1
|
Li H, Tian S, Shang F, Shi X, Zhang Y, Cao Y. Impacts of oxbow lake evolution on sediment microbial community structure in the Yellow River source region. ENVIRONMENTAL RESEARCH 2024; 252:119042. [PMID: 38692420 DOI: 10.1016/j.envres.2024.119042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Oxbow lake formation and evolution have significant impacts on the fragile Yellow River Basin ecosystem. However, the effects of different oxbow lake evolutionary stages on sediment microbial community structure are not yet understood comprehensively. Therefore, microbial community structure in three stages of oxbow lake succession, namely, lotic lake (early stage), semi-lotic lake (middle stage), and lentic lake (late stage), was investigated in the present study in the Yellow River Basin on the Qinghai-Tibet Plateau. Amplicon sequencing was employed to reveal differences in microbial community diversity and composition. The bacterial and fungal communities in sediment were significantly different among the three succession stages and were driven by different environmental factors. In particular, bacterial community structure was influenced primarily by nitrate-nitrogen (N), microbial biomass phosphorus, and total carbon (C) and organic C in the early, middle, and late stages, respectively. Conversely, fungal community structure was influenced primarily by ammonium-N in the early stage and by moisture content in the middle and late stages. However, the predicted functions of the microbial communities did not exhibit significant differences across the three succession stages. Both bacteria and fungi were influenced significantly by stochastic factors. Homogeneous selection had a high relative contribution to bacteria community assembly in the middle stage, whereas the relative contributions of heterogeneous selection processes to fungal community assembly increased through the three stages. As succession time increased, the total number of keystone species increased gradually, and the late succession stage had high network complexity and the highest network stability. The findings could facilitate further elucidation of the evolution mechanisms of oxbow lake source area, high-altitude river evolution dynamics, in addition to aiding a deeper understanding of the long-term ecological evolution patterns of source river ecosystems.
Collapse
Affiliation(s)
- Huinan Li
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shimin Tian
- Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, YRCC, Zhengzhou, 450003, China.
| | - Fude Shang
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xiaoyu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yang Zhang
- Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, YRCC, Zhengzhou, 450003, China
| | - Yongtao Cao
- Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, YRCC, Zhengzhou, 450003, China
| |
Collapse
|
2
|
Hernández-Del Amo E, Ramió-Pujol S, Gich F, Trias R, Bañeras L. Changes in the Potential Activity of Nitrite Reducers and the Microbial Community Structure After Sediment Dredging and Plant Removal in the Empuriabrava FWS-CW. MICROBIAL ECOLOGY 2020; 79:588-603. [PMID: 31486865 DOI: 10.1007/s00248-019-01425-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In constructed wetlands (CW), denitrification usually accounts for > 60% of nitrogen removal and is supposedly affected by wetland management practices, such as dredging (and plant removal). These practices cause an impact in sediment properties and microbial communities living therein. We have quantified the effects of a sediment dredging event on dissimilatory nitrite reduction by analysing the structure and activities of the microbial community before and after the event. Potential rates for nitrate reduction to ammonia and denitrification were in accordance with changes in the physicochemical conditions. Denitrification was the predominant pathway for nitrite removal (> 60%) and eventually led to the complete removal of nitrate. On the contrary, dissimilatory nitrite reduction to ammonia (DNRA) increased from 5 to 18% after the dredging event. Both actual activities and abundances of 16S rRNA, nirK and nirS significantly decreased after sediment dredging. However, genetic potential for denitrification (qnirS + qnirK/q16S rRNA) remained unchanged. Analyses of the 16S rRNA gene sequences revealed the importance of vegetation in shaping microbial community structures, selecting specific phylotypes potentially contributing to the nitrogen cycle. Overall, we confirmed that sediment dredging and vegetation removal exerted a measurable effect on the microbial community, but not on potential nitrite + nitrate removal rates. According to redundancy analysis, nitrate concentration and pH were the main variables affecting sediment microbial communities in the Empuriabrava CWs. Our results highlight a high recovery of the functionality of an ecosystem service after a severe intervention and point to metabolic redundancy of denitrifiers. We are confident these results will be taken into account in future management strategies in CWs.
Collapse
Affiliation(s)
- Elena Hernández-Del Amo
- Group of Molecular Microbial Ecology, Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Edifici Aulari Comú -LEAR, C/ Maria Aurèlia Capmany, 40, 17003, Girona, Catalonia, Spain
| | - Sara Ramió-Pujol
- Group of Molecular Microbial Ecology, Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Edifici Aulari Comú -LEAR, C/ Maria Aurèlia Capmany, 40, 17003, Girona, Catalonia, Spain
- GoodGut, Centre d'Empreses Giroemprèn, Parc Científic i Tecnològic UdG, Carrer Pic de Peguera, 11, 17003, Girona, Catalonia, Spain
| | - Frederic Gich
- Group of Molecular Microbial Ecology, Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Edifici Aulari Comú -LEAR, C/ Maria Aurèlia Capmany, 40, 17003, Girona, Catalonia, Spain
| | - Rosalia Trias
- Group of Molecular Microbial Ecology, Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Edifici Aulari Comú -LEAR, C/ Maria Aurèlia Capmany, 40, 17003, Girona, Catalonia, Spain
| | - Lluís Bañeras
- Group of Molecular Microbial Ecology, Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Edifici Aulari Comú -LEAR, C/ Maria Aurèlia Capmany, 40, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
3
|
Water and health: From environmental pressures to integrated responses. Acta Trop 2019; 193:217-226. [PMID: 30857860 DOI: 10.1016/j.actatropica.2019.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
The water-related exposome is a significant determinant of human health. The disease burden through water results from water-associated communicable and non-communicable diseases and is influenced by water pollution with chemicals, solid waste (mainly plastics), pathogens, insects and other disease vectors. This paper analyses a range of water practitioner-driven health issues, including infectious diseases and chemical intoxication, using the conceptual framework of Drivers, Pressures, State, Impacts, and Responses (DPSIR), complemented with a selective literature review. Pressures in the environment result in changes in the State of the water body: chemical pollution, microbiological contamination and the presence of vectors. These and other health hazards affect the State of human health. The resulting Impacts in an exposed population or affected ecosystem, in turn incite Responses. Pathways from Drivers to Impacts are quite divergent for chemical pollution, microbiological contamination and the spread of antimicrobial resistance, in vectors of disease and for the combined effects of plastics. Potential Responses from the water sector, however, show remarkable similarities. Integrated water management interventions have the potential to address Drivers, Pressures, Impacts, and State of several health issues at the same time. Systematic and integrated planning and management of water resources, with an eye for human health, could contribute to reducing or preventing negative health impacts and enhancing the health benefits.
Collapse
|
4
|
van der Waals MJ, Plugge C, Meima-Franke M, de Waard P, Bodelier PLE, Smidt H, Gerritse J. Ethyl tert-butyl ether (EtBE) degradation by an algal-bacterial culture obtained from contaminated groundwater. WATER RESEARCH 2019; 148:314-323. [PMID: 30391860 DOI: 10.1016/j.watres.2018.10.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
EtBE is a fuel oxygenate that is synthesized from (bio)ethanol and fossil-based isobutylene, and replaces the fossil-based MtBE. Biodegradation of EtBE to harmless metabolites or end products can reduce the environmental and human health risks after accidental release. In this study, an algal-bacterial culture enriched from contaminated groundwater was used to (i) assess the potential for EtBE degradation, (ii) resolve the EtBE degradation pathway and (iii) characterize the phylogenetic composition of the bacterial community involved in EtBE degradation in contaminated groundwater. In an unamended microcosm, algal growth was observed after eight weeks when exposed to a day-night light cycle. In the fed-batch reactor, oxygen produced by the algae Scenedesmus and Chlorella was used by bacteria to degrade 50 μM EtBE replenishments with a cumulative total of 1250 μM in a day/night cycle (650 lux), over a period of 913 days. The microbial community in the fed-batch reactor degraded EtBE, using a P450 monooxygenase and 2-hydroxyisobutyryl-CoA mutase, to tert-butyl alcohol (TBA), ethanol and CO2 as determined using 13C nuclear magnetic resonance spectroscopy (NMR) and gas chromatography. Stable isotope probing (SIP) with 13C6 labeled EtBE in a fed-batch vessel showed no significant difference in community profiles of the 13C and 12C enriched DNA fractions, with representatives of the families Halomonadaceae, Shewanellaceae, Rhodocyclaceae, Oxalobacteraceae, Comamonadaceae, Sphingomonadaceae, Hyphomicrobiaceae, Candidatus Moranbacteria, Omnitrophica, Anaerolineaceae, Nocardiaceae, and Blastocatellaceae. This is the first study describing micro-oxic degradation of EtBE by an algal-bacterial culture. This algal-bacterial culture has advantages compared with conventional aerobic treatments: (i) a lower risk of EtBE evaporation and (ii) no need for external oxygen supply in the presence of light. This study provides novel leads towards future possibilities to implement algal-bacterial consortia in field-scale groundwater or wastewater treatment.
Collapse
Affiliation(s)
- Marcelle J van der Waals
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, the Netherlands; Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Caroline Plugge
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Marion Meima-Franke
- The Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Pieter de Waard
- Wageningen University & Research, BioNanoTechnology, Bornse Weilanden 9, 6700 EK, Wageningen, the Netherlands
| | - Paul L E Bodelier
- The Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Hauke Smidt
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jan Gerritse
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, the Netherlands
| |
Collapse
|
5
|
Stefanidou N, Genitsaris S, Lopez-Bautista J, Sommer U, Moustaka-Gouni M. Unicellular Eukaryotic Community Response to Temperature and Salinity Variation in Mesocosm Experiments. Front Microbiol 2018; 9:2444. [PMID: 30356732 PMCID: PMC6189394 DOI: 10.3389/fmicb.2018.02444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
Climate change has profound impacts on marine biodiversity and biodiversity changes in turn might affect the community sensitivity to impacts of abiotic changes. We used mesocosm experiments and Next Generation Sequencing to study the response of the natural Baltic and Mediterranean unicellular eukaryotic plankton communities (control and +6°C heat shock) to subsequent salinity changes (-5 psu, +5 psu). The impact on Operational Taxonomic Unit (OTU) richness, taxonomic and functional composition and rRNA:rDNA ratios were examined. Our results showed that heat shock leads to lower OTU richness (21% fewer OTUs in the Baltic and 14% fewer in the Mediterranean) and a shift in composition toward pico- and nanophytoplankton and heterotrophic related OTUs. Heat shock also leads to increased rRNA:rDNA ratios for pico- and micrograzers. Less than 18% of shared OTUs were found among the different salinities indicating the crucial role of salinity in shaping communities. The response of rRNA:rDNA ratios varied highly after salinity changes. In both experiments the diversity decrease brought about by heat shock influenced the sensitivity to salinity changes. The heat shock either decreased or increased the sensitivity of the remaining community, depending on whether it removed the more salinity-sensitive or the salinity-tolerant taxa.
Collapse
Affiliation(s)
- Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Genitsaris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,School of Economics, Business Administration and Legal Studies, International Hellenic University, Thermi, Greece
| | - Juan Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Ulrich Sommer
- Geomar Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
König S, Worrich A, Banitz T, Harms H, Kästner M, Miltner A, Wick LY, Frank K, Thullner M, Centler F. Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem. Front Microbiol 2018; 9:734. [PMID: 29696013 PMCID: PMC5904252 DOI: 10.3389/fmicb.2018.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial degradation of organic compounds is an important ecosystem function with relevance to, e.g., the cycling of elements or the degradation of organic contaminants. It remains an open question, however, to which extent ecosystems are able to maintain such biodegradation function under recurrent disturbances (functional resistance) and how this is related to the bacterial biomass abundance. In this paper, we use a numerical simulation approach to systematically analyze the dynamic response of a microbial population to recurrent disturbances of different spatial distribution. The spatially explicit model considers microbial degradation, growth, dispersal, and spatial networks that facilitate bacterial dispersal mimicking effects of mycelial networks in nature. We find: (i) There is a certain capacity for high resistance of biodegradation performance to recurrent disturbances. (ii) If this resistance capacity is exceeded, spatial zones of different biodegradation performance develop, ranging from no or reduced to even increased performance. (iii) Bacterial biomass and biodegradation dynamics respond inversely to the spatial fragmentation of disturbances: overall biodegradation performance improves with increasing fragmentation, but bacterial biomass declines. (iv) Bacterial dispersal networks can enhance functional resistance against recurrent disturbances, mainly by reactivating zones in the core of disturbed areas, even though this leads to an overall reduction of bacterial biomass.
Collapse
Affiliation(s)
- Sara König
- Department of Ecological Modelling, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Environmental Systems Research, University of Osnabrück, Osnabrück, Germany
| | - Anja Worrich
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Environmental Biotechnology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Thomas Banitz
- Department of Ecological Modelling, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Matthias Kästner
- Department of Environmental Biotechnology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Anja Miltner
- Department of Environmental Biotechnology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Karin Frank
- Department of Ecological Modelling, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Environmental Systems Research, University of Osnabrück, Osnabrück, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Martin Thullner
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, The UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
7
|
Weaver L, Webber JB, Hickson AC, Abraham PM, Close ME. Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:281-289. [PMID: 25668280 DOI: 10.1016/j.scitotenv.2014.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Groundwater is used as a precious resource for drinking water worldwide. Increasing anthropogenic activity is putting increasing pressure on groundwater resources. One impact of increased groundwater abstraction coupled with increasing dry weather events is the lowering of groundwater levels within aquifers. Biofilms within groundwater aquifers offer protection to the groundwater by removing contaminants entering the aquifer systems from land use activities. The study presented investigated the impact of desiccation events on the biofilms present in groundwater aquifers using field and laboratory experiments. In both field and laboratory experiments a reduction in enzyme activity (glucosidase, esterase and phosphatase) was seen during desiccation compared to wet controls. However, comparing all the data together no significant differences were seen between either wet or desiccated samples or between the start and end of the experiments. In both field and laboratory experiments enzyme activity recovered to start levels after return to wet conditions. The study shows that biofilms within groundwater systems are resilient and can withstand periods of desiccation (4 months).
Collapse
Affiliation(s)
- L Weaver
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand.
| | - J B Webber
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| | - A C Hickson
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| | - P M Abraham
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| | - M E Close
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| |
Collapse
|
8
|
Dimitrov MR, Kosol S, Smidt H, Buijse L, Van den Brink PJ, Van Wijngaarden RPA, Brock TCM, Maltby L. Assessing effects of the fungicide tebuconazole to heterotrophic microbes in aquatic microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:1002-1011. [PMID: 24914529 DOI: 10.1016/j.scitotenv.2014.05.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
Aquatic ecological risk assessment of fungicides in Europe under Regulation 1107/2009/EC does not currently assess risk to non-target bacteria and fungi. Rather, regulatory acceptable concentrations based on ecotoxicological data obtained from studies with fish, invertebrates and primary producers (including algae) are assumed to be protective to all other aquatic organisms. Here we explore the validity of this assumption by investigating the effects of a fungicide (tebuconazole) applied at its "non-microbial" HC5 concentration (the concentration that is hazardous to 5% of the tested taxa) and derived from acute single species toxicity tests on fish, invertebrates and primary producers (including algae) on the community structure and functioning of heterotrophic microbes (bacteria and aquatic fungi) in a semi-field study, using novel molecular techniques. In our study, a treatment-related effect of tebuconazole (238 μg/L) on either fungal biomass associated with leaf material or leaf decomposition or the composition of the fungal community associated with sediment could not be demonstrated. Moreover, treatment-related effects on bacterial communities associated with sediment and leaf material were not detected. However, tebuconazole exposure did significantly reduce conidia production and altered fungal community composition associated with leaf material. An effect on a higher trophic level was observed when Gammarus pulex were fed tebuconazole-exposed leaves, which caused a significant decrease in their feeding rate. Therefore, tebuconazole may affect aquatic fungi and fungally mediated processes even when applied at its "non-microbial" HC5 concentration.
Collapse
Affiliation(s)
- Mauricio R Dimitrov
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Sujitra Kosol
- Thailand Institute of Scientific and Technological Research 35 Moo 3, Tambon Klong five, Klong Laung, PathumThani 12120, Thailand; Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Laura Buijse
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - René P A Van Wijngaarden
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Theo C M Brock
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Guan X, Liu F, Xie Y, Zhu L, Han B. Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:535-549. [PMID: 23420483 DOI: 10.1007/s10653-013-9513-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/10/2013] [Indexed: 06/01/2023]
Abstract
Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- China
- Environmental Monitoring
- Gas Chromatography-Mass Spectrometry
- Groundwater/chemistry
- Groundwater/microbiology
- Hydrocarbons, Chlorinated/analysis
- Hydrocarbons, Chlorinated/metabolism
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, RNA
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/metabolism
Collapse
Affiliation(s)
- Xiangyu Guan
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, No.29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Azandégbé A, Poly F, Andrieux-Loyer F, Kérouel R, Philippon X, Nicolas JL. Influence of oyster culture on biogeochemistry and bacterial community structure at the sediment-water interface. FEMS Microbiol Ecol 2012; 82:102-17. [DOI: 10.1111/j.1574-6941.2012.01410.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 02/20/2012] [Accepted: 05/06/2012] [Indexed: 01/22/2023] Open
Affiliation(s)
- Afi Azandégbé
- Ifremer; Laboratoire de Physiologie des Invertébrés; PFOM, BP70; Plouzané; France
| | - Franck Poly
- Laboratoire d'Ecologie Microbienne; CNRS-UMR5557, INRA-USC1193; Université Lyon 1; Villeurbanne; France
| | | | - Roger Kérouel
- Ifremer; Laboratoire Dyneco Centre de Brest BP70; Plouzané; France
| | - Xavier Philippon
- Ifremer; Laboratoire Dyneco Centre de Brest BP70; Plouzané; France
| | - Jean-Louis Nicolas
- Ifremer; Laboratoire de Physiologie des Invertébrés; PFOM, BP70; Plouzané; France
| |
Collapse
|