1
|
Clark RL, Connors BM, Stevenson DM, Hromada SE, Hamilton JJ, Amador-Noguez D, Venturelli OS. Design of synthetic human gut microbiome assembly and butyrate production. Nat Commun 2021; 12:3254. [PMID: 34059668 PMCID: PMC8166853 DOI: 10.1038/s41467-021-22938-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 02/04/2023] Open
Abstract
The capability to design microbiomes with predictable functions would enable new technologies for applications in health, agriculture, and bioprocessing. Towards this goal, we develop a model-guided approach to design synthetic human gut microbiomes for production of the health-relevant metabolite butyrate. Our data-driven model quantifies microbial interactions impacting growth and butyrate production separately, providing key insights into ecological mechanisms driving butyrate production. We use our model to explore a vast community design space using a design-test-learn cycle to identify high butyrate-producing communities. Our model can accurately predict community assembly and butyrate production across a wide range of species richness. Guided by the model, we identify constraints on butyrate production by high species richness and key molecular factors driving butyrate production, including hydrogen sulfide, environmental pH, and resource competition. In sum, our model-guided approach provides a flexible and generalizable framework for understanding and accurately predicting community assembly and metabolic functions.
Collapse
Affiliation(s)
- Ryan L Clark
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Bryce M Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Susan E Hromada
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Hamilton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Detman A, Bucha M, Treu L, Chojnacka A, Pleśniak Ł, Salamon A, Łupikasza E, Gromadka R, Gawor J, Gromadka A, Drzewicki W, Jakubiak M, Janiga M, Matyasik I, Błaszczyk MK, Jędrysek MO, Campanaro S, Sikora A. Evaluation of acidogenesis products' effect on biogas production performed with metagenomics and isotopic approaches. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:125. [PMID: 34051845 PMCID: PMC8164749 DOI: 10.1186/s13068-021-01968-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/06/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND During the acetogenic step of anaerobic digestion, the products of acidogenesis are oxidized to substrates for methanogenesis: hydrogen, carbon dioxide and acetate. Acetogenesis and methanogenesis are highly interconnected processes due to the syntrophic associations between acetogenic bacteria and hydrogenotrophic methanogens, allowing the whole process to become thermodynamically favorable. The aim of this study is to determine the influence of the dominant acidic products on the metabolic pathways of methane formation and to find a core microbiome and substrate-specific species in a mixed biogas-producing system. RESULTS Four methane-producing microbial communities were fed with artificial media having one dominant component, respectively, lactate, butyrate, propionate and acetate, for 896 days in 3.5-L Up-flow Anaerobic Sludge Blanket (UASB) bioreactors. All the microbial communities showed moderately different methane production and utilization of the substrates. Analyses of stable carbon isotope composition of the fermentation gas and the substrates showed differences in average values of δ13C(CH4) and δ13C(CO2) revealing that acetate and lactate strongly favored the acetotrophic pathway, while butyrate and propionate favored the hydrogenotrophic pathway of methane formation. Genome-centric metagenomic analysis recovered 234 Metagenome Assembled Genomes (MAGs), including 31 archaeal and 203 bacterial species, mostly unknown and uncultivable. MAGs accounted for 54%-67% of the entire microbial community (depending on the bioreactor) and evidenced that the microbiome is extremely complex in terms of the number of species. The core microbiome was composed of Methanothrix soehngenii (the most abundant), Methanoculleus sp., unknown Bacteroidales and Spirochaetaceae. Relative abundance analysis of all the samples revealed microbes having substrate preferences. Substrate-specific species were mostly unknown and not predominant in the microbial communities. CONCLUSIONS In this experimental system, the dominant fermentation products subjected to methanogenesis moderately modified the final effect of bioreactor performance. At the molecular level, a different contribution of acetotrophic and hydrogenotrophic pathways for methane production, a very high level of new species recovered, and a moderate variability in microbial composition depending on substrate availability were evidenced. Propionate was not a factor ceasing methane production. All these findings are relevant because lactate, acetate, propionate and butyrate are the universal products of acidogenesis, regardless of feedstock.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Michał Bucha
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Laura Treu
- Department of Biology, University of Padova, Padova, Italy
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland
| | - Łukasz Pleśniak
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
- Institute of Geological Sciences, University of Wroclaw, Wrocław, Poland
| | | | - Ewa Łupikasza
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | | - Wojciech Drzewicki
- Institute of Geological Sciences, University of Wroclaw, Wrocław, Poland
| | - Marta Jakubiak
- Institute of Geological Sciences, University of Wroclaw, Wrocław, Poland
| | - Marek Janiga
- Oil and Gas Institute, National Research Institute, Cracow, Poland
| | - Irena Matyasik
- Oil and Gas Institute, National Research Institute, Cracow, Poland
| | - Mieczysław K Błaszczyk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland
| | | | | | - Anna Sikora
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland.
| |
Collapse
|
3
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Ozuolmez D, Moore EK, Hopmans EC, Sinninghe Damsté JS, Stams AJM, Plugge CM. Butyrate Conversion by Sulfate-Reducing and Methanogenic Communities from Anoxic Sediments of Aarhus Bay, Denmark. Microorganisms 2020; 8:microorganisms8040606. [PMID: 32331369 PMCID: PMC7232339 DOI: 10.3390/microorganisms8040606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/29/2022] Open
Abstract
The conventional perception that the zone of sulfate reduction and methanogenesis are separated in high- and low-sulfate-containing marine sediments has recently been changed by studies demonstrating their co-occurrence in sediments. The presence of methanogens was linked to the presence of substrates that are not used by sulfate reducers. In the current study, we hypothesized that both groups can co-exist, consuming common substrates (H2 and/or acetate) in sediments. We enriched butyrate-degrading communities in sediment slurries originating from the sulfate, sulfate–methane transition, and methane zone of Aarhus Bay, Denmark. Sulfate was added at different concentrations (0, 3, 20 mM), and the slurries were incubated at 10 °C and 25 °C. During butyrate conversion, sulfate reduction and methanogenesis occurred simultaneously. The syntrophic butyrate degrader Syntrophomonas was enriched both in sulfate-amended and in sulfate-free slurries, indicating the occurrence of syntrophic conversions at both conditions. Archaeal community analysis revealed a dominance of Methanomicrobiaceae. The acetoclastic Methanosaetaceae reached high relative abundance in the absence of sulfate, while presence of acetoclastic Methanosarcinaceae was independent of the sulfate concentration, temperature, and the initial zone of the sediment. This study shows that there is no vertical separation of sulfate reducers, syntrophs, and methanogens in the sediment and that they all participate in the conversion of butyrate.
Collapse
Affiliation(s)
- Derya Ozuolmez
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (D.O.); (A.J.M.S.)
| | - Elisha K. Moore
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; (E.K.M.); (E.C.H.); (J.S.S.D.)
- Department of Environmental Science, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; (E.K.M.); (E.C.H.); (J.S.S.D.)
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; (E.K.M.); (E.C.H.); (J.S.S.D.)
- Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (D.O.); (A.J.M.S.)
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (D.O.); (A.J.M.S.)
- Correspondence: ; Tel.: +31-317-483116
| |
Collapse
|
5
|
Xu S, Zhang W, Zuo L, Qiao Z, He P. Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids. BIORESOURCE TECHNOLOGY 2020; 302:122801. [PMID: 32004811 DOI: 10.1016/j.biortech.2020.122801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
To provide insight into direct interspecies electron transfer (DIET) via carbon-based materials and ferric oxides, the effects of three conductive materials (i.e. activated carbon (AC), iron modified activated carbon (FEAC) and goethite (FEOOH)), on methanogenesis from volatile fatty acids (VFAs) were evaluated. Under the acid stress (~4 g/L VFAs), the maximum methane yield of 266 mL/g-chemical oxygen demand (COD) was found in the FEOOH supplemented reactor, which was 48% higher than that of AC reactor. The reasons for the enhanced activity of the electron transport chain and extracellular electron transfer ability by FEOOH include: 1) the activation on iron-containing enzymes that involved in methanogenesis and acidogenesis; 2) selective enrichment on functional microorganism. The higher electron donating capacities (EDC) value of FEOOH may be a triggering factor on the growth of Syntrophomonadaceae, which perform DIET with methanogens (Methanosaeta and Methanosarcina) for the syntrophic degradation of VFAs.
Collapse
Affiliation(s)
- Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wanqiu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Liuquan Zuo
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zihao Qiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Pinjing He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Liang R, Davidova I, Hirano SI, Duncan KE, Suflita JM. Community succession in an anaerobic long-chain paraffin-degrading consortium and impact on chemical and electrical microbially influenced iron corrosion. FEMS Microbiol Ecol 2019; 95:5529450. [DOI: 10.1093/femsec/fiz111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/06/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Community compositional changes and the corrosion of carbon steel in the presence of different electron donor and acceptor combinations were examined with a methanogenic consortium enriched for its ability to mineralize paraffins. Despite cultivation in the absence of sulfate, metagenomic analysis revealed the persistence of several sulfate-reducing bacterial taxa. Upon sulfate amendment, the consortium was able to couple C28H58 biodegradation with sulfate reduction. Comparative analysis suggested that Desulforhabdus and/or Desulfovibrio likely supplanted methanogens as syntrophic partners needed for C28H58 mineralization. Further enrichment in the absence of a paraffin revealed that the consortium could also utilize carbon steel as a source of electrons. The severity of both general and localized corrosion increased in the presence of sulfate, regardless of the electron donor utilized. With carbon steel as an electron donor, Desulfobulbus dominated in the consortium and electrons from iron accounted for ∼92% of that required for sulfate reduction. An isolated Desulfovibrio spp. was able to extract electrons from iron and accelerate corrosion. Thus, hydrogenotrophic partner microorganisms required for syntrophic paraffin metabolism can be readily substituted depending on the availability of an external electron acceptor and a single paraffin-degrading consortium harbored microbes capable of both chemical and electrical microbially influenced iron corrosion.
Collapse
Affiliation(s)
- Renxing Liang
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Irene Davidova
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Shin-ichi Hirano
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
7
|
Li X, Rensing C, Taylor WL, Costelle C, Brejnrod AD, Ferry RJ, Higgins PB, Folli F, Kottapalli R, Hubbard GB, Dick EJ, Yooseph S, Nelson KE, Schlabritz-Loutsevitch N. Papio spp. Colon microbiome and its link to obesity in pregnancy. J Med Primatol 2018; 47:393-401. [PMID: 30039863 PMCID: PMC6430121 DOI: 10.1111/jmp.12366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gut microbial communities are critical players in the pathogenesis of obesity. Pregnancy is associated with increased bacterial load and changes in gut bacterial diversity. Sparse data exist regarding composition of gut microbial communities in obesity combined with pregnancy. MATERIAL AND METHODS Banked tissues were collected under sterile conditions during necropsy, from three non-obese (nOb) and four obese (Ob) near-term pregnant baboons. Sequences were assigned taxonomy using the Ribosomal Database Project classifier. Microbiome abundance and its difference between distinct groups were assessed by a nonparametric test. RESULTS Three families predominated in both the nOb and Ob colonic microbiome: Prevotellaceae (25.98% and 32.71% respectively), Ruminococcaceae (12.96% and 7.48%), and Lachnospiraceae (8.78% and 11.74%). Seven families of the colon microbiome displayed differences between Ob and nOb groups. CONCLUSION Changes in gut microbiome in pregnant obese animals open the venue for dietary manipulation in pregnancy.
Collapse
Affiliation(s)
- XuanJi Li
- Department of Biology, University of Copenhagen, Universitetsparken, Denmark
| | - Christopher Rensing
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- J. Craig Venter Institute, La Jolla, CA, USA
| | - William L. Taylor
- Molecular Resource Center University of Tennessee Health Science Center, Memphis, TN, USA
| | - Caitlin Costelle
- Molecular Resource Center University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Robert J. Ferry
- Psychology Department, University of Memphis, Memphis, TN, USA
| | | | | | - Rao Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, TX, USA
| | - Gene B. Hubbard
- University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Edward J. Dick
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shibu Yooseph
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | | | - Natalia Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, College of Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA
| |
Collapse
|
8
|
Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions. mSystems 2017; 2:mSystems00038-17. [PMID: 29104938 PMCID: PMC5663940 DOI: 10.1128/msystems.00038-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022] Open
Abstract
Microbial interactions between Archaea and Bacteria mediate many important chemical transformations in the biosphere from degrading abundant polymers to synthesis of toxic compounds. Two of the most pressing issues in microbial interactions are how consortia are established and how we can modulate these microbial communities to express desirable functions. Here, we propose that public goods (i.e., metabolites of high energy demand in biosynthesis) facilitate energy conservation for life under energy-limited conditions and determine the assembly and function of the consortia. Our report suggests that an understanding of public good dynamics could result in new ways to improve microbial pollutant degradation in anaerobic systems. Syntrophy among Archaea and Bacteria facilitates the anaerobic degradation of organic compounds to CH4 and CO2. Particularly during aliphatic and aromatic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance. Using micromanipulation combined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-chain alkane-degrading cultures operating under methanogenic conditions. Metabolic reconstruction revealed that only a small fraction of genes in the metagenome-assembled genomes encode the capacity for fermentation of alkanes facilitated by energy conservation linked to H2 metabolism. Instead, the presence of inferred lifestyles based on scavenging anabolic products and intermediate fermentation products derived from detrital biomass was a common feature. Additionally, inferred auxotrophy for vitamins and amino acids suggests that the hydrocarbon-degrading microbial assemblages are structured and maintained by multiple interactions beyond the canonical H2-producing and syntrophic alkane degrader-methanogen partnership. Compared to previous work, our report points to a higher order of complexity in microbial consortia engaged in anaerobic hydrocarbon transformation. IMPORTANCE Microbial interactions between Archaea and Bacteria mediate many important chemical transformations in the biosphere from degrading abundant polymers to synthesis of toxic compounds. Two of the most pressing issues in microbial interactions are how consortia are established and how we can modulate these microbial communities to express desirable functions. Here, we propose that public goods (i.e., metabolites of high energy demand in biosynthesis) facilitate energy conservation for life under energy-limited conditions and determine the assembly and function of the consortia. Our report suggests that an understanding of public good dynamics could result in new ways to improve microbial pollutant degradation in anaerobic systems.
Collapse
|
9
|
Sun W, Li Y, McGuinness LR, Luo S, Huang W, Kerkhof LJ, Mack EE, Häggblom MM, Fennell DE. Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11079-11088. [PMID: 26280684 DOI: 10.1021/acs.est.5b02166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity. Time-series DNA-stable isotope probing (SIP) was used to identify bacteria that incorporated (13)C-labeled aniline in the microcosms established to promote methanogenic conditions. In microcosms from heavily contaminated aquifer sediments, a phylotype with 92.7% sequence similarity to Ignavibacterium album was identified as a dominant aniline degrader as indicated by incorporation of (13)C-aniline into its DNA. In microcosms from contaminated canal sediments, a bacterial phylotype within the family Anaerolineaceae, but without a match to any known genus, demonstrated the assimilation of (13)C-aniline. Acidovorax spp. were also identified as putative aniline degraders in both of these two treatments, indicating that these species were present and active in both the canal and aquifer sediments. There were multiple bacterial phylotypes associated with anaerobic degradation of aniline at this complex industrial site, which suggests that anaerobic transformation of aniline is an important process at the site. Furthermore, the aniline degrading phylotypes identified in the current study are not related to any known aniline-degrading bacteria. The identification of novel putative aniline degraders expands current knowledge regarding the potential fate of aniline under anaerobic conditions.
Collapse
Affiliation(s)
- Weimin Sun
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Yun Li
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | | | - Shuai Luo
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | | | - E Erin Mack
- DuPont, Corporate Remediation Group, Wilmington, Delaware 19714, United States
| | | | - Donna E Fennell
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
10
|
Chojnacka A, Szczęsny P, Błaszczyk MK, Zielenkiewicz U, Detman A, Salamon A, Sikora A. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation. PLoS One 2015; 10:e0128008. [PMID: 26000448 PMCID: PMC4441513 DOI: 10.1371/journal.pone.0128008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/21/2015] [Indexed: 11/30/2022] Open
Abstract
Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.
Collapse
Affiliation(s)
- Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | - Anna Detman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Anna Sikora
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
11
|
Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades. Appl Environ Microbiol 2014; 80:6517-26. [PMID: 25107983 DOI: 10.1128/aem.01666-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanisms and rates of mercury methylation in the Florida Everglades are of great concern because of potential adverse impacts on human and wildlife health through mercury accumulation in aquatic food webs. We developed a new PCR primer set targeting hgcA, a gene encoding a corrinoid protein essential for Hg methylation across broad phylogenetic boundaries, and used this primer set to study the distribution of hgcA sequences in soils collected from three sites along a gradient in sulfate and nutrient concentrations in the northern Everglades. The sequences obtained were distributed in diverse phyla, including Proteobacteria, Chloroflexi, Firmicutes, and Methanomicrobia; however, hgcA clone libraries from all sites were dominated by sequences clustering within the order Syntrophobacterales of the Deltaproteobacteria (49 to 65% of total sequences). dsrB mRNA sequences, representing active sulfate-reducing prokaryotes at the time of sampling, obtained from these sites were also dominated by Syntrophobacterales (75 to 89%). Laboratory incubations with soils taken from the site low in sulfate concentrations also suggested that Hg methylation activities were primarily mediated by members of the order Syntrophobacterales, with some contribution by methanogens, Chloroflexi, iron-reducing Geobacter, and non-sulfate-reducing Firmicutes inhabiting the sites. This suggests that prokaryotes distributed within clades defined by syntrophs are the predominant group controlling methylation of Hg in low-sulfate areas of the Everglades. Any strategy for managing mercury methylation in the Everglades should consider that net mercury methylation is not limited to the action of sulfate reduction.
Collapse
|
12
|
Gieg LM, Fowler SJ, Berdugo-Clavijo C. Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 2014; 27:21-9. [DOI: 10.1016/j.copbio.2013.09.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
|
13
|
Lyles CN, Le HM, Beasley WH, McInerney MJ, Suflita JM. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion. Front Microbiol 2014; 5:114. [PMID: 24744752 PMCID: PMC3978324 DOI: 10.3389/fmicb.2014.00114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/07/2014] [Indexed: 11/28/2022] Open
Abstract
The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.
Collapse
Affiliation(s)
- Christopher N Lyles
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, and the OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Huynh M Le
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, and the OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | | | - Michael J McInerney
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, and the OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, and the OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| |
Collapse
|
14
|
Kim J, Kim W, Lee C. Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters. J Environ Sci (China) 2013; 25:2272-80. [PMID: 24552056 DOI: 10.1016/s1001-0742(12)60299-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Despite extensive efforts, AD microbial ecology is still limitedly understood, especially due to the lack of quantitative information on the structures and dynamics of AD microbial communities. Such knowledge gap is particularly pronounced in sewage sludge AD processes although treating sewage sludge is among the major practical applications of AD. Therefore, we examined the microbial communities in three full-scale sewage sludge digesters using qualitative and quantitative molecular techniques in combination: denaturing gradient gel electrophoresis (DGGE) and real-time polymerase chain reaction (PCR). Eight out of eleven bacterial sequences retrieved from the DGGE analysis were not affiliated to any known species while all eleven archaeal sequences were assigned to known methanogen species. Quantitative real-time PCR analysis revealed that, based on the 16S rRNA gene abundance, the hydrogenotrophic order Methanomicrobiales is the most dominant methanogen group (> 94% of the total methanogen population) in all digesters. This corresponds well to the prevailing occurrence of the DGGE bands related to Methanolinea and Methanospirillum, both belonging to the order Methanomicrobiales, in all sludge samples. It is therefore suggested that hydrogenotrophic methanogens, especially Methanomicrobiales strains, are likely the major players responsible for biogas production in the digesters studied. Our observation is contrary to the conventional understanding that aceticlastic methanogens generally dominate methanogen communities in stable AD environments, suggesting the need for further studies on the dominance relationship in various AD systems.
Collapse
Affiliation(s)
- Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea.
| | - Woong Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701, Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| |
Collapse
|
15
|
Sieber JR, Le HM, McInerney MJ. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ Microbiol 2013; 16:177-88. [DOI: 10.1111/1462-2920.12269] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica R. Sieber
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73019 USA
| | - Huynh M. Le
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73019 USA
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73019 USA
| |
Collapse
|
16
|
Sieber JR, McInerney MJ, Gunsalus RP. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 2012; 66:429-52. [PMID: 22803797 DOI: 10.1146/annurev-micro-090110-102844] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Syntrophy is a tightly coupled mutualistic interaction between hydrogen-/formate-producing and hydrogen-/formate-using microorganisms that occurs throughout the microbial world. Syntrophy is essential for global carbon cycling, waste decomposition, and biofuel production. Reverse electron transfer, e.g., the input of energy to drive critical redox reactions, is a defining feature of syntrophy. Genomic analyses indicate multiple systems for reverse electron transfer, including ion-translocating ferredoxin:NAD(+) oxidoreductase and hydrogenases, two types of electron transfer flavoprotein:quinone oxidoreductases, and other quinone reactive complexes. Confurcating hydrogenases that couple the favorable production of hydrogen from reduced ferredoxin with the unfavorable production of hydrogen from NADH are present in almost all syntrophic metabolizers, implicating their critical role in syntrophy. Transcriptomic analysis shows upregulation of many genes without assigned functions in the syntrophic lifestyle. High-throughput technologies provide insight into the mechanisms used to establish and maintain syntrophic consortia and conserve energy from reactions that operate close to thermodynamic equilibrium.
Collapse
Affiliation(s)
- Jessica R Sieber
- Department of Botany and Microbiology, University of Oklahoma, Norman, 73019, USA.
| | | | | |
Collapse
|
17
|
van der Zaan BM, Saia FT, Stams AJM, Plugge CM, de Vos WM, Smidt H, Langenhoff AAM, Gerritse J. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ Microbiol 2012; 14:1171-81. [PMID: 22296107 DOI: 10.1111/j.1462-2920.2012.02697.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a syntrophic interaction, and that benzene can be degraded in syntrophy by consortia with various electron acceptors in the same culture. The benzene-degrading microorganisms were identified by DNA-stable isotope probing with [U-(13) C]-labelled benzene, and the effect of different electron donors and acceptors on benzene degradation was investigated. The degradation rate constant of benzene with nitrate (0.7 day(-1) ) was higher than reported previously. In the absence of nitrate, the microbial community was able to use sulfate, chlorate or ferric iron as electron acceptor. Bacteria belonging to the Peptococcaceae were identified as dominant benzene consumers, but also those related to Rhodocyclaceae and Burkholderiaceae were found to be associated with the anaerobic benzene degradation process. The benzene degradation activity in the chemostat was associated with microbial growth in biofilms. This, together with the inhibiting effect of hydrogen and the ability to degrade benzene with different electron acceptors, suggests that benzene was degraded via a syntrophic process.
Collapse
|