1
|
Fu Y, Cheng Y, Ma L, Zhou Q. Longitudinal Microbiome Investigations Reveal Core and Growth-Associated Bacteria During Early Life Stages of Scylla paramamosain. Microorganisms 2024; 12:2457. [PMID: 39770661 PMCID: PMC11678816 DOI: 10.3390/microorganisms12122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
In animals, growth and development are strongly correlated with the gut microbiota. The gut of the economically important marine crab (Scylla paramamosain) harbors a diverse microbial community, yet its associations with the surrounding environment, growth performance, and developmental stages remain obscure. In this study, we first characterized stage-specific microbiomes and shifts in the contributions of live feed and water via SourceTracker. We observed decreased microbial diversity and increased priority effects along zoea stages. Psychobacter was identified as the core genus, whereas Lactobacillus was the hub genus connecting different stages. Second, microbial correlations with various stage-specific growth traits were observed under interventions generating enhanced (probiotic mixture enrichment), normal (control), and reduced (antibiotic treatment) microbiomes. By combining machine learning regression and bioinformatics analysis, we identified four candidate growth performance-associated probiotics belonging to Rhodobacterales, Sulfitobacter, Confluentimicrobium, and Lactobacillus, respectively. Our study interpreted the dynamics and origins of the Scylla paramamosain zoea microbiome and underscored the importance of optimizing potential probiotics to increase growth performance during early life stages in marine invertebrates for effective larviculture.
Collapse
Affiliation(s)
- Yin Fu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Yongxu Cheng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
| | - Lingbo Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
2
|
Ruiz A, Gisbert E, Andree KB. Impact of the diet in the gut microbiota after an inter-species microbial transplantation in fish. Sci Rep 2024; 14:4007. [PMID: 38369563 PMCID: PMC10874947 DOI: 10.1038/s41598-024-54519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Inter-species microbial transplantations offer the possibility of transferring species-specific microbes and their associated functionality. As a conceptual approach, an intestinal microbiota transplant (IMT) between two marine carnivorous fish species that thrive in different environmental conditions was conducted: from donor Atlantic salmon (Salmo salar) to recipient gilthead seabream (Sparus aurata), after obliterating its basal microbiota with an antibiotic treatment. To confirm that the gut microbiota was able to recover after antibiotics without the influence of the diet, a group of gilthead seabream not submitted to the IMT was kept fasted as an internal control. To assess the effect of the diet after the IMT, two groups of gilthead seabream were respectively fed with their typical diet and with Atlantic salmon diet. At 36 days post-IMT, the gut of the individuals fed with their typical diet was dominated by the feed-associated bacteria, while those fed with the salmon diet had developed a unique microbiota from the convergence of the diet, donor, and recipient microbiota. These results suggested that an intestinal microbiota transplantation may be effective if the basal microbiota from the gut is first cleared and a targeted dietary modification is provided to maintain and enrich the novel bacteria species over time.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, Crta. Poble Nou, km 5.5, 43540, La Ràpita, Spain.
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, Crta. Poble Nou, km 5.5, 43540, La Ràpita, Spain
| | - Karl B Andree
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, Crta. Poble Nou, km 5.5, 43540, La Ràpita, Spain
| |
Collapse
|
3
|
De Marco G, Cappello T, Maisano M. Histomorphological Changes in Fish Gut in Response to Prebiotics and Probiotics Treatment to Improve Their Health Status: A Review. Animals (Basel) 2023; 13:2860. [PMID: 37760260 PMCID: PMC10525268 DOI: 10.3390/ani13182860] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal tract (GIT) promotes the digestion and absorption of feeds, in addition to the excretion of waste products of digestion. In fish, the GIT is divided into four regions, the headgut, foregut, midgut, and hindgut, to which glands and lymphoid tissues are associated to release digestive enzymes and molecules involved in the immune response and control of host-pathogens. The GIT is inhabited by different species of resident microorganisms, the microbiota, which have co-evolved with the host in a symbiotic relationship and are responsible for metabolic benefits and counteracting pathogen infection. There is a strict connection between a fish's gut microbiota and its health status. This review focuses on the modulation of fish microbiota by feed additives based on prebiotics and probiotics as a feasible strategy to improve fish health status and gut efficiency, mitigate emerging diseases, and maximize rearing and growth performance. Furthermore, the use of histological assays as a valid tool for fish welfare assessment is also discussed, and insights on nutrient absorptive capacity and responsiveness to pathogens in fish by gut morphological endpoints are provided. Overall, the literature reviewed emphasizes the complex interactions between microorganisms and host fish, shedding light on the beneficial use of prebiotics and probiotics in the aquaculture sector, with the potential to provide directions for future research.
Collapse
Affiliation(s)
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.D.M.); (M.M.)
| | | |
Collapse
|
4
|
Suhr M, Fichtner-Grabowski FT, Seibel H, Bang C, Franke A, Schulz C, Hornburg SC. The microbiota knows: handling-stress and diet transform the microbial landscape in the gut content of rainbow trout in RAS. Anim Microbiome 2023; 5:33. [PMID: 37386608 DOI: 10.1186/s42523-023-00253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The aim of the present study was to characterize the effects of handling stress on the microbiota in the intestinal gut contents of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet from two different breeding lines (initial body weights: A: 124.69 g, B: 147.24 g). Diets were formulated in accordance with commercial trout diets differing in their respective protein sources: fishmeal (35% in fishmeal-based diet F, 7% in plant protein-based diet V) and plant-based proteins (47% in diet F, 73% in diet V). Experimental diets were provided for 59 days to all female trout in two separate recirculating aquaculture systems (RASs; mean temperature: A: 15.17 °C ± 0.44, B: 15.42 °C ± 0.38). Half of the fish in each RAS were chased with a fishing net twice per day to induce long-term stress (Group 1), while the other half were not exposed to stress (Group 0). RESULTS No differences in performance parameters were found between the treatment groups. By using 16S rRNA amplicon sequencing of the hypervariable region V3/V4, we examined the microbial community in the whole intestinal content of fish at the end of the trial. We discovered no significant differences in alpha diversity induced by diet or stress within either genetic trout line. However, the microbial composition was significantly driven by the interaction of stress and diet in trout line A. Otherwise, in trout line B, the main factor was stress. The communities of both breeding lines were predominantly colonized by bacteria from the phyla Fusobacteriota, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota. The most varying and abundant taxa were Firmicutes and Fusobacteriota, whereas at the genus level, Cetobacterium and Mycoplasma were key components in terms of adaptation. In trout line A, Cetobacterium abundance was affected by factor stress, and in trout line B, it was affected by the factor diet. CONCLUSION We conclude that microbial gut composition, but neither microbial diversity nor fish performance, is highly influenced by stress handling, which also interacts with dietary protein sources. This influence varies between different genetic trout lines and depends on the fish's life history.
Collapse
Affiliation(s)
- Marvin Suhr
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany.
| | | | - Henrike Seibel
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Hafentörn 3, 25761, Büsum, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Carsten Schulz
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Hafentörn 3, 25761, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Stéphanie Céline Hornburg
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany
| |
Collapse
|
5
|
Morshed SM, Chen YY, Lin CH, Chen YP, Lee TH. Freshwater transfer affected intestinal microbiota with correlation to cytokine gene expression in Asian sea bass. Front Microbiol 2023; 14:1097954. [PMID: 37089546 PMCID: PMC10117908 DOI: 10.3389/fmicb.2023.1097954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
As a catadromous fish, Asian sea bass (Lates calcarifer) juveniles migrate from seawater (SW) to freshwater (FW) for growth and development. During migration, they undergo physiological changes to acclimate to environmental salinity. Thus, it is crucial to understand how SW-to-FW migration affects the gut microbiota of catadromous fish. To the best of our knowledge, no study has revealed the effects of transfer to hypotonic environments on a catadromous fish microbiota. In this study, we aimed to determine the effects of FW transfer on the microbiota and cytokine gene expression in the intestines of juvenile catadromous Asian sea bass. The relationship between the water and the gut microbiota of this euryhaline species was also examined. We found that FW transfer affected both mucosa- and digesta-associated microbiota of Asian sea bass. Plesiomonas and Cetobacterium were dominant in both the mucosa- and digesta-associated microbiota of FW-acclimated sea bass. The pathogenic genera Vibrio, Staphylococcus, and Acinetobacter were dominant in the SW group. Although dominant fish microbes were present in the water, fish had their own unique microbes. Vitamin B6 metabolism was highly expressed in the FW fish microbiota, whereas arginine, proline, and lipid metabolism were highly expressed in the SW fish microbiota. Additionally, the correlation between cytokine gene expression and microbiota was found to be affected by FW transfer. Taken together, our results demonstrated that FW transfer altered the composition and functions of mucosa- and digesta-associated microbiota of catadromous Asian sea bass intestines, which correlated with cytokine gene expression.
Collapse
Affiliation(s)
- Syed Monzur Morshed
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Yi Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hao Lin
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yen-Po Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Yen-Po Chen,
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Tsung-Han Lee,
| |
Collapse
|
6
|
Kakakhel MA, Bibi N, Mahboub HH, Wu F, Sajjad W, Din SZU, Hefny AA, Wang W. Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109473. [PMID: 36174907 DOI: 10.1016/j.cbpc.2022.109473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Nanotechnology has revealed profound possibilities for the applications in applied sciences. The nanotechnology works based on nanoparticles. Among nanoparticles, silver nanoparticles largely introduced into aquatic environments during fabrication. Which cause severe contamination in the environment specially in freshwater fish. Therefore, the current study was a pioneer attempt to use the animal blood to fabricate AgNPs and investigate their toxicity in Cyprinus carpio (C. carpio) by recording mortality, tissue bioaccumulation, and influence on intestinal bacterial diversity. For this purpose, fish groups were exposed to different concentrations of B-AgNPs including 0.03, 0.06, and 0.09 mg/L beside the control group for 1, 10, and 20 days. Initially, the highest concentration caused mortality. The results revealed that B-AgNPs were significantly (p < 0.005) accumulated in the liver followed by intestines, gills, and muscles. In addition, the accumulation of B-AgNPs in the intestine led to bacterial dysbiosis in Cyprinus carpio. At the phylum level, Tenericutes, Bacteroidetes, and Planctomycetes were gradually decreased at the highest concentration of B-AgNPs (0.09 mg/L) on days 1, 10, and 20 days. The genera Cetobacterium and Luteolibactor were increased at the highest concentration on day 20. Moreover, the principal coordinate analysis (PCoA) based on Bray-Curtis showed that the B-AgNPs had led to a variation in the intestinal bacterial community. Based on findings, the B-AgNPs induced mortality, and residual deposition in different tissues, and had a stress influence on intestinal homeostasis by affecting the intestinal bacterial community in C. carpio which could have a significant effect on fish growth.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. https://twitter.com/pukhtunfriend
| | - Nadia Bibi
- Department of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Fasi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang 736200, Gansu, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ahmed A Hefny
- Colleague of Microbiology, Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Wanfu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang 736200, Gansu, China.
| |
Collapse
|
7
|
Haque R, Das II, Sawant PB, Chadha NK, Sahoo L, Kumar R, Sundaray JK. Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Front Physiol 2022; 13:871045. [PMID: 36035477 PMCID: PMC9411670 DOI: 10.3389/fphys.2022.871045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Climate vulnerability and induced changes in physico-chemical properties of aquatic environment can bring impairment in metabolism, physiology and reproduction in teleost. Variation in environmental stimuli mainly acts on reproduction by interfering with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive function in captivity is essential for the sustainability of aquaculture production. There are more than 3,000 teleost species across the globe having commercial importance; however, adequate quality and quantity of seed production have been the biggest bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive performance and gamete quality. As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, therefore it is considered to be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its importance on physiology and reproduction have already been highlighted for higher mammals; however, the study on fish physiology and reproduction is limited. While looking into the paucity of information, we have attempted to review the present status of microbiome and its interaction between the brain and gut. This review will address a process of the microbiome physiological mechanism involved in fish reproduction. The gut microbiota influences the BPG axis through a wide variety of compounds, including neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being conducted to determine the precise process by which gut microbial composition influences brain function in fish. The gut-brain bidirectional interaction can influence brain biochemistry such as GABA, serotonin and tryptophan metabolites which play significant roles in CNS regulation. This review summarizes the fact, how microbes from gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-Gonad axis.
Collapse
Affiliation(s)
- Ramjanul Haque
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ipsita Iswari Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | - Narinder Kumar Chadha
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
- *Correspondence: Jitendra Kumar Sundaray,
| |
Collapse
|
8
|
Yin B, Tan S, Wang J, Pan K, Wang WX, Wang X. Antibiotic application may raise the potential of methylmercury accumulation in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152946. [PMID: 35038517 DOI: 10.1016/j.scitotenv.2022.152946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) biotransformation can significantly affect the Hg speciation and bioaccumulation in fish, where gut microbiota play an important role in this process. Antibiotics have been extensively used in aquaculture and can affect gut microbial structure. However, the influence of antibiotics on Hg biotransformation in fish has not been thoroughly understood. The present study investigated the effects of antibiotic (florfenicol) application on gut microbiota and subsequent impacts on Hg biotransformation and bioaccumulation in tilapia (Oreochromis mossambicus). The results showed that the florfenicol treatment did not affect IHg accumulation in the IHg-exposed fish or the MeHg accumulation in the MeHg-exposed fish. However, methylation was significantly weakened (from 0.015% d-1 to 0.005% d-1) and demethylation was completely terminated (from 0.046% d-1 to non-observable level) in the florfenicol-treated fish as compared to the control fish. This can be ascribed to the major shift in the richness of microbial methylators/demethylators in fish gut. Furthermore, florfenicol disturbed the homeostasis of gut microbiome and enhanced the growth of opportunistic pathogens. Our results strongly suggested that antibiotic application significantly altered the gut microbial community, thereby increasing the potential of MeHg accumulation by fish. This study highlights the importance of appropriate use of antibiotics in aquaculture as well as decreasing the environmental risks of Hg contamination in fish.
Collapse
Affiliation(s)
- Bingxin Yin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Sha Tan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Foysal MJ, Dao TTT, Fotedar R, Gupta SK, Tay A, Chaklader MR. Sources of protein diet differentially stimulate the gut and water microbiota under freshwater crayfish, marron (Cherax cainii, Austin 2002) culture. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:286-298. [PMID: 35130581 PMCID: PMC9303337 DOI: 10.1111/1758-2229.13049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 05/29/2023]
Abstract
To reduce the reliance on fishmeal (FM), other protein sources have been evaluated on cultured animals. In a 60-days feeding trial, marrons (Cherax cainii) were fed a FM diet and five test diets containing 100% of plant-based protein sources such as soybean, lupin and valorised animal-based proteins such as poultry-by-product, black soldier fly and tuna hydrolysate. At the end of the trial, DNA samples from marron gut and rearing water were investigated through DNA-based 16S rRNA gene sequencing. Plant-based diets increased abundance for Aeromonas, Flavobacterium and Vogesella, whereas animal and insect proteins influenced diverse bacterial groups in the gut linked to various metabolic activities. Insect meal in the water favoured the growth of Firmicutes and lactic acid bacteria, beneficial for the marron health. Aeromonas richness in the gut and reared water signified the ubiquitous nature of the genus in the environment. The higher bacterial diversity in the gut and water with PBP and BSF was further supported by qPCR quantification of the bacterial single-copy gene, rpoB. The overall results suggested that PBP and BSF can exhibit positive and influential effects on the gut and water microbial communities, hence can be used as sustainable ingredients for the crayfish aquaculture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Thi Thanh Thuy Dao
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Ravi Fotedar
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | | | - Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Md Reaz Chaklader
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| |
Collapse
|
10
|
Integrated Omics Approaches Revealed the Osmotic Stress-Responsive Genes and Microbiota in Gill of Marine Medaka. mSystems 2022; 7:e0004722. [PMID: 35285678 PMCID: PMC9040874 DOI: 10.1128/msystems.00047-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This is the first study using the transcriptome and 16S rRNA gene sequencing to report the hypotonic responsive genes in gill cells and the compositions of gill microbiota in marine medaka. The overlapped glycosaminoglycan- and chitin-related pathways suggest host-bacterium interaction in fish gill during osmotic stress.
Collapse
|
11
|
Serag AM, Abdel-Sabour MS, El-Hadidi M, Maged M, Magdy M, Ramadan MF, Refaat MH. Comparative 16S Metabarcoding of Nile Tilapia Gut Microbiota from the Northern Lakes of Egypt. Appl Biochem Biotechnol 2022; 194:2168-2182. [PMID: 35048279 DOI: 10.1007/s12010-021-03750-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia, Oreochromis niloticus, is the principal fish bred in Egypt. A pilot study was designed to analyze the bacterial composition of the Nile tilapia fish guts from two saltwater lakes in Northern Egypt. Fish samples were obtained from two Delta lakes: Manzala (ML) and Borollus (BL). DNA was extracted, and the bacterial communities in the stomach content were classified (down to the species level) using the 16S rRNA-based analysis. From the two metagenomics libraries in this study, 1,426,740 reads of the amplicon sequence corresponding to 508 total taxonomic operational units were recorded. The most prevalent bacterial phyla were Proteobacteria, Firmicutes, Actinobacteria, and Synergistetes in all samples. Some of the strains identified belong to classes of pathogenic zoonotic bacteria. A notable difference was observed between gut bacteria of Nile tilapia fish obtained from BL and ML. There is a remarkable indication that Nile tilapia fish living in BL is heavily burdened with pathogenic microbes most remarkably those involved with methylation of mercury and its accumulation in fish organs. These pathogenic microbes could have clinical implications and correlated with many diseases. This result was also consistent with the metagenomic data's functional prediction that indicated that Nile tilapia species harboring these two Egyptian northern lakes may be exposed to numerous anthropogenic pollutants. The findings show that the host environment has a significant impact on the composition of its microbiota. The first step towards exploring the better management of this profit-making fish is recognizing the structure of the microbiome.
Collapse
Affiliation(s)
- Ahmed M Serag
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt. .,Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt.
| | - Mohamed S Abdel-Sabour
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center of Informatics Science (CIS), Nile University, Giza, Egypt
| | - Mohamad Maged
- School of Life and Medical Sciences, University of Hertfordshire, Hosted By Global Academic Foundation (GAF), New Administrative Capital, Egypt
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed Fawzy Ramadan
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia. .,Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed H Refaat
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt.,Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt
| |
Collapse
|
12
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
13
|
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J Anim Physiol Anim Nutr (Berl) 2021; 106:441-469. [PMID: 34355428 DOI: 10.1111/jpn.13619] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.
Collapse
Affiliation(s)
- Arvind D Diwan
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Sanjay N Harke
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Gopalkrishna
- Central Institute of Fisheries Education (CIFE, Deemed University), ICAR, Mumbai, India
| | - Archana N Panche
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| |
Collapse
|
14
|
Assessment of bacteriophage vB_Pd_PDCC-1 on bacterial dynamics during ontogenetic development of the longfin yellowtail (Seriola rivoliana). Appl Microbiol Biotechnol 2021; 105:2877-2887. [PMID: 33710359 DOI: 10.1007/s00253-021-11223-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
The Seriola genus includes species of worldwide commercial importance due to its rapid growth and easy adaptability to confinement conditions. However, like other fish species, large mortalities occur during their early life stages, where the main problems are caused by opportunistic bacteria. Disease control strategies are thus urgently needed. The present study aimed to evaluate the efficacy of phage vB_Pd_PDCC-1 during the early development of longfin yellowtail (Seriola rivoliana), as well as its effect on microbial communities. This broad-host-range phage was added to the culture every 3 days starting from the egg-stage until 12 days after hatching (DAH) at a concentration of 1.41×1010 plaque-forming units (PFU) per mL and at a multiplicity of infection (MOI) of 1. The results showed positive effects (p<0.05) on egg hatching, survival, growth, and pigmentation area in treated larvae. Moreover, high-throughput sequencing analysis of 16S rRNA genes showed that phage administration did not produce significant changes (p>0.05) in the composition and structure of the associated microbiota. However, sequences affiliated to the Gammaproteobacteria class were displaced by those belonging to the Alphaproteobacteria class over time regardless of the treatment received. At the family level, there was a decrease in Rhodobacteraceae, Pseudoalteromonadaceae, and Flavobacteriaceae in both groups over time. To our best knowledge, this study represents the first attempt to evaluate the effect of a phage as a biological control agent during ontogenetic development of longfin yellowtail larvae. KEY POINTS: • Phages can be used against proliferation of Vibrio in fish cultures. • Seriola includes several important commercial fish species due to its rapid growth. • Phages do not cause significant changes in the associated microbiota.
Collapse
|
15
|
Firmino JP, Vallejos-Vidal E, Balebona MC, Ramayo-Caldas Y, Cerezo IM, Salomón R, Tort L, Estevez A, Moriñigo MÁ, Reyes-López FE, Gisbert E. Diet, Immunity, and Microbiota Interactions: An Integrative Analysis of the Intestine Transcriptional Response and Microbiota Modulation in Gilthead Seabream ( Sparus aurata) Fed an Essential Oils-Based Functional Diet. Front Immunol 2021; 12:625297. [PMID: 33746962 PMCID: PMC7969985 DOI: 10.3389/fimmu.2021.625297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Essential oils (EOs) are promising alternatives to chemotherapeutics in animal production due to their immunostimulant, antimicrobial, and antioxidant properties, without associated environmental or hazardous side effects. In the present study, the modulation of the transcriptional immune response (microarray analysis) and microbiota [16S Ribosomal RNA (rRNA) sequencing] in the intestine of the euryhaline fish gilthead seabream (Sparus aurata) fed a dietary supplementation of garlic, carvacrol, and thymol EOs was evaluated. The transcriptomic functional analysis showed the regulation of genes related to processes of proteolysis and inflammatory modulation, immunity, transport and secretion, response to cyclic compounds, symbiosis, and RNA metabolism in fish fed the EOs-supplemented diet. Particularly, the activation of leukocytes, such as acidophilic granulocytes, was suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the gut. Fish growth performance and gut microbiota alpha diversity indices were not affected, while dietary EOs promoted alterations in bacterial abundances in terms of phylum, class, and genus. Subtle, but significant alterations in microbiota composition, such as the decrease in Bacteroidia and Clostridia classes, were suggested to participate in the modulation of the intestine transcriptional immune profile observed in fish fed the EOs diet. Moreover, regarding microbiota functionality, increased bacterial sequences associated with glutathione and lipid metabolisms, among others, detected in fish fed the EOs supported the metabolic alterations suggested to potentially affect the observed immune-related transcriptional response. The overall results indicated that the tested dietary EOs may promote intestinal local immunity through the impact of the EOs on the host-microbial co-metabolism and consequent regulation of significant biological processes, evidencing the crosstalk between gut and microbiota in the inflammatory regulation upon administration of immunostimulant feed additives.
Collapse
Affiliation(s)
- Joana P. Firmino
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
- TECNOVIT–FARMFAES, S.L. Alforja, Spain
- Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Vallejos-Vidal
- Departamento de Biología, Facultad de Química y Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - M. Carmen Balebona
- Department of Microbiology, Faculty of Science, University of Malaga, Málaga, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Torre Marimon, Caldes de Montbui, Spain
| | - Isabel M. Cerezo
- Department of Microbiology, Faculty of Science, University of Malaga, Málaga, Spain
| | - Ricardo Salomón
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
- Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alicia Estevez
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
| | | | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S. A., Santiago, Chile
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
| |
Collapse
|
16
|
Gu H, Feng Y, Zhang Y, Yin D, Yang Z, Tang W. Differential study of the Parabramis pekinensis intestinal microbiota according to different habitats and different parts of the intestine. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Purpose
To identify the differences in gut bacterial community of Parabramis pekinensis under different growth conditions, and the effect of the diet in a controlled habitat on the community structure, aiming to provide a comprehensive survey of how the gut microbiota in P. pekinensis varies depending on habitat.
Methods
A total of 73 P. pekinensis from Yangtze River (W), rivers in the outskirts of Jingjiang (Jiangsu province, China, R), and farms (C) were collected to analyze the intestinal microbiota using high-throughput sequencing of the V3-V4 16S ribosomal RNA gene. We also subdivided the gut into the foregut (F), midgut (M), and hindgut (B) to analyze the differences between them.
Results
The dominant bacterial phyla in P. pekinensis were Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria; meanwhile, Cyanobacteria, Bacteroidetes, Chloroflexi, and Verrucomicrobia were also highly abundant. It is worth noting that the abundance of Fusobacteria Cetobacterium was also very high. The abundance and diversity of the intestinal microbiota structure of fish taken from breeding farm were significantly lower than those taken from Yangtze river and Suburban river, and the abundance of Aeromonas in the gut of fish taken from Yangtze river was much higher than that of fish taken from Suburban river. Compared to midgut, foregut and hindgut have similar microbiota structures, but did not differ significantly in them.
Conclusions
The core intestinal microbiota of P. pekinensis is the same to other herbivorous and partially omnivorous fish. There were significant differences in the intestinal microbiota structure of P. pekinensis from different habitats, but no significant differences in the microbiota abundance and diversity between the different parts of the intestine.
Collapse
|
17
|
Piazzon MC, Naya-Català F, Perera E, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J. Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. MICROBIOME 2020; 8:168. [PMID: 33228779 PMCID: PMC7686744 DOI: 10.1186/s40168-020-00922-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND The key effects of intestinal microbiota in animal health have led to an increasing interest in manipulating these bacterial populations to improve animal welfare. The aquaculture sector is no exception and in the last years, many studies have described these populations in different fish species. However, this is not an easy task, as intestinal microbiota is composed of very dynamic populations that are influenced by different factors, such as diet, environment, host age, and genetics. In the current study, we aimed to determine whether the genetic background of gilthead sea bream (Sparus aurata) influences the intestinal microbial composition, how these bacterial populations are modulated by dietary changes, and the effect of selection by growth on intestinal disease resistance. To that aim, three different groups of five families of gilthead sea bream that were selected during two generations for fast, intermediate, or slow growth (F3 generation) were kept together in the same open-flow tanks and fed a control or a well-balanced plant-based diet during 9 months. Six animals per family and dietary treatment were sacrificed and the adherent bacteria from the anterior intestinal portion were sequenced. In parallel, fish of the fast- and slow-growth groups were infected with the intestinal parasite Enteromyxum leei and the disease signs, prevalence, intensity, and parasite abundance were evaluated. RESULTS No differences were detected in alpha diversity indexes among families, and the core bacterial architecture was the prototypical composition of gilthead sea bream intestinal microbiota, indicating no dysbiosis in any of the groups. The plant-based diet significantly changed the microbiota in the intermediate- and slow-growth families, with a much lower effect on the fast-growth group. Interestingly, the smaller changes detected in the fast-growth families potentially accounted for more changes at the metabolic level when compared with the other families. Upon parasitic infection, the fast-growth group showed significantly lower disease signs and parasite intensity and abundance than the slow-growth animals. CONCLUSIONS These results show a clear genome-metagenome interaction indicating that the fast-growth families harbor a microbiota that is more flexible upon dietary changes. These animals also showed a better ability to cope with intestinal infections. Video Abstract.
Collapse
Affiliation(s)
- M. Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Erick Perera
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
18
|
Nurul AAN, Danish-Daniel AM, Okomoda VT, Asma NA. Microbiota composition of captive bluestreak cleaner wrasse Labroides dimidiatus (Valenciennes, 1839). Appl Microbiol Biotechnol 2020; 104:7391-7407. [PMID: 32676710 DOI: 10.1007/s00253-020-10781-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
The Labroides dimidiatus is one of the most traded marine ornamental fishes worldwide, yet not much is known about the microflora associated with this fish. This study is designed to investigate the bacteria composition associated with captive L. dimidiatus and its surrounding aquarium water. The fish and carriage water were obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Bacteria present on the skin and in the stomach and the aquarium water were enumerated using culture-independent approaches and next-generation sequencing (NGS) technology. A total of 3,238,564 valid reads and 828 total operational taxonomic units (OTUs) were obtained from the three metagenomic libraries using NGS analysis. Of all the 15 phyla identified in this study, Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most prevalent in all samples. Also, 170 families belonging to 36 bacteria classes were identified. Although many of the bacteria families were common in the skin, gut, and aquarium water (39%), about 26% of the families were exclusive to the aquarium water alone. Therefore, any substantial change in the structure and abundance of microbiota (especially pathogenic bacteria) reported in this study may serve as an early sign for disease infection in the species under captivity. KEY POINTS: • Proteobacteria was the most dominant. • The microbiota was either shared or exclusively in samples.
Collapse
Affiliation(s)
- Ahmad Ashyikin Noor Nurul
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Victor Tosin Okomoda
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Department of Fisheries and Aquaculture, University of Agriculture Makurdi, PMB, 2373, Makurdi, Benue State, Nigeria.
| | - Nur Ariffin Asma
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
19
|
Lai KP, Lin X, Tam N, Ho JCH, Wong MKS, Gu J, Chan TF, Tse WKF. Osmotic stress induces gut microbiota community shift in fish. Environ Microbiol 2020; 22:3784-3802. [PMID: 32618094 DOI: 10.1111/1462-2920.15150] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Alteration of the gut microbiota plays an important role in animal health and metabolic diseases. However, little is known with respect to the influence of environmental osmolality on the gut microbial community. The aim of the current study was to determine whether the reduction in salinity affects the gut microbiota and identify its potential role in salinity acclimation. Using Oryzias melastigma as a model organism to perform progressive hypotonic transfer experiments, we evaluated three conditions: seawater control (SW), SW to 50% sea water transfer (SFW) and SW to SFW to freshwater transfer (FW). Our results showed that the SFW and FW transfer groups contained higher operational taxonomic unit microbiota diversities. The dominant bacteria in all conditions constituted the phylum Proteobacteria, with the majority in the SW and SFW transfer gut comprising Vibrio at the genus level, whereas this population was replaced by Pseudomonas in the FW transfer gut. Furthermore, our data revealed that the FW transfer gut microbiota exhibited a reduced renin-angiotensin system, which is important in SW acclimation. In addition, induced detoxification and immune mechanisms were found in the FW transfer gut microbiota. The shift of the bacteria community in different osmolality environments indicated possible roles of bacteria in facilitating host acclimation.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, China.,Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nathan Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jeff Cheuk Hin Ho
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8564, Japan
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
20
|
Kashinskaya EN, Simonov EP, Izvekova GI, Parshukov AN, Andree KB, Solovyev MM. Composition of the microbial communities in the gastrointestinal tract of perch (Perca fluviatilis L. 1758) and cestodes parasitizing the perch digestive tract. JOURNAL OF FISH DISEASES 2020; 43:23-38. [PMID: 31663143 DOI: 10.1111/jfd.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Using the approach of sequencing the V3-V4 region of the 16S rRNA gene, we have analysed the bacterial diversity associated with the distinct compartments of the gastrointestinal tract of perch (Perca fluviatilis) and cestodes (Proteocephalus sp.) parasitizing their digestive tract. The dominant microbiota associated with cestodes (Proteocephalus sp.) was represented by bacteria from the genera Serratia, Pseudomonas and Mycoplasma. By comparing the associated microbiota of perch and cestodes, a clear difference in bacterial composition and diversity was revealed between the community from the stomach content and other parts of the gastrointestinal tract of fish. Microbiota associated with cestodes was not significantly different in comparison with microbiota of different subcompartments of perch (mucosa and content of intestine and pyloric caeca) (ADONIS, p > .05) excluding microbiota of stomach content (ADONIS, p ≤ .05). PICRUSt-based functional assessments of the microbial communities of perch and cestodes indicated that they mainly linked in terms of metabolism and environmental information processing and could play an important role in the nutrition and health of host.
Collapse
Affiliation(s)
- Elena N Kashinskaya
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniy P Simonov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina I Izvekova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Aleksey N Parshukov
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | | | - Mikhail M Solovyev
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
21
|
Turner LA, Bucking C. The role of intestinal bacteria in the ammonia detoxification ability of teleost fish. ACTA ACUST UNITED AC 2019; 222:jeb.209882. [PMID: 31753905 DOI: 10.1242/jeb.209882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
Protein catabolism during digestion generates appreciable levels of ammonia in the gastrointestinal tract (GIT) lumen. Amelioration by the enterocyte, via enzymes such as glutamine synthetase (GS), glutamate dehydrogenase (GDH), and alanine and aspartate aminotransferases (ALT; AST), is found in teleost fish. Conservation of these enzymes across bacterial phyla suggests that the GIT microbiome could also contribute to ammonia detoxification by providing supplemental activity. Hence, the GIT microbiome, enzyme activities and ammonia detoxification were investigated in two fish occupying dissimilar niches: the carnivorous rainbow darter and the algivorous central stoneroller. There was a strong effect of fish species on the activity levels of GS, GDH, AST and ALT, as well as GIT lumen ammonia concentration, and bacterial composition of the GIT microbiome. Furthermore, removal of the intestinal bacteria impacted intestinal activities of GS and ALT in the herbivorous fish but not in the carnivore. The repeatability and robustness of this relationship was tested across field locations and years. Within an individual waterbody, there was no impact of sampling location on any of these factors. However, different waterbodies affected enzyme activities and luminal ammonia concentrations in both fish, while only the central stoneroller intestinal bacteria populations varied. Overall, a relationship between GIT bacteria, enzyme activity and ammonia detoxification was observed in herbivorous fish while the carnivorous fish displayed a correlation between enzyme activity and ammonia detoxification alone that was independent of the GIT microbiome. This could suggest that carnivorous fish are less dependent on non-host mechanisms for ammonia regulation in the GIT.
Collapse
Affiliation(s)
- Leah A Turner
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Carol Bucking
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
22
|
Fonseca F, Cerqueira R, Fuentes J. Impact of Ocean Acidification on the Intestinal Microbiota of the Marine Sea Bream ( Sparus aurata L.). Front Physiol 2019; 10:1446. [PMID: 31849701 PMCID: PMC6893888 DOI: 10.3389/fphys.2019.01446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Within a scenario of increasing atmospheric CO2 and ocean acidification (OA), it is highly relevant to investigate its impacts not only on fish performance but also on fish intestinal microbiome and how that reflects on host performance and health. The main objective of this study was to establish if the intestinal microbiota of the sea bream (Sparus aurata) was affected by high level of CO2 in line with the predictions for this century. The bacterial communities of the intestinal fluid were characterized in animals kept at the present-day level of CO2 (400 μatm) and in animals switched to high CO2 (1200 μatm) for 1 month. Bacterial taxa identification was based on molecular methods, using the DNA coding for the 16S ribosomal RNA and primers targeting the regions V1-V3. Amplicons obtained from DNA samples of animals in the same tank were combined, cloned to obtain a bacterial DNA library, and the clones were sequenced. No significant differences were found between the two treatments for alpha diversity. However, beta diversity analysis revealed distinct dysbiosis in response to hypercapnia, with phylum Firmicutes absent from the bacterial communities of fish exposed to 1200 μatm CO2, whereas Proteobacteria relative abundance was increased at elevated CO2, due to the presence of Gammaproteobacteria (Vibrionaceae and Alteromonadaceae), a class not present in the control samples. This study provides a first glimpse at the impact of OA in fish intestinal microbiota and highlights potential downstream effects to the general condition of fishes under hypercapnia.
Collapse
Affiliation(s)
- Filomena Fonseca
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Faro, Portugal
| | - Ricardo Cerqueira
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Faro, Portugal
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
23
|
Piazzon MC, Naya-Català F, Simó-Mirabet P, Picard-Sánchez A, Roig FJ, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite Fish. Front Microbiol 2019; 10:2512. [PMID: 31736931 PMCID: PMC6834695 DOI: 10.3389/fmicb.2019.02512] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Intestinal microbiota is key for many host functions, such as digestion, nutrient metabolism, disease resistance, and immune function. With the growth of the aquaculture industry, there has been a growing interest in the manipulation of fish gut microbiota to improve welfare and nutrition. Intestinal microbiota varies with many factors, including host species, genetics, developmental stage, diet, environment, and sex. The aim of this study was to compare the intestinal microbiota of adult gilthead sea bream (Sparus aurata) from three groups of age and sex (1-year-old males and 2- and 4-year-old females) maintained under the same conditions and fed exactly the same diet. Microbiota diversity and richness did not differ among groups. However, bacterial composition did, highlighting the presence of Photobacterium and Vibrio starting at 2 years of age (females) and a higher presence of Staphylococcus and Corynebacterium in 1-year-old males. The core microbiota was defined by 14 Operational Taxonomic Units (OTUs) and the groups that showed more OTUs in common were 2- and 4-year-old females. Discriminant analyses showed a clear separation by sex and age, with bacteria belonging to the phyla Firmicutes, Proteobacteria and Actinobacteria driving the separation. Pathway analysis performed with the inferred metagenome showed significant differences between 1-year-old males and 4-year-old females, with an increase in infection-related pathways, nitrotoluene degradation and sphingolipid metabolism, and a significant decrease in carbohydrate metabolism pathways with age. These results show, for the first time, how intestinal microbiota is modulated in adult gilthead sea bream and highlight the importance of reporting age and sex variables in these type of studies in fish.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Amparo Picard-Sánchez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Francisco J Roig
- Biotechvana S.L., Valencia, Spain.,Instituto de Medicina Genomica, S.L., Valencia, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| |
Collapse
|
24
|
Yao J, Chen P, Ringø E, Zhang G, Huang Z, Hua X. Effect of Diet Supplemented With Rapeseed Meal or Hydrolysable Tannins on the Growth, Nutrition, and Intestinal Microbiota in Grass Carp ( Ctenopharyngodon idellus). Front Nutr 2019; 6:154. [PMID: 31608284 PMCID: PMC6773801 DOI: 10.3389/fnut.2019.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Grass carp (Ctenopharyngodon idellus; n = 320) were received four different diets for 56 days. The experimental diets were: fishmeal (FM) containing 10% fishmeal (without rapeseed meal), and rapeseed meal (RM) containing 50% rapeseed meal (without fishmeal), and two semi-purified diets either without (T0) or with 1.25% (T1) supplemental hydrolysable tannin. The approximate content of tannin in the RM diet was 1.31%, which was close to that of T1, while the tannin content of FM was close to that of T0. The weight gain rate of grass carp of the RM group was significantly lower than that of the FM group, while the feeding conversion ratio and the feeding rate were significantly higher in the T1 group than in T0. The muscle lipid content was significantly lower in RM than in FM, while T1 was lower than T0. Intestinal activities of trypsin and α-amylase were significantly higher in T1 and RM groups compared with the other treatments. The hepatic activities of aspartate aminotransferase and alanine aminotransferase were lower in T1 and RM groups compared with the other treatments, while hepatic glycogen, and malonaldehyde were significantly higher in T1 and RM groups. In serum, the total protein and globulin contents were significantly higher in T1 and RM groups, while albumin was significantly lower in the RM group compared to the FM group. High-throughput sequencing showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant bacterial phyla among groups. The intestinal microbial diversity was higher in T1 and RM. Redundancy analysis showed that tannin, rapeseed meal, and intestinal trypsin activity were positively or negatively correlated with the relative abundance of several different intestinal microbiota at phylum and/or genus levels. The results indicated that 1.25% tannin could not be the main reason for the poor growth of grass carp of the RM group; however, the protein metabolism was disturbed, the absorption of carbohydrate was improved, and the accumulation of lipid had decreased. Furthermore, tannin and rapeseed meal supplementations modulated the intestinal microbiota, and may sequentially regulate the intestinal function by fermenting dietary nutrition, producing digestive enzymes, and modulating probiotics.
Collapse
Affiliation(s)
- Jingting Yao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Chen
- Editorial Office of Journal of Shanghai Ocean University, Shanghai, China
| | - Einar Ringø
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gaigai Zhang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhongyuan Huang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xueming Hua
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
25
|
Host-Associated Bacterial Succession during the Early Embryonic Stages and First Feeding in Farmed Gilthead Sea Bream ( Sparus aurata). Genes (Basel) 2019; 10:genes10070483. [PMID: 31247994 PMCID: PMC6678923 DOI: 10.3390/genes10070483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
One of the most widely reared fish in the Mediterranean Sea is Sparus aurata. The succession of S. aurata whole-body microbiota in fertilized eggs, five, 15, 21 and 71 days post hatch (dph) larvae and the contribution of the rearing water and the provided feed (rotifers, Artemia sp. and commercial diet) to the host’s microbiota was investigated by 454 pyrosequencing of the 16S rRNA gene diversity. In total, 1917 bacterial operational taxonomic units (OTUs) were found in all samples. On average, between 93 ± 2.1 and 366 ± 9.2 bacterial OTUs per sample were found, with most of them belonging to Proteobacteria and Bacteroidetes. Ten OTUs were shared between all S. aurata stages and were also detected in the rearing water or diet. The highest OTU richness occurred at the egg stage and the lowest at the yolk sac stage (5 dph). The rearing water and diet microbial communities contributed in S. aurata microbiota without overlaps in their microbial composition and structure. The commercial diet showed higher contribution to the S. aurata microbiota than the rearing water. After stage D71 the observed microbiota showed similarities with that of adult S. aurata as indicated by the increased number of OTUs associated with γ-Proteobacteria and Firmicutes.
Collapse
|
26
|
Singh A, Faber-Hammond JJ, O'Rourke CF, Renn SC. Gut microbial diversity increases with social rank in the African cichlid fish, Astatotilapia burtoni. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Castro C, Couto A, Diógenes AF, Corraze G, Panserat S, Serra CR, Oliva-Teles A. Vegetable oil and carbohydrate-rich diets marginally affected intestine histomorphology, digestive enzymes activities, and gut microbiota of gilthead sea bream juveniles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:681-695. [PMID: 30367427 DOI: 10.1007/s10695-018-0579-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/08/2018] [Indexed: 05/27/2023]
Abstract
For an increased incorporation of plant ingredients in aquafeeds at the expense of fish meal (FM) and fish oil (FO), more knowledge is needed on the effects at the intestine level of dietary vegetable oils (VO) and carbohydrates (CH), and of possible interactions. For that purpose, in this study, the activities of digestive pancreatic enzymes (amylase, lipase, total alkaline proteases), gut microbiota, and histomorphology were assessed in gilthead sea bream (IBW 71.0 ± 1.5 g) fed four diets differing in lipid source (FO or a blend of VO) and carbohydrate content (0% or 20% gelatinized starch) for 81 days. No major changes in digestive enzyme activities were noticed in fish fed the experimental diets. Dietary VO, but not CH content, modified intestinal microbial profile, by increasing the similarity of bacterial communities. Especially when combined with CH, dietary VO promoted abnormal enterocyte architecture. Liver histology was also accessed, and an increased cytoplasmic vacuolization of hepatocytes was related with dietary CH inclusion, being only significantly different in fish fed FO-based diets. Overall, nutritional interactions between dietary lipid source and carbohydrate content were not observed on digestive enzyme activities and microbial profile. However, the intestine histological modifications observed in fish fed the VOCH+ diet suggest a negative interaction between dietary VO and CH. This requires a more in depth assessment in future studies as it can have negative consequences at a functional level.
Collapse
Affiliation(s)
- Carolina Castro
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal
| | - Ana Couto
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal
| | - Alexandre F Diógenes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal
| | - Geneviève Corraze
- INRA-UPPA UMR1419 Nutrition Metabolism Aquaculture, Aquapôle, 64310, St-Pee-sur-Nivelle, France
| | - Stéphane Panserat
- INRA-UPPA UMR1419 Nutrition Metabolism Aquaculture, Aquapôle, 64310, St-Pee-sur-Nivelle, France
| | - Cláudia R Serra
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal.
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Lin M, Zeng C, Jia X, Zhai S, Li Z, Ma Y. The composition and structure of the intestinal microflora of
Anguilla marmorata
at different growth rates: a deep sequencing study. J Appl Microbiol 2019; 126:1340-1352. [DOI: 10.1111/jam.14174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- M. Lin
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | | | | | | | - Z.Q. Li
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | - Y. Ma
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| |
Collapse
|
29
|
A Preliminary Study on Probiotic Characteristics of Sporosarcina spp. for Poultry Applications. Curr Microbiol 2019; 76:448-461. [DOI: 10.1007/s00284-019-01647-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/06/2019] [Indexed: 11/28/2022]
|
30
|
Wei J, Guo X, Liu H, Chen Y, Wang W. The variation profile of intestinal microbiota in blunt snout bream (Megalobrama amblycephala) during feeding habit transition. BMC Microbiol 2018; 18:99. [PMID: 30176798 PMCID: PMC6122550 DOI: 10.1186/s12866-018-1246-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background The blunt snout bream (Megalobrama amblycephala) is one of the most important commercial herbivorous fish in China, and dietary transition is an important event in blunt snout bream development. Gut microbiota has a vital role to host animal. However, little was known about the relationship among feeding habits transition, gut microbiota and digestive enzymes of gut content. Results In this study, 186,328 high-quality reads from nine 16S rRNA libraries were obtained using the Illumina MiSeq PE300 platform. The valid sequences were classified into 388 Operational Taxonomic Units, and a total of 223 genera, belonging to 20 phyla, were identified. The clustering result of gut bacterial communities is consistently related to the clustering result of intestinal content compositions. Proteobacteria and Firmicutes constitute the ‘core’ gut microbiota of blunt snout bream. Cetobacterium and Rhizobium were identified as microbiological markers of gut microbiota at zooplankton-based diet stages and diet transition stages, respectively. Moreover, thirteen potential cellulose-degrading bacteria were detected in our study. The canonical redundancy analysis (RDA) revealed that the feeding habits strongly influenced the gut microbiota and the digestive enzyme activities of gut content, while the result of PICRUSt test suggests that the metabolic capacity of gut microbiota was affected by feeding habit. Conclusions This study provided a comprehensive survey of the gut microbiota in blunt snout bream during its dietary transition period for the first time and clearly showed that the gut microbiota was strongly affected by feeding habit. This work allows us to better understand the relationship among gut microbiota, nutrition metabolism and feeding habits in vertebrate. Further, our study provides a reference for future studies investigating the metabolic adaption of herbivorous fish to shift to a vegetarian diet during their life history. Electronic supplementary material The online version of this article (10.1186/s12866-018-1246-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Wei
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianwu Guo
- Lab of Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto de Politécnico Nacional, Boulevard del Maestro S/N esq. Elías Piña, Col. Narciso Mendoza, C.P. 88710, Cd, Reynosa, Tamaulipas, Mexico
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanyuan Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
31
|
Nikouli E, Meziti A, Antonopoulou E, Mente E, Kormas KA. Gut Bacterial Communities in Geographically Distant Populations of Farmed Sea Bream ( Sparus aurata) and Sea Bass ( Dicentrarchus labrax). Microorganisms 2018; 6:microorganisms6030092. [PMID: 30200504 PMCID: PMC6164763 DOI: 10.3390/microorganisms6030092] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 01/21/2023] Open
Abstract
This study investigated the profile of the autochthonous gut bacterial communities in adult individuals of Sparus aurata and Dicentrarchus labrax reared in sea cages in five distantly located aquaculture farms in Greece and determine the impact of geographic location on them in order to detect the core gut microbiota of these commercially important fish species. Data analyses resulted in no significant geographic impact in the gut microbial communities within the two host species, while strong similarities between them were also present. Our survey revealed the existence of a core gut microbiota within and between the two host species independent of diet and geographic location consisting of the Delftia, Pseudomonas, Pelomonas, Propionibacterium, and Atopostipes genera.
Collapse
Affiliation(s)
- Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| | - Alexandra Meziti
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos 384 46, Greece.
| |
Collapse
|
32
|
Kashinskaya EN, Simonov EP, Kabilov MR, Izvekova GI, Andree KB, Solovyev MM. Diet and other environmental factors shape the bacterial communities of fish gut in an eutrophic lake. J Appl Microbiol 2018; 125:1626-1641. [PMID: 30091826 DOI: 10.1111/jam.14064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022]
Abstract
AIMS The aim of this work was to study the gut microbial diversity from eight species of wild fish with different feeding habits, digestive physiology (gastric vs agastric) and provide comparative structural analysis of the microbial communities within their environment (food items, water, sediments and macrophytes). METHODS AND RESULTS The microbiota of fish gut and their prey items were studied using next generation high-throughput sequencing of the 16S ribosomal RNA genes. A scatter plot based on PCoA scores demonstrated the microbiota formed three groups: (i) stomach and intestinal mucosa (IM), (ii) stomach and intestinal content (IC), and (iii) prey and environment. Comparisons using ANOSIM showed significant differences among IC of omnivorous, zoobenthivorous, zooplanktivorous-piscivorous fishes (P ≤ 0·1). No significant difference was detected for mucosa from the same groups (P > 0·1). CONCLUSIONS Neither the interspecies differences in fish diet nor their phylogenetic position had any effect on the microbiome of the IM, but diet did influence the composition of the microbiota of the IC. SIGNIFICANCE AND IMPACT OF THE STUDY The data demonstrate that fish harboured specific groups of bacteria that do not completely reflect the microbiota of the environment or prey.
Collapse
Affiliation(s)
- E N Kashinskaya
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - E P Simonov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - M R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - G I Izvekova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzskii raion, Yaroslavskaya oblast, Russia
| | - K B Andree
- IRTA-SCR, San Carlos de la Rapita, Tarragona, Spain
| | - M M Solovyev
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Tomsk State University, Tomsk, Russia
| |
Collapse
|
33
|
Hao K, Wu ZQ, Li DL, Yu XB, Wang GX, Ling F. Effects of Dietary Administration of Shewanella xiamenensis A-1, Aeromonas veronii A-7, and Bacillus subtilis, Single or Combined, on the Grass Carp (Ctenopharyngodon idella) Intestinal Microbiota. Probiotics Antimicrob Proteins 2018; 9:386-396. [PMID: 28321827 DOI: 10.1007/s12602-017-9269-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gut microbiota of grass carp plays an important role in host. However, detailed information regarding the changes of microbiota after probiotics administration in relation to the gastrointestinal microbiota is absent. In the present study, dietary administration of putative probiotics Shewanella xiamenensis A-1, Aeromonas veronii A-7, and Bacillus subtilisstrains was conducted in grass carp to investigate if there is a discernible alteration in intestinal microbiota and whether the alteration is associated with previous study about the immunity regulation in grass carp. Bacterial 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp intestine were detected after 28 days feeding by five diets, and results demonstrated the changes of microbial community composition at genus level. The abundance of Cetobacterium genus with potential immunity function increased. Potential pathogens and probiotics are important constitutions of the intestinal microbiota. Orally taken probiotics considerably reduced the abundance of the potential pathogenic bacteria (e.g., Pseudomonas and Flavobacterium genus) in the intestine. Meanwhile, putative probiotics used in this study were favorable to the reproduction of potential probiotics in THE intestine of grass carp (e.g., Vibrio, Streptococcus, and Enterococcus genus). Moreover, modulation of intestinal environment by the probiotics could impact the abundance of cellulose-degrading bacteria (e.g., Citrobacter genus). Those results suggested that oral probiotics administration can positively improve the composition of intestinal microbial community in grass carp, and this was associated with regulation of immunity in grass carp. Probiotics-induced alteration of microbiota may potentially lower the risk of disease outbreaks during cultivation stage of grass carp.
Collapse
Affiliation(s)
- Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zhuo-Qi Wu
- The Station of Fishery Management, Yiwu City Water Conservancy Bureau of Zhejiang Province, Yiwu, 322000, China
| | - Dong-Liang Li
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
34
|
Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The Gut Microbiota of Marine Fish. Front Microbiol 2018; 9:873. [PMID: 29780377 PMCID: PMC5946678 DOI: 10.3389/fmicb.2018.00873] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research.
Collapse
Affiliation(s)
- Sian Egerton
- School of Microbiology, University College Cork, Cork, Ireland.,School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Sarah Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jason Whooley
- Bio-marine Ingredients Ireland Ltd., Killybegs, Ireland
| | - Catherine Stanton
- Teagasc Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Teagasc and University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,Teagasc Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Teagasc and University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Xu G, Xing W, Li T, Ma Z, Liu C, Jiang N, Luo L. Effects of dietary raffinose on growth, non-specific immunity, intestinal morphology and microbiome of juvenile hybrid sturgeon (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂). FISH & SHELLFISH IMMUNOLOGY 2018; 72:237-246. [PMID: 29104091 DOI: 10.1016/j.fsi.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
This study was performed to determine the efficacy of raffinose on the growth, non-specific immunity, intestinal morphology and microbiota of juvenile hybrid sturgeon, (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂). Hybrid sturgeons were divided into 2 groups and each group was fed with diets supplemented with or without raffinose for 56 days. Hybrid sturgeon fed diet supplemented with raffinose had significantly higher final body weight (FBW), specific growth rate (SGR), and weight gain ratio (WGR) than fish fed the control diet (P < 0.05). Raffinose in diet had no negative effect on feed intake (FI) and feed conversion ratio (FCR) (P > 0.05). Compared with the control diet, the myeloperoxidase (MPO) and respiratory burst (NBT) activitives were significantly higher in sturgeon fed the raffinose supplemented diet (P < 0.05). The increasing of intestinal villi area and mucosal folds were observed in intestinal tract of sturgeon when they fed the raffinose supplemented diet. Meanwhile, the residual bait of intestinal tract was relatively lower in sturgeon with raffinose treatment. High-throughput sequencing revealed that majority of reads derived from the sturgeon digesta were constituted by members of Proteobacteria, Firmicutes, Fusobacteria and Actinobacteria. Shannon's diversity index existed significant difference among dietary treatments indicating that the overall microbial community was modified to a large extent by dietary raffinose. In conclusion, supplementation of the diet with raffinose is capable of improving hybrid sturgeon growth performances and intestinal morphology, modifying the intestinal microbial composition.
Collapse
Affiliation(s)
- Guanling Xu
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Wei Xing
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Tieliang Li
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Zhihong Ma
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Caixia Liu
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Na Jiang
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Lin Luo
- Beijing Fisheries Research Institute, Beijing 100068, China.
| |
Collapse
|
36
|
In vitro characteristics of an Atlantic salmon ( Salmo salar L.) hind gut microbial community in relation to different dietary treatments. Res Microbiol 2017; 168:751-759. [DOI: 10.1016/j.resmic.2017.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023]
|
37
|
Zhang Z, Li D, Refaey MM, Xu W. High Spatial and Temporal Variations of Microbial Community along the Southern Catfish Gastrointestinal Tract: Insights into Dynamic Food Digestion. Front Microbiol 2017; 8:1531. [PMID: 28848535 PMCID: PMC5552716 DOI: 10.3389/fmicb.2017.01531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
The fish intestinal microbiota is affected by dietary shifts or diet-related seasonal fluctuations making it highly variable and dynamic. It assists with the digestion and absorption of food that is a common, yet dynamic process. However, fundamental dynamics of microbial ecology associated with food digestion in intestine and stomach are poorly understood in fish. We selected the southern catfish, Silurus meridionalis, as the targeted species, owing to its foraging behavior with a large meal that can assure clear periodic rhythms in food digestion, to study spatial variations of the microbial community along the gastrointestinal (GI) tract. We further evaluated temporal microbial dynamics by collecting GI tract samples at time intervals 03, 12, and 24h after feeding. High-throughput sequencing results showed higher microbial diversity in the stomach than in the intestine and distinguishable community structures between stomach and intestine. Firmicutes were dominated by both Clostridium and unclassified Clostridiaceae, which was the most abundant taxon in the stomach, whereas Fusobacteria were dominated by Cetobacterium, which prevailed in the intestine. Firmicutes was significantly increased and Fusobacteria was decreased after feeding. Furthermore, inter-stomach microbial variability was greater than inter-intestine microbial variability. These results demonstrate that GI microbial assemblies are specific per anatomical site and are highly dynamic during food digestion, indicating that digestive status and/or sampling time are factors potentially influencing the microbial compositions. Furthermore, the finding of high spatial and temporal variations of the microbial community along the GI tract suggests limitations of single sampling regime to study food-derived microbial ecology.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China
| | - Dapeng Li
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China
| | - Mohamed M Refaey
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China.,Department of Animal Production, Faculty of Agriculture, Mansoura UniversityAl-Mansoura, Egypt
| | - Weitong Xu
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural UniversityWuhan, China.,Hubei Provincial Engineering Laboratory for Pond AquacultureWuhan, China
| |
Collapse
|
38
|
Udayangani RMC, Dananjaya SHS, Nikapitiya C, Heo GJ, Lee J, De Zoysa M. Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. FISH & SHELLFISH IMMUNOLOGY 2017; 66:173-184. [PMID: 28479399 DOI: 10.1016/j.fsi.2017.05.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 05/27/2023]
Abstract
In this study, we evaluated the effects of chitosan silver nanocomposites (CAgNCs) supplemented diet on gut microbial community, goblet cell density, gut morphometry and mRNA expression of immune related and mucin encoding genes in zebrafish. Zebrafish gut microbiota analysis results clearly showed the reduction of phylum Proteobacteria. However, they remained as the major bacterial group in gut with CAgNCs supplemented diet, while the abundance of phylum Fusobacteria and phylum Bacteroidetes were increased notably compared to the control diet fed fish. Total goblet cell density was significantly increased at 30 and 60 days in CAgNCs supplemented group (1.6-fold and 2.0-fold, respectively) compared to the control group indicating enhanced immune function in the gut. CAgNCs supplementation has also increased villi height significantly in the zebrafish mid gut at the end of 30 (95.5 ± 3.7 μm) and 60 days (144.40 ± 4.8 μm) compared to control diet fed fish at 30 (86.90 ± 3.7 μm) and 60 days (96.2 ± 4.8 μm). Furthermore, mRNA expression of immune related genes such as TNF-α (6.2-fold), IL-10 (5.0-fold), IL-12 (9.2-fold), IRF-1 (5.2-fold), Defbl1 (3-fold), Lyz (5.1-fold) and mucin encoding genes were significantly upregulated (above 2-fold) compared to that of control group. The current study revealed that CAgNCs supplemented diet engenders promising effects on fish gut immunity by enhancing beneficial microbial populations, goblet cell density, villi length, and transcriptional regulation of immune related and mucin encoding genes.
Collapse
Affiliation(s)
- R M C Udayangani
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chamilani Nikapitiya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Gang-Joon Heo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
39
|
Giannenas I, Bonos E, Anestis V, Filioussis G, Papanastasiou DK, Bartzanas T, Papaioannou N, Tzora A, Skoufos I. Effects of Protease Addition and Replacement of Soybean Meal by Corn Gluten Meal on the Growth of Broilers and on the Environmental Performances of a Broiler Production System in Greece. PLoS One 2017; 12:e0169511. [PMID: 28046072 PMCID: PMC5207743 DOI: 10.1371/journal.pone.0169511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/19/2016] [Indexed: 11/21/2022] Open
Abstract
An experimental study was conducted to examine the combined effects of adding a dietary protease, reducing the levels of soybean meal (SBM) and introducing corn gluten meal (CGM) in the ration of a group of broilers reared on a commercial Greek farm. Five hundred forty chicks were divided into three dietary treatments with six replicates of thirty birds each. The first group (Control) was fed a conventional diet based on corn and soybean meal, containing 21% w/w crude protein (CP). The second group (Soy-Prot) was supplied a corn and SBM-based diet containing a lower level of CP (20% w/w) and 200 mg of the protease RONOZYME® Proact per kg of feed. The third group (Gluten-Prot) was fed a diet without soybean-related constituents which was based on corn and CGM and with CP and protease contents identical to those of the diet of the Soy-Prot group. Body weight, feed intake, feed conversion ratio (FCR), intestinal microbiota populations and morphology, meat quality and cost were evaluated. Furthermore, a partial life cycle assessment (LCA) was performed in order to assess the potential environmental performance of the systems defined by these three dietary treatments and identify their environmental hot-spots. The growth performance of the broilers supplied the Soy-Prot diet was similar to the broilers supplied the Control diet. However, the broilers which were fed the Gluten-Prot diet at the end of the trial showed a tendency (P≤0.010) for lower weight gain and feed intake compared to those of the Control diet. When compared to the Control group, lower counts of C. perfringens (P≤0.05) were detected in the ileum and cecum parts, and lower counts of F. necrophorum (P≤0.001) were detected in the cecum part of the birds from the Gluten-Prot group. The evaluation of intestinal morphometry showed that the villus height and crypt depth values were not significantly different (P>0.05) among the experimental groups for the duodenum, jejunum and ileum parts. No significant differences (P>0.05) were observed in the quality of the breast and thigh meat and in the feed cost per kg body weight gain for the total duration of the growth period between the Control and Gluten-Prot broiler groups. The LCA suggested that the ammonia and nitrous oxide emissions due to litter handling constitute the farm level hot-spots for the Acidification and Eutrophication Potentials of the Control and Soy-Prot systems and the Global Warming Potential of the Gluten-Prot system, respectively. The Latin American soybean production and domestic corn production and lignite mining are important off-farm polluting processes for the studied life cycles. The Soy-Prot and Gluten-Prot systems both performed better than the Control system in nine of Environmental Impact Category Indicators assessed, with the respective differences being generally larger for the Gluten-Prot system. The environmental impact estimates are regarded as initial, indicative figures due to their inherent uncertainty. Overall, the results could be considered as positive indications in the effort to sustainably replace the conventional, soybean-dependent control diet in the specific broiler production system.
Collapse
Affiliation(s)
- Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Bonos
- Research Institute of Animal Science, ELGO-Dimitra, Paralimni Giannitsa, Pella, Greece
| | - Vasileios Anestis
- Laboratory of Agricultural Engineering and Environment, Institute for Research and Technology of Thessaly, Centre for Research and Technology Hellas, Volos, Greece
- Laboratory of Agricultural Constructions and Environmental Control, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Magnisia, Greece
| | - Georgios Filioussis
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios K. Papanastasiou
- Laboratory of Agricultural Engineering and Environment, Institute for Research and Technology of Thessaly, Centre for Research and Technology Hellas, Volos, Greece
| | - Thomas Bartzanas
- Laboratory of Agricultural Engineering and Environment, Institute for Research and Technology of Thessaly, Centre for Research and Technology Hellas, Volos, Greece
| | - Nikolaos Papaioannou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Tzora
- Department of Agricultural Technology, Division of Animal Production, Technological Institute of Epirus, Arta, Greece
| | - Ioannis Skoufos
- Department of Agricultural Technology, Division of Animal Production, Technological Institute of Epirus, Arta, Greece
| |
Collapse
|
40
|
Kashinskaya EN, Andree KB, Simonov EP, Solovyev MM. DNA extraction protocols may influence biodiversity detected in the intestinal microbiome: a case study from wild Prussian carp,Carassius gibelio. FEMS Microbiol Ecol 2016; 93:fiw240. [DOI: 10.1093/femsec/fiw240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/21/2016] [Accepted: 12/01/2016] [Indexed: 11/12/2022] Open
|
41
|
Gatesoupe FJ, Huelvan C, Le Bayon N, Le Delliou H, Madec L, Mouchel O, Quazuguel P, Mazurais D, Zambonino-Infante JL. The highly variable microbiota associated to intestinal mucosa correlates with growth and hypoxia resistance of sea bass, Dicentrarchus labrax, submitted to different nutritional histories. BMC Microbiol 2016; 16:266. [PMID: 27821062 PMCID: PMC5100225 DOI: 10.1186/s12866-016-0885-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/30/2016] [Indexed: 01/12/2023] Open
Abstract
Background The better understanding of how intestinal microbiota interacts with fish health is one of the key to sustainable aquaculture development. The present experiment aimed at correlating active microbiota associated to intestinal mucosa with Specific Growth Rate (SGR) and Hypoxia Resistance Time (HRT) in European sea bass individuals submitted to different nutritional histories: the fish were fed either standard or unbalanced diets at first feeding, and then mixed before repeating the dietary challenge in a common garden approach at the juvenile stage. Results A diet deficient in essential fatty acids (LH) lowered both SGR and HRT in sea bass, especially when the deficiency was already applied at first feeding. A protein-deficient diet with high starch supply (HG) reduced SGR to a lesser extent than LH, but it did not affect HRT. In overall average, 94 % of pyrosequencing reads corresponded to Proteobacteria, and the differences in Operational Taxonomy Units (OTUs) composition were mildly significant between experimental groups, mainly due to high individual variability. The highest and the lowest Bray-Curtis indices of intra-group similarity were observed in the two groups fed standard starter diet, and then mixed before the final dietary challenge with fish already exposed to the nutritional deficiency at first feeding (0.60 and 0.42 with diets HG and LH, respectively). Most noticeably, the median percentage of Escherichia-Shigella OTU_1 was less in the group LH with standard starter diet. Disregarding the nutritional history of each individual, strong correlation appeared between (1) OTU richness and SGR, and (2) dominance index and HRT. The two physiological traits correlated also with the relative abundance of distinct OTUs (positive correlations: Pseudomonas sp. OTU_3 and Herbaspirillum sp. OTU_10 with SGR, Paracoccus sp. OTU_4 and Vibrio sp. OTU_7 with HRT; negative correlation: Rhizobium sp. OTU_9 with HRT). Conclusions In sea bass, gut microbiota characteristics and physiological traits of individuals are linked together, interfering with nutritional history, and resulting in high variability among individual microbiota. Many samples and tank replicates seem necessary to further investigate the effect of experimental treatments on gut microbiota composition, and to test the hypothesis whether microbiotypes may be delineated in fish. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0885-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- François-Joël Gatesoupe
- NUMEA, INRA, Univ. Pau & Pays Adour, 64310, Saint Pée sur Nivelle, France. .,PFOM/ARN, Ifremer, Centre de Bretagne, CS 10070, 29280, Plouzané, France.
| | - Christine Huelvan
- Ifremer, UMR 6539 (LEMAR), PFOM/ARN, Centre de Bretagne, CS 10070, 29280, Plouzané, France
| | - Nicolas Le Bayon
- Ifremer, UMR 6539 (LEMAR), PFOM/ARN, Centre de Bretagne, CS 10070, 29280, Plouzané, France
| | - Hervé Le Delliou
- Ifremer, UMR 6539 (LEMAR), PFOM/ARN, Centre de Bretagne, CS 10070, 29280, Plouzané, France
| | - Lauriane Madec
- Ifremer, UMR 6539 (LEMAR), PFOM/ARN, Centre de Bretagne, CS 10070, 29280, Plouzané, France
| | - Olivier Mouchel
- Ifremer, UMR 6539 (LEMAR), PFOM/ARN, Centre de Bretagne, CS 10070, 29280, Plouzané, France
| | - Patrick Quazuguel
- Ifremer, UMR 6539 (LEMAR), PFOM/ARN, Centre de Bretagne, CS 10070, 29280, Plouzané, France
| | - David Mazurais
- Ifremer, UMR 6539 (LEMAR), PFOM/ARN, Centre de Bretagne, CS 10070, 29280, Plouzané, France
| | | |
Collapse
|
42
|
Ghanbari M, Shahraki H, Kneifel W, Domig KJ. A first insight into the intestinal microbiota of snow trout (Schizothorax zarudnyi). Symbiosis 2016. [DOI: 10.1007/s13199-016-0455-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Skoufos I, Tzora A, Giannenas I, Bonos E, Papagianni N, Tsinas A, Christaki E, Florou-Pan P. Dietary Inclusion of Rapeseed Meal as Soybean Meal Substitute on Growth Performance, Gut Microbiota, Oxidative Stability and Fatty Acid Profile in Growing-Fattening Pigs. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajava.2016.89.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Estruch G, Collado MC, Peñaranda DS, Tomás Vidal A, Jover Cerdá M, Pérez Martínez G, Martinez-Llorens S. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene. PLoS One 2015; 10:e0136389. [PMID: 26317431 PMCID: PMC4552794 DOI: 10.1371/journal.pone.0136389] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to improve the survival rate and nutritive efficacy when using plant-based diets.
Collapse
Affiliation(s)
- G. Estruch
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - M. C. Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna (Valencia), Spain
| | - D. S. Peñaranda
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - A. Tomás Vidal
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - M. Jover Cerdá
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
| | - G. Pérez Martínez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna (Valencia), Spain
| | - S. Martinez-Llorens
- Aquaculture and Biodiversity Research Group. Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Valencia (Valencia), Spain
- * E-mail:
| |
Collapse
|
45
|
Cordero H, Guardiola FA, Tapia-Paniagua ST, Cuesta A, Meseguer J, Balebona MC, Moriñigo MÁ, Esteban MÁ. Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2015; 45:608-18. [PMID: 26003737 DOI: 10.1016/j.fsi.2015.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 05/13/2023]
Abstract
The potential benefits of probiotics when administering to fish could improve aquaculture production. The objective of this study was to examine the modulation of immune status and gut microbiota of gilthead seabream (Sparus aurata L.) specimens by a probiotic when administered encapsulated. Commercial diet was enriched with Shewanella putrefaciens Pdp11 (SpPdp11, at a concentration of 10(8) cfu g(-1)) before being encapsulated in calcium alginate beads. Fish were fed non-supplemented (control) or supplemented diet for 4 weeks. After 1, 2 and 4 weeks the main humoral and cellular immune parameters were determined. Furthermore, gene expression profile of five immune relevant genes (il1β, bd, mhcIIα, ighm and tcrβ) was studied by qPCR in head kidney. On the other hand, intestinal microbiota of fish was analysed at 7 and 30 days by DGGE. Results demonstrated that administration of alginate encapsulated SpPdp11 has immunostimulant properties on humoral parameters (IgM level and serum peroxidase activity). Although no immunostimulant effects were detected on leucocyte activities, significant increases were detected in the level of mRNA of head-kidney leucocytes for mhcIIα and tcrβ after 4 weeks of feeding the encapsulated-probiotic diet. The administration of SpPdp11 encapsulated in alginate beads produced important changes in the DGGE patterns corresponding to the intestinal microbiota. Predominant bands related to lactic acid bacteria, such as Lactococcus and Lactobacillus strains, were sequenced from the DGGE patterns of fish fed the probiotic diet, whereas they were not sequenced from fish receiving the control diet. The convenience or not of probiotic encapsulation is discussed.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Francisco A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Silvana Teresa Tapia-Paniagua
- Group of Prophylaxis and Biocontrol of Fish Diseases, Department of Microbiology, Campus de Teatinos s/n, University of Malaga, 29071 Málaga, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M Carmen Balebona
- Group of Prophylaxis and Biocontrol of Fish Diseases, Department of Microbiology, Campus de Teatinos s/n, University of Malaga, 29071 Málaga, Spain
| | - M Ángel Moriñigo
- Group of Prophylaxis and Biocontrol of Fish Diseases, Department of Microbiology, Campus de Teatinos s/n, University of Malaga, 29071 Málaga, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
46
|
Duarte S, e Silva FCDP, Zauli DAG, Nicoli JR, Araújo FG. Gram-negative intestinal indigenous microbiota from two Siluriform fishes in a tropical reservoir. Braz J Microbiol 2015; 45:1283-92. [PMID: 25763032 PMCID: PMC4323301 DOI: 10.1590/s1517-83822014000400019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/17/2014] [Indexed: 11/28/2022] Open
Abstract
The Gram-negative intestinal microbiota of Hypostomus auroguttatus and Pimelodus maculatus, a detritivorous and an omnivorous fish species, respectively, were compared between fishes from the reservoir and the stretch of the river below the dam of the Funil hydroelectric plant, Rio de Janeiro, Brazil. Four selective culture media were used under aerobic and two under anaerobic conditions. The omnivorous species had microbiota with higher population levels compared to the detritivorous species. The number of morphotypes and population levels of total bacteria, vibrio and Bacteroides tended to be higher in summer and autumn in the reservoir, and not different in the river. The number of morphotypes of enterobacteria and total bacteria were higher in the lotic environment compared with the lentic one. The bacteria Aeromonas hydrophila and Plesiomonas shigelloides and the obligate anaerobic Fusobacterium mortiferum were the most frequently identified microorganisms in the intestine of both H. auroguttatus and P. maculatus. Both season and habitat influenced the Gram-negative intestinal microbiota of H. auroguttatus and P. maculatus. Environmental factors influenced the Gram-negative intestinal microbiota of both species with possible impact on the interrelationship between the fishes and their digestive ecosystem, although the gut microbiota composition of fishes may result from host-specific selective pressures within the gut.
Collapse
Affiliation(s)
- Silvana Duarte
- Laboratório de Ecologia de Peixes Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Laboratório de Ecologia de Peixes, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Flávia Cristina de Paula e Silva
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle Alves Gomes Zauli
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques Robert Nicoli
- Departamento de Microbiologia Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Francisco Gerson Araújo
- Laboratório de Ecologia de Peixes Universidade Federal Rural do Rio de Janeiro SeropédicaRJ Brazil Laboratório de Ecologia de Peixes, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
47
|
Larsen AM, Mohammed HH, Arias CR. Comparison of DNA extraction protocols for the analysis of gut microbiota in fishes. FEMS Microbiol Lett 2014; 362:fnu031. [PMID: 25757730 DOI: 10.1093/femsle/fnu031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study investigated the impacts of bacterial DNA extraction methodology on downstream analysis of fish gut microbiota. Feces and intestine samples were taken from three sympatric freshwater fish species with varying diets. Samples were processed immediately (approximately 4 h after capture; fresh), stored at -20 °C for 15 days or preserved in RNAlater® reagent for 15 days. DNA was then extracted using two commercial kits: one designed for animal tissues and one specifically formulated for stool samples. Microbial community fingerprints were generated using ribosomal intergenic spacer analysis. Factors including diversity as depicted by band number, band intensity, repeatability and practicalities such as cost and time were considered. Despite significant differences in microbiota structure, results were similar between feces and intestine samples. Frozen samples were consistently outperformed by other storage methods and the stool kit typically outperformed the tissue kit. Overall, we recommend extraction of bacterial DNA from fresh samples using the stool kit for both sample types. If samples cannot be processed immediately, preservation in RNAlater® is preferred to freezing. Choice of DNA extraction method significantly influences the results of downstream microbial community analysis and thus should be taken into consideration for metadata analysis.
Collapse
Affiliation(s)
- Andrea M Larsen
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haitham H Mohammed
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Covadonga R Arias
- Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
48
|
Tapia-Paniagua S, Lobo C, Moreno-Ventas X, de la Banda IG, Moriñigo MA, Balebona MC. Probiotic supplementation influences the diversity of the intestinal microbiota during early stages of farmed senegalese sole (Solea Senegalensis, Kaup 1858). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:716-728. [PMID: 25103323 DOI: 10.1007/s10126-014-9588-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
Ingestion of bacteria at early stages results in establishment of a primary intestinal microbiota which likely undergoes several stages along fish life. The role of this intestinal microbiota regulating body functions is crucial for larval development. Probiotics have been proved to modulate this microbiota and exert antagonistic effects against fish pathogens. In the present study, we aimed to determine bacterial diversity along different developmental stages of farmed Senegalese sole (Solea senegalensis) after feeding probiotic (Shewanella putrefaciens Pdp11) supplemented diet for a short period (10-30 days after hatching, DAH). Intestinal lumen contents of sole larvae fed control and probiotic diets were collected at 23, 56, 87, and 119 DAH and DNA was amplified using 16S rDNA bacterial domain-specific primers. Amplicons obtained were separated by denaturing gradient gel electrophoresis (DGGE), cloned, and resulting sequences compared to sequences in GenBank. Results suggest that Shewanella putrefaciens Pdp11 induces a modulation of the dominant bacterial taxa of the intestinal microbiota from 23 DAH. DGGE patterns of larvae fed the probiotic diet showed a core of bands related to Lactobacillus helveticus, Pseudomonas acephalitica, Vibrio parahaemolyticus, and Shewanella genus, together with increased Vibrio genus presence. In addition, decreased number of clones related to Photobacterium damselae subsp piscicida at 23 and 56 DAH was observed in probiotic-fed larvae. A band corresponding to Shewanella putrefaciens Pdp11 was sequenced as predominant from 23 to 119 DAH samples, confirming the colonization by the probiotics. Microbiota modulation obtained via probiotics addition emerges as an effective tool to improve Solea senegalensis larviculture.
Collapse
Affiliation(s)
- Silvana Tapia-Paniagua
- Departamento de Microbiología, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Kormas KA, Meziti A, Mente E, Frentzos A. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata). Microbiologyopen 2014; 3:718-28. [PMID: 25066034 PMCID: PMC4234263 DOI: 10.1002/mbo3.202] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 02/06/2023] Open
Abstract
We compared the gut prokaryotic communities in wild, organically-, and conventionally reared sea bream (Sparus aurata) individuals. Gut microbial communities were identified using tag pyrosequencing of the 16S rRNA genes. There were distinct prokaryotic communities in the three different fish nutritional treatments, with the bacteria dominating over the Archaea. Most of the Bacteria belonged to the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The number of bacterial operational taxonomic units (OTUs) was reduced from the wild to the conventionally reared fish, implying a response of the gut microorganisms to the supplied food and possibly alterations in food assimilation. The dominant bacterial OTU in all examined fish was closely related to the genus Diaphorobacter. This is the first time that a member of the β-Proteobacteria, which dominate in freshwaters, are so important in a marine fish gut. In total the majority of the few Archaea OTUs found, were related to methane metabolism. The inferred physiological roles of the dominant prokaryotes are related to the metabolism of carbohydrates and nitrogenous compounds. This study showed the responsive feature of the sea bream gut prokaryotic communities to their diets and also the differences of the conventional in comparison to the organic and wild sea bream gut microbiota.
Collapse
Affiliation(s)
- Konstantinos A Kormas
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
| | | | | | | |
Collapse
|
50
|
Llewellyn MS, Boutin S, Hoseinifar SH, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol 2014; 5:207. [PMID: 24917852 PMCID: PMC4040438 DOI: 10.3389/fmicb.2014.00207] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/18/2014] [Indexed: 01/10/2023] Open
Abstract
Indigenous microbiota play a critical role in the lives of their vertebrate hosts. In human and mouse models it is increasingly clear that innate and adaptive immunity develop in close concert with the commensal microbiome. Furthermore, several aspects of digestion and nutrient metabolism are governed by intestinal microbiota. Research on teleosts has responded relatively slowly to the introduction of massively parallel sequencing procedures in microbiomics. Nonetheless, progress has been made in biotic and gnotobiotic zebrafish models, defining a core microbiome and describing its role in development. However, microbiome research in other teleost species, especially those important from an aquaculture perspective, has been relatively slow. In this review, we examine progress in teleost microbiome research to date. We discuss teleost microbiomes in health and disease, microbiome ontogeny, prospects for successful microbiome manipulation (especially in an aquaculture setting) and attempt to identify important future research themes. We predict an explosion in research in this sector in line with the increasing global demand for fish protein, and the need to find sustainable approaches to improve aquaculture yield. The reduced cost and increasing ease of next generation sequencing technologies provides the technological backing, and the next 10 years will be an exciting time for teleost microbiome research.
Collapse
Affiliation(s)
- Martin S Llewellyn
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada ; Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, University of Wales Bangor, UK
| | - Sébastien Boutin
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources Gorgan, Iran
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada
| |
Collapse
|