrophs.
Collapse
Affiliation(s)
- Liping Hao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Lins P, Schwarzenauer T, Reitschuler C, Wagner AO, Illmer P. Methanogenic potential of formate in thermophilic anaerobic digestion. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2012; 30:1031-40. [PMID: 22588113 DOI: 10.1177/0734242x12445655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the present study the methanogenic potential of formate (HCOO(-)) during thermophilic anaerobic digestion was investigated. After appropriate conditions for methanogenesis (HCOO(-) and inoculum concentration, pH and duration of incubation) were assessed, an experiment with initial 31 replicates was run. Diluted fermenter sludge was used as inoculum, and process parameters including the pH, quality and quantity of the produced biogas and the concentrations of volatile fatty acids and HCO(3) (-) were determined. Remarkably, after 5 days of incubation the highest CH(4) production was calculated for a HCOO(-) concentration of 200 mmol L(-1), a concentration, however, which might not occur in situ. During the phase of high CH(4) production HCOO(-) was degraded with a rate of 1.5 mmol L(-1) h(-1), and distinct changes of Gibbs free energy for several reactions were observed. Based on denaturing high-performance liquid chromatography, denaturing gradient gel electrophoresis, and additional subsequent sequencing approaches the hydrogenotrophic Methanothermobacter wolfeii was the dominant methanogen responsible for CH(4) production. Further confirmation was achieved due to the detection of autofluorescing rods with a size of up to ~3 µm, which were often arranged in pairs and chains. It was shown that even high concentrations of HCOO(-) are readily degraded, which might lead to an underestimation of both, the concentration and thus, the importance of HCOO(-) in anaerobic digestion.
Collapse
Affiliation(s)
- Philipp Lins
- University of Innsbruck, Institute of Microbiology, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
17
|
Effects of volatile fatty acids, ammonium and agitation on thermophilic methane production from biogas plant sludge in lab-scale experiments. Folia Microbiol (Praha) 2012; 57:313-6. [DOI: 10.1007/s12223-012-0132-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/04/2012] [Indexed: 10/28/2022]
|
18
|
Lins P, Reitschuler C, Illmer P. Development and evaluation of inocula combating high acetate concentrations during the start-up of an anaerobic digestion. BIORESOURCE TECHNOLOGY 2012; 110:167-73. [PMID: 22349198 DOI: 10.1016/j.biortech.2012.01.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 05/12/2023]
Abstract
In the present study inocula to combat high acetate (CH(3)COO(-)) concentrations during start-up of an anaerobic digestion were designed and evaluated. Two strategies were followed (i) a stepwise adaptation of the engaged microorganisms within 1, 2, 4 or 6weeks, each at increasing CH(3)COO(-) concentrations of 50, 100, and finally 150mM, and (ii) shock variants, meaning a direct start with 150mM for the same durations. The stepwise adaptation for 4 and 6 weeks resulted in inocula, leading to a significant improved start-up under high CH(3)COO(-) concentrations compared to controls and shock enriched inocula. These results point to the possibility to facilitate the start-up under high CH(3)COO(-) concentrations during anaerobic digestion by addition of specific adapted inocula.
Collapse
Affiliation(s)
- Philipp Lins
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
19
|
Shi S, Yue C, Wang L, Sun X, Wang Q. A Bibliometric Analysis of Anaerobic Digestion for Butanol Production Research Trends. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proenv.2012.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Akuzawa M, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. MICROBIAL ECOLOGY 2011; 61:595-605. [PMID: 21240482 DOI: 10.1007/s00248-010-9788-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
Acidification is one of the most common and serious problems inducing process failure in anaerobic digesters. The production of volatile fatty acids (VFAs) mainly triggers acidic shock. However, little is known about the bacteria involved in the processes of acidogenic metabolism, such as fermentation and reductive acetogenesis. Here, the metabolic responses of a methanogenic community to the acidification and resulting process deterioration were investigated using transcriptional profiling of both the 16S rRNA and formyltetrahydrofolate synthetase (FTHFS) genes. The 16S rRNA-based analyses demonstrated that the dynamic shift of bacterial populations was closely correlated with reactor performance, especially with VFA accumulation levels. The pH drop accompanied by an increase in VFAs stimulated the metabolic activation of an uncultured Chloroflexi subphylum I bacterium. The subphylum has been characterized as a fermentative carbohydrate degrader using culture- and molecular-based ecophysiological assays. At the beginning of VFA accumulation, FTHFS genes were expressed; the transcripts were derived from phylogenetically predicted homoacetogens, suggesting that reductive acetogenesis was operated by hitherto unidentified bacteria. When acetate concentrations were high, the FTHFS expression ceased and Thermoanaerobacterium aciditolerans proliferated selectively. This thermoacidophilic bacterium would play a decisive role in acetate production via fermentative metabolism. The results of this study reveal for the first time that an uncultured Chloroflexi, T. aciditolerans, and novel homoacetogens were metabolically associated with acidic shock and subsequent VFA accumulation in an anaerobic digester.
Collapse
Affiliation(s)
- Masateru Akuzawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|