1
|
Leinberger J, Koteska D, Boldt J, Petersen J, Shivaramu S, Tomasch J, Schulz S, Brinkhoff T. Chemical quantification of N-acyl alanine methyl ester (NAME) production and impact on temporal gene expression patterns in Roseovarius tolerans EL-164. BMC Microbiol 2024; 24:489. [PMID: 39574024 PMCID: PMC11580390 DOI: 10.1186/s12866-024-03624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Previous studies have identified structurally diverse N-acyl amino acid methyl esters (NAMEs) in culture extracts of Roseovarius tolerans EL-164 (Roseobacteraceae). NAMEs are structural analogues of the common signaling compounds N-acyl homoserine lactones (AHLs), but do not participate in AHL-mediated signaling. NAMEs show minor antialgal and antimicrobial activity, but whether this activity serves as the primary ecological role remains unclear. RESULTS To enable dose-dependent bioactivity-testing, we have established a chromatographic method for quantification of NAMEs in bacterial culture extracts. The concentrations determined for the two major NAMEs produced by EL-164, C16:1-NAME and C17:1-NAME, ranged between 0.685 and 5.731 mg L- 1 (2.0-16.9 µM) and 5.3-86.4 µg L- 1 (15.0-244.3 nM), respectively. Co-quantification of the C14:1-AHL showed concentrations ranging between 17.5 and 58.7 mg L- 1 (56.6-189.7 µM). We observed distinct production patterns for NAMEs and AHLs, with a continuous NAME production during the entire incubation period. We conducted a spike-in experiment, using the determined metabolite concentrations. By comparing the transcriptomes of pre- and post-metabolite-spikes, we identified three clusters of differentially expressed genes with distinct temporal expression patterns. Expression levels of stress response genes differed between NAME- and AHL-spiked EL-164 cultures in the stationary phase. CONCLUSIONS Our findings support previous studies suggesting an ecological role for C16:1-NAME as antibiotic, by proving that NAME concentrations in batch cultures were higher than the minimal inhibitory concentrations against Maribacter sp. 62 - 1 (Flavobacteriia) and Skeletonema costatum CCMP 1332 (Coscinodiscophyceae) reported in the literature. Our study further exemplified the broad application range of dose-dependent testing and highlighted the different biological activities of NAMEs and AHLs.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| | - Diana Koteska
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Judith Boldt
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sahana Shivaramu
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, 37981, Czechia
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, 37981, Czechia
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
2
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
3
|
Špacapan M, Myers MP, Braga L, Venturi V. Pseudomonas fuscovaginae quorum sensing studies: 5% dominates cell-to-cell conversations. Microbiol Spectr 2024; 12:e0417923. [PMID: 38511955 PMCID: PMC11064508 DOI: 10.1128/spectrum.04179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
A common feature of N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems is that the AHL signal is autoinducing. Once induced, a cell will further amplify the signal via a positive feedback loop. Pseudomonas fuscovaginae UPB0736 has two fully functional AHL QS systems, called PfsI/R and PfvI/R, which are inactive in a standard laboratory setting. In this work, we induce the QS systems with exogenous AHL signals and characterize the AHL signal amplification effect and QS activation dynamics at community and single-cell level. While the cognate signal is in both cases significantly further amplified to physiologically relevant levels, we observe only a limited response in terms of AHL synthase gene promoter activity. Additionally, the PfsI/R QS system exhibits a unique dramatic phenotypic heterogeneity, where only up to 5% of all cells amplify the signal further and are, thus, considered to be QS active. IMPORTANCE Bacteria use N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems for population-wide phenotypic coordination. The QS configuration in Pseudomonas fuscovaginae is dramatically different from other model examples of AHL QS signaling and, thus, represents an important exception to the norm, which usually states that QS triggers population-wide phenotypic transitions in relation to cell density. We argue that the differences in QS dynamics of P. fuscovaginae highlight its different evolutionary purpose, which is ultimately dictated by the selective pressures of its natural habitat. We hope that this example will further expand our understanding of the complex and yet unknown QS-enabled sociomicrobiology. Furthermore, we argue that exemptions to the QS norm will be found in other plant-pathogenic bacterial strains that grow in similar environments and that molecularly similar QS systems do not necessarily share a similar evolutionary purpose; therefore, generalizations about bacterial cell-to-cell signaling systems function should be avoided.
Collapse
Affiliation(s)
- Mihael Špacapan
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| |
Collapse
|
4
|
Jung H. A pore-scale reactive transport modeling study for quorum sensing-driven biofilm dispersal in heterogeneous porous media. Math Biosci 2024; 367:109126. [PMID: 38070765 DOI: 10.1016/j.mbs.2023.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Microorganisms regulate the expression of energetically expensive phenotypes via a collective decision-making mechanism known as quorum sensing (QS). This study investigates the intricate dynamics of biofilm growth and QS-controlled biofilm dispersal in heterogeneous porous media, employing a pore-scale reactive transport modeling approach. Model simulations carried out under various fluid flow conditions and biofilm growth scenarios reveal that QS processes are influenced not only by the biomass density of biofilm colonies but also by a complex interplay between pore architecture, flow velocity, and the rates of biofilm growth and dispersal. This study demonstrates that pore architecture controls the initiation of QS processes and advection gives rise to oscillatory growth of biofilms. Such oscillation is suppressed if biofilm dynamics are in favor of sustaining a sufficiently high signal concentration, such as fast growth or slow dispersal rates. By establishing a mathematical framework, this study contributes to the fundamental understanding of QS-controlled biofilm dynamics in complex environments.
Collapse
Affiliation(s)
- Heewon Jung
- Department of Geological Sciences, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
5
|
Karimov IF, Fedorova TO, Zherebyateva OO, Borisov SD, Mikhailova EA. Evaluation of Homoserine Lactone Production by Pseudomonas spp. Isolates. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Importance of N-Acyl-Homoserine Lactone-Based Quorum Sensing and Quorum Quenching in Pathogen Control and Plant Growth Promotion. Pathogens 2021; 10:pathogens10121561. [PMID: 34959516 PMCID: PMC8706166 DOI: 10.3390/pathogens10121561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The biological control of plant pathogens is linked to the composition and activity of the plant microbiome. Plant-associated microbiomes co-evolved with land plants, leading to plant holobionts with plant-beneficial microbes but also with plant pathogens. A diverse range of plant-beneficial microbes assists plants to reach their optimal development and growth under both abiotic and biotic stress conditions. Communication within the plant holobiont plays an important role, and besides plant hormonal interactions, quorum-sensing signalling of plant-associated microbes plays a central role. Quorum-sensing (QS) autoinducers, such as N-acyl-homoserine lactones (AHL) of Gram-negative bacteria, cause a pronounced interkingdom signalling effect on plants, provoking priming processes of pathogen defence and insect pest control. However, plant pathogenic bacteria also use QS signalling to optimise their virulence; these QS activities can be controlled by quorum quenching (QQ) and quorum-sensing inhibition (QSI) approaches by accompanying microbes and also by plants. Plant growth-promoting bacteria (PGPB) have also been shown to demonstrate QQ activity. In addition, some PGPB only harbour genes for AHL receptors, so-called luxR-solo genes, which can contribute to plant growth promotion and biological control. The presence of autoinducer solo receptors may reflect ongoing microevolution processes in microbe–plant interactions. Different aspects of QS systems in bacteria–plant interactions of plant-beneficial and pathogenic bacteria will be discussed, and practical applications of bacteria with AHL-producing or -quenching activity; QS signal molecules stimulating pathogen control and plant growth promotion will also be presented.
Collapse
|
7
|
Portillo AE, Readel E, Armstrong DW. Production of both l- and d- N-acyl-homoserine lactones by Burkholderia cepacia and Vibrio fischeri. Microbiologyopen 2021; 10:e1242. [PMID: 34964286 PMCID: PMC8591449 DOI: 10.1002/mbo3.1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
Quorum sensing (QS) is a complex process in which molecules, such as l-N-acyl-homoserine lactones (l-AHLs), are produced as essential signaling molecules allowing bacteria to detect and respond to cell population density by gene regulation. Few studies have considered the natural production and role of the opposite enantiomers, d-AHLs. In this work, production of d,l-AHLs by Burkholderia cepacia and Vibrio fischeri was monitored over time, with significant amounts of d-AHLs detected. Bioluminescence of V. fischeri was observed with maximum bioluminescence correlating with the maximum concentrations of both l- and d- octanoyl-homoserine lactones (l- and d-OHL). l-Methionine, a precursor to l-AHLs, was examined via supplementation studies conducted by growing three parallel cultures of B. cepacia in M9 minimal media with added l-, d-, or d,l-methionine and observing their effect on the production of d,l-AHL by B. cepacia. The results show that addition of any methionine (l-, d-, or d,l-) does not affect the overall ratio of l- to d-AHLs, that is d-AHL production was not selectively enhanced by d-methionine addition. However, the overall AHL (l- and d-) concentration does increase with the addition of any methionine supplement. These findings indicate the possibility of a distinct biosynthetic pathway for d-AHL production, possibly exposing a new dimension within bacterial communication.
Collapse
Affiliation(s)
- Abiud E. Portillo
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexasUSA
| | - Elizabeth Readel
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexasUSA
| | - Daniel W. Armstrong
- Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonTexasUSA
| |
Collapse
|
8
|
Wang H, Liu R, You MP, Barbetti MJ, Chen Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021; 9:microorganisms9091988. [PMID: 34576883 PMCID: PMC8470069 DOI: 10.3390/microorganisms9091988] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
A vast microbial community inhabits in the rhizosphere, among which, specialized bacteria known as Plant Growth-Promoting Rhizobacteria (PGPR) confer benefits to host plants including growth promotion and disease suppression. PGPR taxa vary in the ways whereby they curtail the negative effects of invading plant pathogens. However, a cumulative or synergistic effect does not always ensue when a bacterial consortium is used. In this review, we reassess the disease-suppressive mechanisms of PGPR and present explanations and illustrations for functional diversity and/or stability among PGPR taxa regarding these mechanisms. We also provide evidence of benefits when PGPR mixtures, rather than individuals, are used for protecting crops from various diseases, and underscore the critical determinant factors for successful use of PGPR mixtures. Then, we evaluate the challenges of and limitations to achieving the desired outcomes from strain/species-rich bacterial assemblages, particularly in relation to their role for plant disease management. In addition, towards locating additive or synergistic outcomes, we highlight why and how the benefits conferred need to be categorized and quantified when different strains/species of PGPR are used in combinations. Finally, we highlight the critical approaches needed for developing PGPR mixtures with improved efficacy and stability as biocontrols for utilization in agricultural fields.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences, Xianyang 712100, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjin Liu
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao 266109, China;
| | - Ming Pei You
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Martin J. Barbetti
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA 6009, Australia; (M.P.Y.); (M.J.B.)
- Correspondence:
| |
Collapse
|
9
|
Peptide signaling without feedback in signal production operates as a true quorum sensing communication system in Bacillus subtilis. Commun Biol 2021; 4:58. [PMID: 33420264 PMCID: PMC7794433 DOI: 10.1038/s42003-020-01553-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Bacterial quorum sensing (QS) is based on signal molecules (SM), which increase in concentration with cell density. At critical SM concentration, a variety of adaptive genes sharply change their expression from basic level to maximum level. In general, this sharp transition, a hallmark of true QS, requires an SM dependent positive feedback loop, where SM enhances its own production. Some communication systems, like the peptide SM-based ComQXPA communication system of Bacillus subtilis, do not have this feedback loop and we do not understand how and if the sharp transition in gene expression is achieved. Based on experiments and mathematical modeling, we observed that the SM peptide ComX encodes the information about cell density, specific cell growth rate, and even oxygen concentration, which ensure power-law increase in SM production. This enables together with the cooperative response to SM (ComX) a sharp transition in gene expression level and this without the SM dependent feedback loop. Due to its ultra-sensitive nature, the ComQXPA can operate at SM concentrations that are 100-1000 times lower than typically found in other QS systems, thereby substantially reducing the total metabolic cost of otherwise expensive ComX peptide.
Collapse
|
10
|
Jung H, Meile CD. Numerical investigation of microbial quorum sensing under various flow conditions. PeerJ 2020; 8:e9942. [PMID: 32983649 PMCID: PMC7500354 DOI: 10.7717/peerj.9942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
Abstract
Microorganisms efficiently coordinate phenotype expressions through a decision-making process known as quorum sensing (QS). We investigated QS amongst distinct, spatially distributed microbial aggregates under various flow conditions using a process-driven numerical model. Model simulations assess the conditions suitable for QS induction and quantify the importance of advective transport of signaling molecules. In addition, advection dilutes signaling molecules so that faster flow conditions require higher microbial densities, faster signal production rates, or higher sensitivities to signaling molecules to induce QS. However, autoinduction of signal production can substantially increase the transport distance of signaling molecules in both upstream and downstream directions. We present empirical approximations to the solutions of the advection–diffusion–reaction equation that describe the concentration profiles of signaling molecules for a wide range of flow and reaction rates. These empirical relationships, which predict the distribution of dissolved solutes along pore channels, allow to quantitatively estimate the effective communication distances amongst multiple microbial aggregates without further numerical simulations.
Collapse
|
11
|
Charlesworth J, Kimyon O, Manefield M, Beloe CJ, Burns BP. Archaea join the conversation: detection of AHL-like activity across a range of archaeal isolates. FEMS Microbiol Lett 2020; 367:5874252. [PMID: 32691824 DOI: 10.1093/femsle/fnaa123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Quorum sensing is a mechanism of genetic control allowing single cell organisms to coordinate phenotypic response(s) across a local population and is often critical for ecosystem function. Although quorum sensing has been extensively studied in bacteria comparatively less is known about this mechanism in Archaea. Given the growing significance of Archaea in both natural and anthropogenic settings, it is important to delineate how widespread this phenomenon of signaling is in this domain. Employing a plasmid-based AHL biosensor in conjunction with thin-layer chromatography (TLC), the present study screened a broad range of euryarchaeota isolates for potential signaling activity. Data indicated the presence of 11 new Archaeal isolates with AHL-like activity against the LuxR-based AHL biosensor, including for the first time putative AHL activity in a thermophile. The presence of multiple signals and distinct changes between growth phases were also shown via TLC. Multiple signal molecules were detected using TLC in Haloferax mucosum, Halorubrum kocurii, Natronococcus occultus and Halobacterium salinarium. The finding of multiple novel signal producers suggests the potential for quorum sensing to play an important role not only in the regulation of complex phenotypes within Archaea but the potential for cross-talk with bacterial systems.
Collapse
Affiliation(s)
- James Charlesworth
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, 2052, Australia
| | - Onder Kimyon
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,School of Civil and Environmental Engineering, The University of New South Wales, Sydney, 2052 Australia
| | - Michael Manefield
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,School of Civil and Environmental Engineering, The University of New South Wales, Sydney, 2052 Australia.,School of Chemical Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Charlotte J Beloe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, 2052, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, 2052, Australia
| |
Collapse
|
12
|
Silva KPT, Boedicker JQ. A neural network model predicts community-level signaling states in a diverse microbial community. PLoS Comput Biol 2019; 15:e1007166. [PMID: 31233492 PMCID: PMC6611639 DOI: 10.1371/journal.pcbi.1007166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/05/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
Signal crosstalk within biological communication networks is common, and such crosstalk can have unexpected consequences for decision making in heterogeneous communities of cells. Here we examined crosstalk within a bacterial community composed of five strains of Bacillus subtilis, with each strain producing a variant of the quorum sensing peptide ComX. In isolation, each strain produced one variant of the ComX signal to induce expression of genes associated with bacterial competence. When strains were combined, a mixture of ComX variants was produced resulting in variable levels of gene expression. To examine gene regulation in mixed communities, we implemented a neural network model. Experimental quantification of asymmetric crosstalk between pairs of strains parametrized the model, enabling the accurate prediction of activity within the full five-strain network. Unlike the single strain system in which quorum sensing activated upon exceeding a threshold concentration of the signal, crosstalk within the five-strain community resulted in multiple community-level quorum sensing states, each with a unique combination of quorum sensing activation among the five strains. Quorum sensing activity of the strains within the community was influenced by the combination and ratio of strains as well as community dynamics. The community-level signaling state was altered through an external signal perturbation, and the output state depended on the timing of the perturbation. Given the ubiquity of signal crosstalk in diverse microbial communities, the application of such neural network models will increase accuracy of predicting activity within microbial consortia and enable new strategies for control and design of bacterial signaling networks.
Collapse
Affiliation(s)
- Kalinga Pavan T. Silva
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Shamshuddin Z, Kirse C, Briesen H, Doble M. Mathematical modelling of AHL production in Exiguobacterium MPO strain. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Majumdar S, Pal S. Information transmission in microbial and fungal communication: from classical to quantum. J Cell Commun Signal 2018; 12:491-502. [PMID: 29476316 PMCID: PMC5910326 DOI: 10.1007/s12079-018-0462-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 01/05/2023] Open
Abstract
Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.
Collapse
Affiliation(s)
- Sarangam Majumdar
- Dipartimento di Ingegneria Scienze Informatiche e Matematica, Università degli Studi di L’ Aquila, Via Vetoio – Loc. Coppito, 67010 L’ Aquila, Italy
| | - Sukla Pal
- Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
15
|
Logic of two antagonizing intra-species quorum sensing systems in bacteria. Biosystems 2018; 165:88-98. [PMID: 29407383 DOI: 10.1016/j.biosystems.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/08/2017] [Accepted: 01/10/2018] [Indexed: 12/24/2022]
Abstract
Bacteria release signaling molecules into the surrounding environment and sense them when present in their proximity. Using this strategy, a cell estimates the number of neighbors in its surrounding. Upon sensing a critical number of individuals, bacteria coordinate a number of cellular processes. This density-dependent control of gene expression and physiology is called quorum sensing (QS). Quorum sensing controls a wide variety of functions in bacteria, including those related to motility, growth, virulence etc. Quorum sensing has been widely observed in bacteria while the individuals of the same species or different species compete and cooperate each other. Interestingly, many species possess more than one QS system (intra-species) and these QS systems interact each other to perform quorum sensing. Thus, several logical arrangements can be possible based on the interaction among intra-species QS systems - parallel, series, antagonizing, and agonizing. In this work, we perform simulations to understand the logic of interaction between two antagonizing intra-species QS systems. In such an interaction, one QS system gets fully expressed and the other only gets partially expressed. This is found to be dictated by the interplay between autoinducer's diffusivity and antagonizing strength. In addition, we speculate an important role of the intracellular regulators (eg. LuxR) in maintaining the uniform response among the individual cells from the different localities. We also expect the interplay between the autoinducer's diffusivity and distribution of cells in fine tuning the collective response. Interestingly, in a localized niche with a heterogeneous cell distribution, the cells are expected to perform a global quorum sensing via fully expressed QS system and a local quorum sensing via partially expressed QS system.
Collapse
|
16
|
Spacapan M, Danevčič T, Mandic-Mulec I. ComX-Induced Exoproteases Degrade ComX in Bacillus subtilis PS-216. Front Microbiol 2018; 9:105. [PMID: 29449835 PMCID: PMC5799266 DOI: 10.3389/fmicb.2018.00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Gram-positive bacteria use peptides as auto-inducing (AI) signals to regulate the production of extracellular enzymes (e.g., proteases). ComX is an AI peptide, mostly known for its role in the regulation of bacterial competence and surfactant production in Bacillus subtilis. These two traits are regulated accordingly to the bacterial population size, thus classifying ComX as a quorum sensing signal. ComX also indirectly regulates exoprotease production through the intermediate transcriptional regulator DegQ. We here use this peptide-based AI system (the ComQXPA system) as a model to address exoprotease regulation by ComX in biofilms. We also investigate the potential of ComX regulated proteases to degrade the ComX AI peptide. Results indicate that ComX indeed induces the expression of aprE, the gene for the major serine protease subtilisin, and stimulates overall exoprotease production in biofilms of B. subtilis PS-216 and several other B. subtilis soil isolates. We also provide evidence that these exoproteases can degrade ComX. The ComX biological activity decay is reduced in the spent media of floating biofilms with low proteolytic activity found in the comP and degQ mutants. ComX biological activity decay can be restored by the addition of subtilisin to such media. In contrast, inhibition of metalloproteases by EDTA reduces ComX biological activity decay. This suggests that both serine and metalloproteases, which are induced by ComX, are ultimately capable of degrading this signaling peptide. This work brings novel information on regulation of exoproteases in B. subtilis floating biofilms and reveals that these proteolytic enzymes degrade the AI signaling peptide ComX, which is also a major determinant of their expression in biofilms.
Collapse
Affiliation(s)
- Mihael Spacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Detection of the Bacterial Quorum-Sensing Signaling Molecules N-Acyl-Homoserine Lactones (HSL) and N-Acyl-Homoserine (HS) with an Enzyme-Linked Immunosorbent Assay (ELISA) and via Ultrahigh-Performance Liquid Chromatography Coupled to Mass Spectrometry (UHPLC-MS). Methods Mol Biol 2018; 1673:61-72. [PMID: 29130164 DOI: 10.1007/978-1-4939-7309-5_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Quick and reliable quantitative methods requiring low amounts of sample volume are needed for the detection of N-acyl-homoserine lactones (HSL) and their degradation products N-acyl-homoserines (HS) in order to elucidate the occurrence and dynamics of these prevalent quorum-sensing molecules of Gram-negative bacteria in natural samples and laboratory model experiments. A combination of ELISA and UHPLC-MS is presented here which has proven to meet these requirements. Both methods can not only precisely detect and quantify HSLs but also their degradation products HS and thereby enable studying signaling dynamics in quorum sensing, which have been identified to play an essential role in bacterial communication.
Collapse
|
18
|
Abstract
Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.
Collapse
Affiliation(s)
- Judith Pérez-Velázquez
- Mathematical Modeling of Biological Systems, Centre for Mathematical Science, Technical University of Munich, Garching, Germany. .,Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
19
|
Sheng H, Harir M, Boughner LA, Jiang X, Schmitt-Kopplin P, Schroll R, Wang F. N-acyl-homoserine lactone dynamics during biofilm formation of a 1,2,4-trichlorobenzene mineralizing community on clay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:1031-1038. [PMID: 28697551 DOI: 10.1016/j.scitotenv.2017.06.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In Gram-negative bacteria, quorum sensing systems are based on the N-acyl-homoserine lactone (AHL) molecule. The objective of this study was to investigate the role of quorum sensing systems during biofilm formation by a microbial community while degrading the pollutant. Our model system included 1,2,4-trichlorobenzene (1,2,4-TCB) and its mineralizing Gram-negative bacterial community to investigate the relationships between AHL dynamics, cell growth and pollutant degradation. Biomineralization of 1,2,4-TCB was monitored for both the planktonic bacterial community with and without sterile clay particles in liquid cultures. The bacterial growth and production of AHLs were quantified by fluorescent in situ hybridization and immunoassay analysis, respectively. A rapid production of AHLs which occurred coincided with the biofilm formation and the increase of mineralization rate of 1,2,4-TCB in liquid cultures. There is a positive correlation between the cell density of Bodertella on the clay particles and mineralization rate of 1,2,4-TCB. 3-oxo-C12:1-HSL appears to be the dominant AHL with the highest intensity and rapidly degraded by the bacterial community via two main consecutive reactions (lactone hydrolysis and decarboxylic reaction). These findings suggest that the integrated AHLs and their degraded products play a crucial role in biofilm formation and biomineralization of 1,2,4-TCB in culture.
Collapse
Affiliation(s)
- Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mourad Harir
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Lisa A Boughner
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Reiner Schroll
- Department of Microbe Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Microbe Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Silva KPT, Chellamuthu P, Boedicker JQ. Quantifying the strength of quorum sensing crosstalk within microbial communities. PLoS Comput Biol 2017; 13:e1005809. [PMID: 29049387 PMCID: PMC5663516 DOI: 10.1371/journal.pcbi.1005809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/31/2017] [Accepted: 10/05/2017] [Indexed: 01/12/2023] Open
Abstract
In multispecies microbial communities, the exchange of signals such as acyl-homoserine lactones (AHL) enables communication within and between species of Gram-negative bacteria. This process, commonly known as quorum sensing, aids in the regulation of genes crucial for the survival of species within heterogeneous populations of microbes. Although signal exchange was studied extensively in well-mixed environments, less is known about the consequences of crosstalk in spatially distributed mixtures of species. Here, signaling dynamics were measured in a spatially distributed system containing multiple strains utilizing homologous signaling systems. Crosstalk between strains containing the lux, las and rhl AHL-receptor circuits was quantified. In a distributed population of microbes, the impact of community composition on spatio-temporal dynamics was characterized and compared to simulation results using a modified reaction-diffusion model. After introducing a single term to account for crosstalk between each pair of signals, the model was able to reproduce the activation patterns observed in experiments. We quantified the robustness of signal propagation in the presence of interacting signals, finding that signaling dynamics are largely robust to interference. The ability of several wild isolates to participate in AHL-mediated signaling was investigated, revealing distinct signatures of crosstalk for each species. Our results present a route to characterize crosstalk between species and predict systems-level signaling dynamics in multispecies communities.
Collapse
Affiliation(s)
- Kalinga Pavan T. Silva
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States of America
| | - Prithiviraj Chellamuthu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States of America
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
21
|
Silva KP, Chellamuthu P, Boedicker JQ. Signal Destruction Tunes the Zone of Activation in Spatially Distributed Signaling Networks. Biophys J 2017; 112:1037-1044. [PMID: 28297640 DOI: 10.1016/j.bpj.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022] Open
Abstract
Diverse microbial communities coordinate group behaviors through signal exchange, such as the exchange of acyl-homoserine lactones (AHLs) by Gram-negative bacteria. Cellular communication is prone to interference by neighboring microbes. One mechanism of interference is signal destruction through the production of an enzyme that cleaves the signaling molecule. Here we examine the ability of one such interference enzyme, AiiA, to modulate signal propagation in a spatially distributed system of bacteria. We have developed an experimental assay to measure signal transduction and implement a theoretical model of signaling dynamics to predict how the system responds to interference. We show that titration of an interfering strain into a signaling network tunes the spatial range of activation over the centimeter length scale, quantifying the robustness of the signaling network to signal destruction and demonstrating the ability to program systems-level responses of spatially heterogeneous cellular networks.
Collapse
Affiliation(s)
- Kalinga Pavan Silva
- Department of Physics, University of Southern California, Los Angeles, California
| | - Prithiviraj Chellamuthu
- Department of Physics, University of Southern California, Los Angeles, California; Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - James Q Boedicker
- Department of Physics, University of Southern California, Los Angeles, California; Department of Biological Sciences, University of Southern California, Los Angeles, California.
| |
Collapse
|
22
|
Effects of quorum quenching by AHL lactonase on AHLs, protease, motility and proteome patterns in Aeromonas veronii LP-11. Int J Food Microbiol 2017; 252:61-68. [DOI: 10.1016/j.ijfoodmicro.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/07/2023]
|
23
|
Emerenini BO, Sonner S, Eberl HJ. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:625-653. [PMID: 28092956 DOI: 10.3934/mbe.2017036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We analyze a mathematical model of quorum sensing induced biofilm dispersal. It is formulated as a system of non-linear, density-dependent, diffusion-reaction equations. The governing equation for the sessile biomass comprises two non-linear diffusion effects, a degeneracy as in the porous medium equation and fast diffusion. This equation is coupled with three semi-linear diffusion-reaction equations for the concentrations of growth limiting nutrients, autoinducers, and dispersed cells. We prove the existence and uniqueness of bounded non-negative solutions of this system and study the behavior of the model in numerical simulations, where we focus on hollowing effects in established biofilms.
Collapse
Affiliation(s)
- Blessing O Emerenini
- Biomedical Physics, Dept. Physics, Ryerson University, 350 Victoria Street Toronto, ON, M5B 2K3, Canada.
| | | | | |
Collapse
|
24
|
Three-Dimensional Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell. Bull Math Biol 2017; 79:884-919. [PMID: 28290008 DOI: 10.1007/s11538-017-0259-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
We develop a multiphasic hydrodynamic theory for biofilms taking into account interactions among various bacterial phenotypes, extracellular polymeric substance (EPS), quorum sensing (QS) molecules, solvent, and antibiotics. In the model, bacteria are classified into down-regulated QS, up-regulated QS, and non-QS cells based on their QS ability. The model is first benchmarked against an experiment yielding an excellent fit to experimental measurements on the concentration of QS molecules and the cell density during biofilm development. It is then applied to study development of heterogeneous structures in biofilms due to interactions of QS regulation, hydrodynamics, and antimicrobial treatment. Our 3D numerical simulations have confirmed that (i). QS is beneficial for biofilm development in a long run by building a robust EPS population to protect the biofilm; (ii). biofilms located upstream can induce QS downstream when the colonies are close enough spatially; (iii). QS induction may not be fully operational and can even be compromised in strong laminar flows; (v). the hydrodynamic stress alters the biofilm morphology. Through further numerical investigations, our model suggests that (i). QS-regulated EPS production contributes to the structural formation of heterogeneous biofilms; (ii) QS down-regulated cells tend to grow at the surface of the biofilm while QS up-regulated ones tend to grow in the bulk; (iii) when nutrient supply is sufficient, QS induction might be more effective upstream than downstream; (iv) QS may be of little benefit in a short timescale in term of fighting against invading strain/species; (v) the material properties of biomass (bacteria and EPS) have strong impact on the dilution of QS molecules under strong shear flow. In addition, with this modeling framework, hydrodynamic details and rheological quantities associated with biofilm formation under QS regulation can be resolved.
Collapse
|
25
|
Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries. Sci Rep 2016; 6:39142. [PMID: 27966657 PMCID: PMC5155435 DOI: 10.1038/srep39142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/18/2016] [Indexed: 11/08/2022] Open
Abstract
Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.
Collapse
|
26
|
Bauer JS, Hauck N, Christof L, Mehnaz S, Gust B, Gross H. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones. PLoS One 2016; 11:e0167002. [PMID: 27861617 PMCID: PMC5115851 DOI: 10.1371/journal.pone.0167002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022] Open
Abstract
The shoot endophytic biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 produces a wide range of exoproducts, including enzymes and antibiotics. The production of exoproducts is commonly tightly regulated. In order to get a deeper insight into the regulatory network of PB-St2, the strain was systematically investigated regarding its quorum sensing systems, both on the genetic and metabolic level. The genome analysis of PB-St2 revealed the presence of four putative acyl homoserine lactone (AHL) biosynthesis genes: phzI, csaI, aurI, and hdtS. LC-MS/MS analyses of the crude supernatant extracts demonstrated that PB-St2 produces eight AHLs. In addition, the concentration of all AHL derivatives was quantified time-resolved in parallel over a period of 42 h during the growth of P. aurantiaca PB-St2, resulting in production curves, which showed differences regarding the maximum levels of the AHLs (14.6 nM– 1.75 μM) and the production period. Cloning and heterologous overexpression of all identified AHL synthase genes in Escherichia coli proved the functionality of the resulting synthases PhzI, CsaI, and AurI. A clear AHL production pattern was assigned to each of these three AHL synthases, while the HdtS synthase did not lead to any AHL production. Furthermore, the heterologous expression study demonstrated unequivocally and for the first time that AurI directs the synthesis of two 3-oxo-AHLs.
Collapse
Affiliation(s)
- Judith S. Bauer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Nils Hauck
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Lisa Christof
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Bertolt Gust
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
27
|
An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing. J Theor Biol 2016; 405:104-15. [PMID: 26796220 DOI: 10.1016/j.jtbi.2015.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023]
Abstract
Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.
Collapse
|
28
|
Mathematical Modelling of Bacterial Quorum Sensing: A Review. Bull Math Biol 2016; 78:1585-639. [PMID: 27561265 DOI: 10.1007/s11538-016-0160-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Bacterial quorum sensing (QS) refers to the process of cell-to-cell bacterial communication enabled through the production and sensing of the local concentration of small molecules called autoinducers to regulate the production of gene products (e.g. enzymes or virulence factors). Through autoinducers, bacteria interact with individuals of the same species, other bacterial species, and with their host. Among QS-regulated processes mediated through autoinducers are aggregation, biofilm formation, bioluminescence, and sporulation. Autoinducers are therefore "master" regulators of bacterial lifestyles. For over 10 years, mathematical modelling of QS has sought, in parallel to experimental discoveries, to elucidate the mechanisms regulating this process. In this review, we present the progress in mathematical modelling of QS, highlighting the various theoretical approaches that have been used and discussing some of the insights that have emerged. Modelling of QS has benefited almost from the onset of the involvement of experimentalists, with many of the papers which we review, published in non-mathematical journals. This review therefore attempts to give a broad overview of the topic to the mathematical biology community, as well as the current modelling efforts and future challenges.
Collapse
|
29
|
Shen Q, Gao J, Liu J, Liu S, Liu Z, Wang Y, Guo B, Zhuang X, Zhuang G. A New Acyl-homoserine Lactone Molecule Generated by Nitrobacter winogradskyi. Sci Rep 2016; 6:22903. [PMID: 26965192 PMCID: PMC4786786 DOI: 10.1038/srep22903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/24/2016] [Indexed: 11/09/2022] Open
Abstract
It is crucial to reveal the regulatory mechanism of nitrification to understand nitrogen conversion in agricultural systems and wastewater treatment. In this study, the nwiI gene of Nitrobacter winogradskyi was confirmed to be a homoserine lactone synthase by heterologous expression in Escherichia coli that synthesized several acyl-homoserine lactone signals with 7 to 11 carbon acyl groups. A novel signal, 7, 8-trans-N-(decanoyl) homoserine lactone (C10:1-HSL), was identified in both N. winogradskyi and the recombined E. coli. Furthermore, this novel signal also triggered variances in the nitrification rate and the level of transcripts for the genes involved in the nitrification process. These results indicate that quorum sensing may have a potential role in regulating nitrogen metabolism.
Collapse
Affiliation(s)
- Qiuxuan Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zijun Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yinghuan Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyuan Guo
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
Aybey A, Demirkan E. Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa by human serum paraoxonase. J Med Microbiol 2016; 65:105-113. [DOI: 10.1099/jmm.0.000206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Aynur Aybey
- Department of Biology, Faculty of Arts and Science, Uludag University, 16059, Bursa, Turkey
| | - Elif Demirkan
- Department of Biology, Faculty of Arts and Science, Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
31
|
Emerenini BO, Hense BA, Kuttler C, Eberl HJ. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment. PLoS One 2015; 10:e0132385. [PMID: 26197231 PMCID: PMC4511412 DOI: 10.1371/journal.pone.0132385] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. METHOD To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. RESULTS Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony.
Collapse
Affiliation(s)
| | - Burkhard A. Hense
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christina Kuttler
- Zentrum Mathematik, Technische Universität München, Neuherberg, Germany
| | - Hermann J. Eberl
- Dept. Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
32
|
Helman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. MOLECULAR PLANT PATHOLOGY 2015; 16:316-29. [PMID: 25113857 PMCID: PMC6638422 DOI: 10.1111/mpp.12180] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacteria are able to sense their population's density through a cell-cell communication system, termed 'quorum sensing' (QS). This system regulates gene expression in response to cell density through the constant production and detection of signalling molecules. These molecules commonly act as auto-inducers through the up-regulation of their own synthesis. Many pathogenic bacteria, including those of plants, rely on this communication system for infection of their hosts. The finding that the countering of QS-disrupting mechanisms exists in many prokaryotic and eukaryotic organisms offers a promising novel method to fight disease. During the last decade, several approaches have been proposed to disrupt QS pathways of phytopathogens, and hence to reduce their virulence. Such studies have had varied success in vivo, but most lend promising support to the idea that QS manipulation could be a potentially effective method to reduce bacterial-mediated plant disease. This review discusses the various QS-disrupting mechanisms found in both bacteria and plants, as well as the different approaches applied artificially to interfere with QS pathways and thus protect plant health.
Collapse
Affiliation(s)
- Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
33
|
Matur MG, Müller J, Kuttler C, Hense BA. An Approximative Approach for Single Cell Spatial Modeling of Quorum Sensing. J Comput Biol 2015; 22:227-35. [DOI: 10.1089/cmb.2014.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Meltem Gölgeli Matur
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Müller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Centre of Mathematical Sciences, Technische Universität München, Garching, Germany
| | - Christina Kuttler
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Centre of Mathematical Sciences, Technische Universität München, Garching, Germany
| | - Burkhard A. Hense
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
34
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
35
|
Buddrus-Schiemann K, Rieger M, Mühlbauer M, Barbarossa MV, Kuttler C, Hense BA, Rothballer M, Uhl J, Fonseca JR, Schmitt-Kopplin P, Schmid M, Hartmann A. Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models. Anal Bioanal Chem 2014; 406:6373-83. [PMID: 25116602 DOI: 10.1007/s00216-014-8063-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/24/2014] [Accepted: 07/24/2014] [Indexed: 01/12/2023]
Abstract
In this interdisciplinary approach, the dynamics of production and degradation of the quorum sensing signal 3-oxo-decanoylhomoserine lactone were studied for continuous cultures of Pseudomonas putida IsoF. The signal concentrations were quantified over time by use of monoclonal antibodies and ELISA. The results were verified by use of ultra-high-performance liquid chromatography. By use of a mathematical model we derived quantitative values for non-induced and induced signal production rate per cell. It is worthy of note that we found rather constant values for different rates of dilution in the chemostat, and the values seemed close to those reported for batch cultures. Thus, the quorum-sensing system in P. putida IsoF is remarkably stable under different environmental conditions. In all chemostat experiments, the signal concentration decreased strongly after a peak, because emerging lactonase activity led to a lower concentration under steady-state conditions. This lactonase activity probably is quorum sensing-regulated. The potential ecological implication of such unique regulation is discussed.
Collapse
Affiliation(s)
- Katharina Buddrus-Schiemann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system. Antonie van Leeuwenhoek 2014; 106:497-506. [PMID: 24974195 DOI: 10.1007/s10482-014-0218-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.
Collapse
|
37
|
Uecker H, Uecke H, Müller J, Hense BA. Individual-based model for quorum sensing with background flow. Bull Math Biol 2014; 76:1727-46. [PMID: 24849771 DOI: 10.1007/s11538-014-9974-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 04/30/2014] [Indexed: 11/29/2022]
Abstract
Quorum sensing is a wide-spread mode of cell-cell communication among bacteria in which cells release a signalling substance at a low rate. The concentration of this substance allows the bacteria to gain information about population size or spatial confinement. We consider a model for N cells which communicate with each other via a signalling substance in a diffusive medium with a background flow. The model consists of an initial boundary value problem for a parabolic PDE describing the exterior concentration u of the signalling substance, coupled with N ODEs for the masses ai of the substance within each cell. The cells are balls of radius R in R3, and under some scaling assumptions we formally derive an effective system of N ODEs describing the behaviour of the cells. The reduced system is then used to study the effect of flow on communication in general, and in particular for a number of geometric configurations.
Collapse
Affiliation(s)
| | - Hannes Uecke
- Institut für Mathematik, Universität Oldenburg, 26111, Oldenburg, Germany,
| | | | | |
Collapse
|
38
|
Zhang QQ, Wang HH, Zhuang S, Xiao HM, Xu XL, Zhou GH. Application of Mathematical Model for the Quantification of Acylated Homoserine Lactones Produces by P
seudomonas aeruginosa
in Chicken Breast Meat and Broth. J Food Saf 2013. [DOI: 10.1111/jfs.12079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiu-Qin Zhang
- Key Laboratory of Meat Processing and Quality Control; Ministry of Education; College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Hu-Hu Wang
- Key Laboratory of Meat Processing and Quality Control; Ministry of Education; College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Su Zhuang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Hong-Mei Xiao
- Key Laboratory of Meat Processing and Quality Control; Ministry of Education; College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Xing-Lian Xu
- Key Laboratory of Meat Processing and Quality Control; Ministry of Education; College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Guang-Hong Zhou
- Key Laboratory of Meat Processing and Quality Control; Ministry of Education; College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
39
|
Wang F, Fekete A, Harir M, Chen X, Dörfler U, Rothballer M, Jiang X, Schmitt-Kopplin P, Schroll R. Soil remediation with a microbial community established on a carrier: strong hints for microbial communication during 1,2,4-Trichlorobenzene degradation. CHEMOSPHERE 2013; 92:1403-1409. [PMID: 23601124 DOI: 10.1016/j.chemosphere.2013.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
The objective of the present study was to get more insight into the mechanisms that govern the high mineralization potential of a microbial community attached on a carrier material, as we found in an earlier study (Wang et al., 2010). A 1,2,4-Trichlorobenzene (1,2,4-TCB) degrading microbial community - attached (MCCP) and non-attached (MCLM) on clay particles - was inoculated into a simplified mineral medium system. Signaling molecules (AHLs), cell growth and 1,2,4-TCB mineralization were measured at different sampling points. The production of AHLs in the MCCP system increased continuously with increasing key degrader (Bordetella sp.) cell growth and a positive correlation was observed between the production of AHLs and 1,2,4-TCB mineralization. In the MCLM system, however, 1,2,4-TCB mineralization was lower than in the MCCP system; the AHLs production per Bordetella cell was higher than in MCCP and there was no correlation between AHLs and mineralization. Moreover, in the MCCP system less different AHLs were produced than in the MCLM system. These results indicate that a microbial community attached on a carrier material has an advantage over a non-attached community: it produces signaling molecules with much less energy and effort to achieve a well-directed cell-to-cell communication resulting in a high and effective mineralization.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Purohit AA, Johansen JA, Hansen H, Leiros HKS, Kashulin A, Karlsen C, Smalås A, Haugen P, Willassen NP. Presence of acyl-homoserine lactones in 57 members of the Vibrionaceae family. J Appl Microbiol 2013; 115:835-47. [PMID: 23725044 PMCID: PMC3910146 DOI: 10.1111/jam.12264] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/25/2013] [Indexed: 12/27/2022]
Abstract
AIMS The aim of this study was to use a sensitive method to screen and quantify 57 Vibrionaceae strains for the production of acyl-homoserine lactones (AHLs) and map the resulting AHL profiles onto a host phylogeny. METHODS AND RESULTS We used a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) protocol to measure AHLs in spent media after bacterial growth. First, the presence/absence of AHLs (qualitative analysis) was measured to choose internal standard for subsequent quantitative AHL measurements. We screened 57 strains from three genera (Aliivibrio, Photobacterium and Vibrio) of the same family (i.e. Vibrionaceae). Our results show that about half of the isolates produced multiple AHLs, typically at 25-5000 nmol l(-1) . CONCLUSIONS This work shows that production of AHL quorum sensing signals is found widespread among Vibrionaceae bacteria and that closely related strains typically produce similar AHL profiles. SIGNIFICANCE AND IMPACT OF THE STUDY The AHL detection protocol presented in this study can be applied to a broad range of bacterial samples and may contribute to a wider mapping of AHL production in bacteria, for example, in clinically relevant strains.
Collapse
Affiliation(s)
- A A Purohit
- The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Quorum sensing inhibitors: An overview. Biotechnol Adv 2013; 31:224-45. [DOI: 10.1016/j.biotechadv.2012.10.004] [Citation(s) in RCA: 474] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 12/28/2022]
|
42
|
Approximating the dynamics of communicating cells in a diffusive medium by ODEs—homogenization with localization. J Math Biol 2012; 67:1023-65. [DOI: 10.1007/s00285-012-0569-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 07/13/2012] [Indexed: 11/26/2022]
|
43
|
Production of the Quorum-Sensing Molecules N-Acylhomoserine Lactones by Endobacteria Associated with Mortierella alpina A-178. Chembiochem 2012; 13:1776-84. [DOI: 10.1002/cbic.201200263] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Indexed: 12/19/2022]
|
44
|
Hartmann A, Schikora A. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 2012; 38:704-13. [PMID: 22648507 DOI: 10.1007/s10886-012-0141-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/30/2022]
Abstract
Many environmental and interactive important traits of bacteria, such as antibiotic, siderophore or exoenzyme (like cellulose, pectinase) production, virulence factors of pathogens, as well as symbiotic interactions, are regulated in a population density-dependent manner by using small signaling molecules. This phenomenon, called quorum sensing (QS), is widespread among bacteria. Many different bacterial species are communicating or "speaking" through diffusible small molecules. The production often is sophisticatedly regulated via an autoinducing mechanism. A good example is the production of N-acyl homoserine lactones (AHL), which occur in many variations of molecular structure in a wide variety of Gram-negative bacteria. In Gram-positive bacteria, other compounds, such as peptides, regulate cellular activity and behavior by sensing the cell density. The degradation of the signaling molecule--called quorum quenching--is probably another important integral part in the complex quorum sensing circuit. Most interestingly, bacterial quorum sensing molecules also are recognized by eukaryotes that are colonized by QS-active bacteria. In this case, the cross-kingdom interaction can lead to specific adjustment and physiological adaptations in the colonized eukaryote. The responses are manifold, such as modifications of the defense system, modulation of the immune response, or changes in the hormonal status and growth responses. Thus, the interaction with the quorum sensing signaling molecules of bacteria can profoundly change the physiology of higher organisms too. Higher organisms are obligatorily associated with microbial communities, and these truly multi-organismic consortia, which are also called holobionts, can actually be steered via multiple interlinked signaling substances that originate not only from the host but also from the associated bacteria.
Collapse
Affiliation(s)
- Anton Hartmann
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
| | | |
Collapse
|
45
|
Wongtrakoongate P, Tumapa S, Tungpradabkul S. Regulation of a quorum sensing system by stationary phase sigma factor RpoS and their co-regulation of target genes
in Burkholderia pseudomallei. Microbiol Immunol 2012; 56:281-94. [DOI: 10.1111/j.1348-0421.2012.00447.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Meyer A, Megerle JA, Kuttler C, Müller J, Aguilar C, Eberl L, Hense BA, Rädler JO. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Phys Biol 2012; 9:026007. [PMID: 22476057 DOI: 10.1088/1478-3975/9/2/026007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.
Collapse
Affiliation(s)
- Andrea Meyer
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hense BA, Müller J, Kuttler C, Hartmann A. Spatial heterogeneity of autoinducer regulation systems. SENSORS 2012; 12:4156-71. [PMID: 22666024 PMCID: PMC3355405 DOI: 10.3390/s120404156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 12/25/2022]
Abstract
Autoinducer signals enable coordinated behaviour of bacterial populations, a phenomenon originally described as quorum sensing. Autoinducer systems are often controlled by environmental substances as nutrients or secondary metabolites (signals) from neighbouring organisms. In cell aggregates and biofilms gradients of signals and environmental substances emerge. Mathematical modelling is used to analyse the functioning of the system. We find that the autoinducer regulation network generates spatially heterogeneous behaviour, up to a kind of multicellularity-like division of work, especially under nutrient-controlled conditions. A hybrid push/pull concept is proposed to explain the ecological function. The analysis allows to explain hitherto seemingly contradicting experimental findings.
Collapse
Affiliation(s)
- Burkhard A. Hense
- Institute of Biomathematics and Biometry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-89-3187-4035; Fax: +49-89-3187-3029
| | - Johannes Müller
- Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany; E-Mails: (J.M.); (C.K.)
| | - Christina Kuttler
- Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany; E-Mails: (J.M.); (C.K.)
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; E-Mail:
| |
Collapse
|
48
|
Frederick MR, Kuttler C, Hense BA, Eberl HJ. A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theor Biol Med Model 2011; 8:8. [PMID: 21477365 PMCID: PMC3090360 DOI: 10.1186/1742-4682-8-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 04/10/2011] [Indexed: 11/11/2022] Open
Abstract
Background Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. Model We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. Results We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. Conclusions A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species.
Collapse
Affiliation(s)
- Mallory R Frederick
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada.
| | | | | | | |
Collapse
|
49
|
Brito-Echeverría J, Lucio M, López-López A, Antón J, Schmitt-Kopplin P, Rosselló-Móra R. Response to adverse conditions in two strains of the extremely halophilic species Salinibacter ruber. Extremophiles 2011; 15:379-89. [DOI: 10.1007/s00792-011-0366-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
|
50
|
Amara N, Krom BP, Kaufmann GF, Meijler MM. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 2010; 111:195-208. [PMID: 21087050 DOI: 10.1021/cr100101c] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Neri Amara
- Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | | | |
Collapse
|