1
|
Conservative and Atypical Ferritins of Sponges. Int J Mol Sci 2021; 22:ijms22168635. [PMID: 34445356 PMCID: PMC8395497 DOI: 10.3390/ijms22168635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.
Collapse
|
2
|
Thompson AW, Ward AC, Sweeney CP, Sutherland KR. Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum). ISME COMMUNICATIONS 2021; 1:11. [PMID: 36721065 PMCID: PMC9723572 DOI: 10.1038/s43705-021-00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. This is the first study of the marine microorganisms associated with pyrosomes undertaken to improve the understanding of pyrosome biology, the impact of pyrosome blooms on marine microbial systems, and microbial symbioses with marine animals. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry. We found that pyrosomes harbor a microbiome distinct from the surrounding seawater, which was dominated by a few novel taxa. In addition to the dominant taxa, numerous more rare pyrosome-specific microbial taxa were recovered. Multiple bioluminescent taxa were present in pyrosomes, which may be a source of the iconic pyrosome luminescence. We also discovered free-living marine microorganisms in association with pyrosomes, suggesting that pyrosome feeding impacts all microbial size classes but preferentially removes larger eukaryotic taxa. This study demonstrates that microbial symbionts and microbial prey are central to pyrosome biology. In addition to pyrosome impacts on higher trophic level marine food webs, the work suggests that pyrosomes also alter marine food webs at the microbial level through feeding and seeding of the marine microbial communities with their symbionts. Future efforts to predict pyrosome blooms, and account for their ecosystem impacts, should consider pyrosome interactions with marine microbial communities.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, OR, USA.
| | - Anna C Ward
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| | - Carey P Sweeney
- Department of Biology, Portland State University, Portland, OR, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Jaspers C, Weiland-Bräuer N, Rühlemann MC, Baines JF, Schmitz RA, Reusch TBH. Differences in the microbiota of native and non-indigenous gelatinous zooplankton organisms in a low saline environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139471. [PMID: 32464382 DOI: 10.1016/j.scitotenv.2020.139471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The translocation of non-indigenous species (NIS) around the world, especially in marine systems, is increasingly being recognized as a matter of concern. Species translocations have been shown to lead to wide ranging changes in food web structure and functioning. In addition to the direct effects of NIS, they could facilitate the accumulation or translocation of bacteria as part of their microbiomes. The Baltic Sea harbours many non-indigenous species, with most recent detection of the jellyfish Blackfordia virginica and the comb jelly Mnemiopsis leidyi in the low saline southwestern Baltic Sea. In this study, we used a multidisciplinary approach and investigated three gelatinous zooplankton species that co-occur in the same environment and feed on similar zooplankton food sources but show different histories of origin. The aim was to conduct a comparative microbiome analysis of indigenous and non-indigenous gelatinous zooplankton species in the low-saline southwestern Baltic Sea. Next-generation 16S rRNA marker gene sequencing of the V1/V2 region was employed to study the bacterial microbiome compositions. All tested species showed significant differences in their microbiome compositions (one way ANOSIM, R = 1, P < 0.008) with dissimilarities ranging from 85 to 92%. The indigenous jellyfish Aurelia aurita showed the highest bacterial operational taxonomic unit (OTU) richness. The overall differentiation between microbiomes was driven by eight indicator OTUs, which included Mycoplasma and Vibrio species. These bacteria can be problematic, as they include known pathogenic strains that are relevant to human health and aquaculture activities. Our results suggest that the impact assessment of NIS should consider potential pathogenic bacteria, enriched in the environment due to invasion, as potential risks to aquaculture activities.
Collapse
Affiliation(s)
- Cornelia Jaspers
- Marine Evolutionary Ecology, GEOMAR - Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Malte C Rühlemann
- Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - John F Baines
- Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Michaelisstr. 5, 24105 Kiel, Germany; Max-Planck-Institute for Evolutionary Biology, Plön, August-Thienemannstr. 2, 24306 Plön, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR - Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
4
|
Weiland-Bräuer N, Prasse D, Brauer A, Jaspers C, Reusch TBH, Schmitz RA. Cultivable microbiota associated with Aurelia aurita and Mnemiopsis leidyi. Microbiologyopen 2020; 9:e1094. [PMID: 32652897 PMCID: PMC7520997 DOI: 10.1002/mbo3.1094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
The associated microbiota of marine invertebrates plays an important role to the host in relation to fitness, health, and homeostasis. Cooperative and competitive interactions between bacteria, due to release of, for example, antibacterial substances and quorum sensing (QS)/quorum quenching (QQ) molecules, ultimately affect the establishment and dynamics of the associated microbial community. Aiming to address interspecies competition of cultivable microbes associated with emerging model species of the basal animal phyla Cnidaria (Aurelia aurita) and Ctenophora (Mnemiopsis leidyi), we performed a classical isolation approach. Overall, 84 bacteria were isolated from A. aurita medusae and polyps, 64 bacteria from M. leidyi, and 83 bacteria from ambient seawater, followed by taxonomically classification by 16S rRNA gene analysis. The results show that A. aurita and M. leidyi harbor a cultivable core microbiome consisting of typical marine ubiquitous bacteria also found in the ambient seawater. However, several bacteria were restricted to one host suggesting host‐specific microbial community patterns. Interbacterial interactions were assessed by (a) a growth inhibition assay and (b) QS interference screening assay. Out of 231 isolates, 4 bacterial isolates inhibited growth of 17 isolates on agar plates. Moreover, 121 of the 231 isolates showed QS‐interfering activities. They interfered with the acyl‐homoserine lactone (AHL)‐based communication, of which 21 showed simultaneous interference with autoinducer 2. Overall, this study provides insights into the cultivable part of the microbiota associated with two environmentally important marine non‐model organisms and into interbacterial interactions, which are most likely considerably involved in shaping a healthy and resilient microbiota.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Daniela Prasse
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Annika Brauer
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Cornelia Jaspers
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ruth A Schmitz
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Traylor-Knowles N, Vandepas LE, Browne WE. Still Enigmatic: Innate Immunity in the Ctenophore Mnemiopsis leidyi. Integr Comp Biol 2020; 59:811-818. [PMID: 31251332 DOI: 10.1093/icb/icz116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Innate immunity is an ancient physiological response critical for protecting metazoans from invading pathogens. It is the primary pathogen defense mechanism among invertebrates. While innate immunity has been studied extensively in diverse invertebrate taxa, including mollusks, crustaceans, and cnidarians, this system has not been well characterized in ctenophores. The ctenophores comprise an exclusively marine, non-bilaterian lineage that diverged early during metazoan diversification. The phylogenetic position of ctenophore lineage suggests that characterization of the ctenophore innate immune system will reveal important features associated with the early evolution of the metazoan innate immune system. Here, we review current understanding of the ctenophore immune repertoire and identify innate immunity genes recovered from three ctenophore species. We also isolate and characterize Mnemiopsis leidyi cells that display macrophage-like behavior when challenged with bacteria. Our results indicate that ctenophores possess cells capable of phagocytosing microbes and that two distantly related ctenophores, M. leidyi and Hormiphora californiensis, possess many candidate innate immunity proteins.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, FL 33149, USA
| | - Lauren E Vandepas
- Benaroya Research Institute, 1201 9th Avenue, Seattle, WA 98101, USA.,Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - William E Browne
- Department of Biology, University of Miami, Cox Science Building, 1301 Memorial Drive, Miami, FL 33146, USA
| |
Collapse
|
6
|
Basso L, Rizzo L, Marzano M, Intranuovo M, Fosso B, Pesole G, Piraino S, Stabili L. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:305-318. [PMID: 31349170 DOI: 10.1016/j.scitotenv.2019.07.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Jellyfish represent an important component of marine food webs characterized by large fluctuations of population density, with the ability to abruptly form outbreaks, followed by rarity periods. In spite of considerable efforts to investigate how jellyfish populations are responding globally to anthropogenic change, available evidence still remains unclear. In the last 50 years, jellyfish are seemingly on the rise in a number of coastal areas, including the Mediterranean Sea, where jellyfish blooms periodically become an issue to marine and maritime human activities. Their impacts on marine organism welfare have been poorly quantified. The jellyfish, Rhizostoma pulmo, is an outbreak-forming scyphomedusa whose large populations spread across the Mediterranean, with increasing periodicity and variable abundance. Studies on cnidarian jellyfish suggested being important vectors of bacterial pathogens. In the present study, by combination of conventional culture-based methods and a high-throughput amplicon sequencing (HTS) approach, we characterized the diversity of the bacterial community associated with this jellyfish during their summer outbreak. Three distinct jellyfish compartments, namely umbrella, oral arms, and the mucus secretion obtained from whole specimens were screened for specifically associated microbiota. A total of 17 phyla, 30 classes, 73 orders, 146 families and 329 genera of microbial organisms were represented in R. pulmo samples with three major clades (i.e. Spiroplasma, Mycoplasma and Wolinella) representing over 90% of the retrieved total sequences. The taxonomic microbial inventory was then combined with metabolic profiling data obtained from the Biolog Eco-Plate system. Significant differences among the jellyfish compartments were detected in terms of bacterial abundance, diversity and metabolic utilization of 31 different carbon sources with the highest value of abundance and metabolic potential in the mucus secretion compared to the umbrella and oral arms. Results are discussed in the framework of the species ecology as well as the potential health hazard for marine organisms and humans.
Collapse
Affiliation(s)
- Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Lucia Rizzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy; Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Marianna Intranuovo
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Water Research Institute of the National Research Council, (IRSA-CNR), Taranto, Italy.
| |
Collapse
|
7
|
Shiganova TA, Mikaelyan AS, Moncheva S, Stefanova K, Chasovnikov VK, Mosharov SA, Mosharova IN, Slabakova N, Mavrodieva R, Stefanova E, Zasko DN, Dzhurova B. Effect of invasive ctenophores Mnemiopsis leidyi and Beroe ovata on low trophic webs of the Black Sea ecosystem. MARINE POLLUTION BULLETIN 2019; 141:434-447. [PMID: 30955754 DOI: 10.1016/j.marpolbul.2019.02.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The study focuses on the impact of life excretion and mucus released by the "biological pollutants" invasive ctenophore Mnemiopsis leidyi and its predator Beroe ovata on the marine environment and lower trophic levels of the Black Sea ecosystem (bacteria, pico-phytoplankton, nano-autotrophic/heterotrophic flagellates, micro-phytoplankton, chlorophyll a, primary production (PP), micro-zooplankton). The chemical and biological variables were analysed in two sets of lab experiments with natural communities from mesotrophic (Gelendzhik) and eutrophic (Varna) coastal waters. While both species altered the chemical properties of experimental media, exerting structural and functional changes in the low food-web biological compartments, the results showed a stronger effect of B. ovata, most likely related to the measured higher rate of excretion and amount of released mucus. In addition the alterations in the Gelendzhik experiment were more pronounced, indicating that environmental implications on lower food-web are more conspicuous in mesotrophic than in eutrophic coastal waters.
Collapse
Affiliation(s)
- T A Shiganova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia.
| | - A S Mikaelyan
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia.
| | - S Moncheva
- Institute of Oceanology BAS, 40 Parvi Mai street, 9000 Varna, Bulgaria
| | - K Stefanova
- Institute of Oceanology BAS, 40 Parvi Mai street, 9000 Varna, Bulgaria
| | - V K Chasovnikov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia
| | - S A Mosharov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia
| | - I N Mosharova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia
| | - N Slabakova
- Institute of Oceanology BAS, 40 Parvi Mai street, 9000 Varna, Bulgaria
| | - R Mavrodieva
- Institute of Oceanology BAS, 40 Parvi Mai street, 9000 Varna, Bulgaria
| | - E Stefanova
- Institute of Oceanology BAS, 40 Parvi Mai street, 9000 Varna, Bulgaria
| | - D N Zasko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia
| | - B Dzhurova
- Institute of Oceanology BAS, 40 Parvi Mai street, 9000 Varna, Bulgaria
| |
Collapse
|
8
|
Tinta T, Kogovšek T, Klun K, Malej A, Herndl GJ, Turk V. Jellyfish-Associated Microbiome in the Marine Environment: Exploring Its Biotechnological Potential. Mar Drugs 2019; 17:E94. [PMID: 30717239 PMCID: PMC6410321 DOI: 10.3390/md17020094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Despite accumulating evidence of the importance of the jellyfish-associated microbiome to jellyfish, its potential relevance to blue biotechnology has only recently been recognized. In this review, we emphasize the biotechnological potential of host⁻microorganism systems and focus on gelatinous zooplankton as a host for the microbiome with biotechnological potential. The basic characteristics of jellyfish-associated microbial communities, the mechanisms underlying the jellyfish-microbe relationship, and the role/function of the jellyfish-associated microbiome and its biotechnological potential are reviewed. It appears that the jellyfish-associated microbiome is discrete from the microbial community in the ambient seawater, exhibiting a certain degree of specialization with some preferences for specific jellyfish taxa and for specific jellyfish populations, life stages, and body parts. In addition, different sampling approaches and methodologies to study the phylogenetic diversity of the jellyfish-associated microbiome are described and discussed. Finally, some general conclusions are drawn from the existing literature and future research directions are highlighted on the jellyfish-associated microbiome.
Collapse
Affiliation(s)
- Tinkara Tinta
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Tjaša Kogovšek
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Alenka Malej
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, The Netherlands.
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| |
Collapse
|
9
|
Kos Kramar M, Tinta T, Lučić D, Malej A, Turk V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS One 2019; 14:e0198056. [PMID: 30645606 PMCID: PMC6333360 DOI: 10.1371/journal.pone.0198056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/24/2018] [Indexed: 12/16/2022] Open
Abstract
Jellyfish are a prominent component of the plankton community. They frequently form conspicuous blooms which may interfere with different human enterprises. Among the aspects that remain understudied are jellyfish associations with microorganisms having potentially important implications for organic matter cycling. To the best of our knowledge, this study is the first to investigate the bacterial community associated with live moon jellyfish (Aurelia solida, Scyohozoa) in the Adriatic Sea. Using 16S rRNA clone libraries and culture-based methods, we have analyzed the bacterial community composition of different body parts: the exumbrella surface, oral arms, and gastric cavity, and investigated possible differences in medusa-associated bacterial community structure at the time of the jellyfish population peak, and during the senescent phase at the end of bloom. Microbiota associated with moon jellyfish was different from ambient seawater bacterial assemblage and varied between different body parts. Betaproteobacteria (Burkholderia, Cupriavidus and Achromobacter) dominated community in the gastral cavity of medusa, while Alphaproteobacteria (Phaeobacter, Ruegeria) and Gammaproteobacteria (Stenotrophomonas, Alteromonas, Pseudoalteromonas and Vibrio) prevailed on ‘outer’ body parts. Bacterial community structure changed during senescent phase, at the end of the jellyfish bloom, showing an increased abundance of Gammaproteobacteria, exclusively Vibrio. The results of cultured bacterial isolates showed the dominance of Gammaproeteobacteria, especially Vibrio and Pseudoalteromonas in all body parts. Our results suggest that jellyfish associated bacterial community might have an important role for the host, and that anthropogenic pollution in the Gulf of Trieste might affect their community structure.
Collapse
Affiliation(s)
- Maja Kos Kramar
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Davor Lučić
- Institute for Marine and Coastal Research, University of Dubrovnik, Dubrovnik, Croatia
| | - Alenka Malej
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- * E-mail:
| |
Collapse
|
10
|
Hernandez AM, Ryan JF. Horizontally transferred genes in the ctenophore Mnemiopsis leidyi. PeerJ 2018; 6:e5067. [PMID: 29922518 PMCID: PMC6005172 DOI: 10.7717/peerj.5067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Horizontal gene transfer (HGT) has had major impacts on the biology of a wide range of organisms from antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body of literature shows that HGT between non-animals and animals is more commonplace than previously thought. In this study, we present a thorough investigation of HGT in the ctenophore Mnemiopsis leidyi. We applied tests of phylogenetic incongruence to identify nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) are homologous to characterized enzymes, supporting previous observations that genes encoding enzymes are more likely to be retained after HGT events. We found that the majority of these nine horizontally transferred genes were expressed during development, suggesting that they are active and play a role in the biology of M. leidyi. This is the first report of HGT in ctenophores, and contributes to an ever-growing literature on the prevalence of genetic information flowing between non-animals and animals.
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA.,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA.,Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Johansson ML, Shiganova TA, Ringvold H, Stupnikova AN, Heath DD, MacIsaac HJ. Molecular Insights Into the Ctenophore Genus Beroe in Europe: New Species, Spreading Invaders. J Hered 2018; 109:520-529. [DOI: 10.1093/jhered/esy026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/05/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mattias L Johansson
- University of Windsor, Great Lakes Institute for Environmental Research, Ontario, Canada
| | - Tamara A Shiganova
- Shirshov Institute of Oceanology Russian Academy of Science, Moscow, Russia
| | | | | | - Daniel D Heath
- University of Windsor, Great Lakes Institute for Environmental Research, Ontario, Canada
| | - Hugh J MacIsaac
- University of Windsor, Great Lakes Institute for Environmental Research, Ontario, Canada
| |
Collapse
|
12
|
Viver T, Orellana LH, Hatt JK, Urdiain M, Díaz S, Richter M, Antón J, Avian M, Amann R, Konstantinidis KT, Rosselló-Móra R. The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa. Environ Microbiol 2017; 19:3039-3058. [PMID: 28419691 DOI: 10.1111/1462-2920.13763] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/10/2017] [Indexed: 01/06/2023]
Abstract
Cotylorhiza tuberculata is an important scyphozoan jellyfish producing population blooms in the Mediterranean probably due to pelagic ecosystem's decay. Its gastric cavity can serve as a simple model of microbial-animal digestive associations, yet poorly characterized. Using state-of-the-art metagenomic population binning and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), we show that only four novel clonal phylotypes were consistently associated with multiple jellyfish adults. Two affiliated close to Spiroplasma and Mycoplasma genera, one to chlamydial 'Candidatus Syngnamydia', and one to bacteroidetal Tenacibaculum, and were at least one order of magnitude more abundant than any other bacteria detected. Metabolic modelling predicted an aerobic heterotrophic lifestyle for the chlamydia, which were found intracellularly in Onychodromopsis-like ciliates. The Spiroplasma-like organism was predicted to be an anaerobic fermenter associated to some jellyfish cells, whereas the Tenacibaculum-like as free-living aerobic heterotroph, densely colonizing the mesogleal axis inside the gastric filaments. The association between the jellyfish and its reduced microbiome was close and temporally stable, and possibly related to food digestion and protection from pathogens. Based on the genomic and microscopic data, we propose three candidate taxa: 'Candidatus Syngnamydia medusae', 'Candidatus Medusoplasma mediterranei' and 'Candidatus Tenacibaculum medusae'.
Collapse
Affiliation(s)
- Tomeu Viver
- Mediterranean Institute for Advanced Studies (IMEDEA; CSIC-UIB), Marine Microbiology Group, Esporles, E-07190, Spain
| | - Luis H Orellana
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Mercedes Urdiain
- Mediterranean Institute for Advanced Studies (IMEDEA; CSIC-UIB), Marine Microbiology Group, Esporles, E-07190, Spain
| | - Sara Díaz
- Mediterranean Institute for Advanced Studies (IMEDEA; CSIC-UIB), Marine Microbiology Group, Esporles, E-07190, Spain
| | | | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, and Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
| | - Massimo Avian
- Department of Life Science, University of Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy
| | - Rudolf Amann
- Department of Molecular Ecology, Max-Planck-Institut für Marine Mikrobiologie, Bremen, D-28359, Germany
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332, USA
| | - Ramon Rosselló-Móra
- Mediterranean Institute for Advanced Studies (IMEDEA; CSIC-UIB), Marine Microbiology Group, Esporles, E-07190, Spain
| |
Collapse
|
13
|
Cleary DFR, Becking LE, Polónia ARM, Freitas RM, Gomes NCM. Jellyfish-associated bacterial communities and bacterioplankton in Indonesian Marine lakes. FEMS Microbiol Ecol 2016; 92:fiw064. [PMID: 27004797 DOI: 10.1093/femsec/fiw064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 01/08/2023] Open
Abstract
In the present study, we compared communities of bacteria in two jellyfish species (the 'golden' jellyfish Mastigias cf.papua and the box jellyfish Tripedalia cf.cystophora) and water in three marine lakes located in the Berau region of northeastern Borneo, Indonesia. Jellyfish-associated bacterial communities were compositionally distinct and less diverse than bacterioplankton communities. Alphaproteobacteria, Gammaproteobacteria, Synechococcophycidae and Flavobacteriia were the most abundant classes in water. Jellyfish-associated bacterial communities were dominated by OTUs assigned to the Gammaproteobacteria (family Endozoicimonaceae), Mollicutes, Spirochaetes and Alphaproteobacteria (orders Kiloniellales and Rhodobacterales). Mollicutes were mainly restricted to Mastigias whereas Spirochaetes and the order Kiloniellales were most abundant in Tripedalia hosts. The most abundant OTU overall in jellyfish hosts was assigned to the family Endozoicimonaceae and was highly similar to organisms in Genbank obtained from various hosts including an octocoral, bivalve and fish species. Other abundant OTUs included an OTU assigned to the order Entomoplasmatales and mainly found in Mastigias hosts and OTUs assigned to the Spirochaetes and order Kiloniellales and mainly found in Tripedalia hosts. The low sequence similarity of the Entomoplasmatales OTU to sequences in Genbank suggests that it may be a novel lineage inhabiting Mastigias and possibly restricted to marine lakes.
Collapse
Affiliation(s)
- Daniel F R Cleary
- Department of Biology, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leontine E Becking
- Department of Marine Zoology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands Wageningen University and Research Centre, Marine Animal Ecology Group, PO Box 338, 6700 AH Wageningen, the Netherlands Department of Environmental Science, Policy, and Management, University of California Berkeley, 130 Mulford Hall, Berkeley CA 94720-3114, USA
| | - Ana R M Polónia
- Department of Biology, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rossana M Freitas
- Department of Biology, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Breitbart M, Benner BE, Jernigan PE, Rosario K, Birsa LM, Harbeitner RC, Fulford S, Graham C, Walters A, Goldsmith DB, Berger SA, Nejstgaard JC. Discovery, Prevalence, and Persistence of Novel Circular Single-Stranded DNA Viruses in the Ctenophores Mnemiopsis leidyi and Beroe ovata. Front Microbiol 2015; 6:1427. [PMID: 26733971 PMCID: PMC4683175 DOI: 10.3389/fmicb.2015.01427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023] Open
Abstract
Gelatinous zooplankton, such as ctenophores and jellyfish, are important components of marine and brackish ecosystems and play critical roles in aquatic biogeochemistry. As voracious predators of plankton, ctenophores have key positions in aquatic food webs and are often successful invaders when introduced to new areas. Gelatinous zooplankton have strong impacts on ecosystem services, particularly in coastal environments. However, little is known about the factors responsible for regulating population dynamics of gelatinous organisms, including biological interactions that may contribute to bloom demise. Ctenophores are known to contain specific bacterial communities and a variety of invertebrate parasites and symbionts; however, no previous studies have examined the presence of viruses in these organisms. Building upon recent studies demonstrating a diversity of single-stranded DNA viruses that encode a replication initiator protein (Rep) in aquatic invertebrates, this study explored the presence of circular, Rep-encoding single-stranded DNA (CRESS-DNA) viruses in the ctenophores Mnemiopsis leidyi and Beroe ovata collected from the Skidaway River Estuary and Savannah River in Georgia, USA. Using rolling circle amplification followed by restriction enzyme digestion, this study provides the first evidence of viruses in ctenophores. Investigation of four CRESS-DNA viruses over an 8-month period using PCR demonstrated temporal trends in viral prevalence and indicated that some of the viruses may persist in ctenophore populations throughout the year. Although future work needs to examine the ecological roles of these ctenophore-associated viruses, this study indicates that viral infection may play a role in population dynamics of gelatinous zooplankton.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Bayleigh E Benner
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Parker E Jernigan
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Karyna Rosario
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Laura M Birsa
- Skidaway Institute of Oceanography, University of Georgia Savannah, GA, USA
| | - Rachel C Harbeitner
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Sidney Fulford
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Carina Graham
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Anna Walters
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Dawn B Goldsmith
- College of Marine Science, University of South Florida St. Petersburg St. Petersburg, FL, USA
| | - Stella A Berger
- Skidaway Institute of Oceanography, University of GeorgiaSavannah, GA, USA; Department III, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)Stechlin, Germany
| | - Jens C Nejstgaard
- Skidaway Institute of Oceanography, University of GeorgiaSavannah, GA, USA; Department III, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)Stechlin, Germany
| |
Collapse
|
15
|
Cortés-Lara S, Urdiain M, Mora-Ruiz M, Prieto L, Rosselló-Móra R. Prokaryotic microbiota in the digestive cavity of the jellyfish Cotylorhiza tuberculata. Syst Appl Microbiol 2015. [DOI: 10.1016/j.syapm.2015.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Mortzfeld BM, Urbanski S, Reitzel AM, Künzel S, Technau U, Fraune S. Response of bacterial colonization inNematostella vectensisto development, environment and biogeography. Environ Microbiol 2015; 18:1764-81. [DOI: 10.1111/1462-2920.12926] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Benedikt M. Mortzfeld
- Zoological Institute; Christian-Albrechts University Kiel; Olshausenstrasse 40 Kiel 24098 Germany
| | - Szymon Urbanski
- Zoological Institute; Christian-Albrechts University Kiel; Olshausenstrasse 40 Kiel 24098 Germany
| | - Adam M. Reitzel
- Department of Biological Sciences; The University of North Carolina at Charlotte; Woodward Hall 245 Charlotte NC 28223 USA
| | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology; Plön 24306 Germany
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Centre for Organismal Systems Biology, Faculty of Life Sciences; University of Vienna; Althanstrasse 14 Wien 1090 Austria
| | - Sebastian Fraune
- Zoological Institute; Christian-Albrechts University Kiel; Olshausenstrasse 40 Kiel 24098 Germany
| |
Collapse
|
17
|
Composition of Bacterial Communities Associated with Aurelia aurita Changes with Compartment, Life Stage, and Population. Appl Environ Microbiol 2015; 81:6038-52. [PMID: 26116680 DOI: 10.1128/aem.01601-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/19/2015] [Indexed: 01/25/2023] Open
Abstract
The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle.
Collapse
|
18
|
Hammann S, Moss A, Zimmer M. Sterile Surfaces of <i>Mnemiopsis leidyi</i> (Ctenophora) in Bacterial Suspension—A Key to Invasion Success? ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojms.2015.52019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Hao W, Gerdts G, Peplies J, Wichels A. Bacterial communities associated with four ctenophore genera from the German Bight (North Sea). FEMS Microbiol Ecol 2014; 91:1-11. [DOI: 10.1093/femsec/fiu006] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons. Sci Rep 2014; 4:7320. [PMID: 25475855 PMCID: PMC4256709 DOI: 10.1038/srep07320] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022] Open
Abstract
Investigation of the response of coral microbial communities to seasonal ecological environment at the microscale will advance our understanding of the relationship between coral-associated bacteria community and coral health. In this study, we examined bacteria community composition from mucus, tissue and skeleton of Porites lutea and surrounding seawater every three months for 1 year on Luhuitou fringing reef. The bacterial communities were analyzed using pyrosequencing of the V1-V2 region of the 16S rRNA gene, which demonstrated diverse bacterial consortium profiles in corals. The bacterial communities in all three coral compartments studied were significantly different from the surrounding seawater. Moreover, they had a much more dynamic seasonal response compared to the seawater communities. The bacterial communities in all three coral compartments collected in each seasonal sample tended to cluster together. Analysis of the relationship between bacterial assemblages and the environmental parameters showed that the bacterial community correlated to dissolved oxygen and rainfall significantly at our study site. This study highlights a dynamic relationship between the high complexity of coral associated bacterial community and seasonally varying ecosystem parameters.
Collapse
|