1
|
Krzyżek P, Grande R. Transformation of Helicobacter pylori into Coccoid Forms as a Challenge for Research Determining Activity of Antimicrobial Substances. Pathogens 2020; 9:pathogens9030184. [PMID: 32143312 PMCID: PMC7157236 DOI: 10.3390/pathogens9030184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Morphological variability is one of the phenotypic features related to adaptation of microorganisms to stressful environmental conditions and increased tolerance to antimicrobial substances. Helicobacter pylori, a gastric mucosal pathogen, is characterized by a high heterogeneity and an ability to transform from a spiral to a coccoid form. The presence of the coccoid form is associated with the capacity to avoid immune system detection and to promote therapeutic failures. For this reason, it seems that the investigation for new, alternative methods combating H. pylori should include research of coccoid forms of this pathogen. The current review aimed at collecting information about the activity of antibacterial substances against H. pylori in the context of the morphological variability of this bacterium. The collected data was discussed in terms of the type of substances used, applied research techniques, and interpretation of results. The review was extended by a polemic on the limitations in determining the viability of coccoid H. pylori forms. Finally, recommendations which can help in future research aiming to find new compounds with a potential to eradicate H. pylori have been formulated.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Rossella Grande
- Center for Aging Science and Translational Medicine (CeSI-MeT), Via Luigi Polacchi, 11, 66100 Chieti, Italy;
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Iost I, Chabas S, Darfeuille F. Maturation of atypical ribosomal RNA precursors in Helicobacter pylori. Nucleic Acids Res 2019; 47:5906-5921. [PMID: 31006803 PMCID: PMC6582327 DOI: 10.1093/nar/gkz258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
In most bacteria, ribosomal RNA is transcribed as a single polycistronic precursor that is first processed by RNase III. This double-stranded specific RNase cleaves two large stems flanking the 23S and 16S rRNA mature sequences, liberating three 16S, 23S and 5S rRNA precursors, which are further processed by other ribonucleases. Here, we investigate the rRNA maturation pathway of the human gastric pathogen Helicobacter pylori. This bacterium has an unusual arrangement of its rRNA genes, the 16S rRNA gene being separated from a 23S-5S rRNA cluster. We show that RNase III also initiates processing in this organism, by cleaving two typical stem structures encompassing 16S and 23S rRNAs and an atypical stem–loop located upstream of the 5S rRNA. Deletion of RNase III leads to the accumulation of a large 23S-5S precursor that is found in polysomes, suggesting that it can function in translation. Finally, we characterize a cis-encoded antisense RNA overlapping the leader of the 23S-5S rRNA precursor. We present evidence that this antisense RNA interacts with this precursor, forming an intermolecular complex that is cleaved by RNase III. This pairing induces additional specific cleavages of the rRNA precursor coupled with a rapid degradation of the antisense RNA.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Sandrine Chabas
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| |
Collapse
|
3
|
Tazumi A, Hirayama J, Hayashi K, Petry S, Moore JE, Millar BC, Matsuda M. Development of a new molecular detection method for Taylorella equigenitalis. J Basic Microbiol 2011; 51:336-42. [PMID: 21298689 DOI: 10.1002/jobm.201000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/17/2010] [Indexed: 11/09/2022]
Abstract
On PCR amplification of the intervening sequences (IVSs) in the central (helix 45) region within 23S rRNA gene sequences with T. equigenitalis (n = 34), as well as T. asinigenitalis (n = 35) and Bordetella (n = 11) isolates by using the primer pair of f-/r-23STis2, approximately 0.8 kb of the amplicons were generated, sequenced and analyzed. One IVS of approximately 70 bp in length was identified in all the Taylorella organisms but not Bordetella. PCR amplification was further developed for the convenient and rapid molecular detection of T. equigenitalis organisms with the IVS in the helix 45 region within the 23S rRNA genes as target by using the primer pairs (f-IVSde/r-23de). Thus, these results clearly demonstrated that PCR amplification with the primer pair (f-IVSde/r-23de) can be reliable in order to differentiate the T. equigenitalis isolates from both the T. asinigenitalis and Bordetella organisms.
Collapse
Affiliation(s)
- Akihiro Tazumi
- Laboratory of Molecular Biology, Graduate School of Environmental Health Sciences, Azabu University, Fuchinobe, Chuo-ku Sagamihara, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Tazumi A, Petry S, Hayashi K, Moore JE, Millar BC, Matsuda M. Molecular identification and characterization of the intervening sequences (IVSs) within 23S ribosomal RNA (rRNA) genes of Taylorella asinigenitalis isolated in France. Res Vet Sci 2010; 92:45-52. [PMID: 21075405 DOI: 10.1016/j.rvsc.2010.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/27/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
In the helix 25 region, 32 French Taylorella asinigenitalis isolates carried at least one 23S rRNA gene not containing intervening sequences (IVSs). No IVSs in the region were identified in three isolates and the other remaining 29 isolates carried one or more IVSs (UCD-1(T)IVS1A, UCD-1(T)IVS1B and UK-1IVS1B) described already and two new kinds of IVS (TaIVS1C and TaIVS1D). In the helix 45 region, no T. asinigenitalis isolates not carrying any IVSs were identified. UK-1IVS2B was identified in the region from 26 isolates. Five new kinds of IVSs (TaIVS2D, E, F, G and H) occurred in the region in the 13 isolates. Distinctly different tandem repeat units (RS48 and RS32 and RS-A, -B and -C) were evident in both regions, respectively, from the French (n=32) and American (n=3) T. asinigenitalis isolates. Thus, several different kinds of tandem repeat units and their combinations in IVSs in both regions within the gene were shown in 32 French isolates.
Collapse
Affiliation(s)
- Akihiro Tazumi
- School of Environmental Health Sciences, Azabu University, Chuo-ku Sagamihara, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Molecular characterization of intervening sequences in 23S rRNA genes and 23S rRNA fragmentation in Taylorella equigenitalis. Folia Microbiol (Praha) 2009; 53:486-92. [DOI: 10.1007/s12223-008-0076-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 08/08/2008] [Indexed: 11/25/2022]
|
6
|
Tazumi A, Sekizuka T, Moore JE, Millar CB, Taneike I, Matsuda M. Intervening sequences in 23S rRNA genes and 23S rRNA fragmentation inTaylorella asinigenitalisUCD-1Tstrain. J Basic Microbiol 2008; 48:284-92. [DOI: 10.1002/jobm.200700386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
MacGregor BJ, Amann R. Single-stranded conformational polymorphism for separation of mixed rRNAS (rRNA-SSCP), a new method for profiling microbial communities. Syst Appl Microbiol 2006; 29:661-70. [PMID: 16460898 DOI: 10.1016/j.syapm.2006.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Indexed: 10/25/2022]
Abstract
We show that non-denaturing gel electrophoresis, or single-stranded conformational polymorphism (SSCP), can be used to separate mixtures of full-length rRNAs. Individual bands can then be excised for identification by RT-PCR and sequencing. This has the advantage over profiling methods such as DGGE and T-RFLP that no PCR amplification is involved prior to sequencing; thus, extraction biases aside, it should yield a quantitative picture of community composition in terms of ribosome content. To simplify banding patterns, RNA subsamples (e.g. bacterial 16S rRNA) can first be isolated by magnetic bead capture hybridization. Alternatively, oligonucleotide-directed ribonuclease H (RNase H) digestion can be used to identify bands of interest by running digested samples in parallel to undigested ones. We illustrate the use of this technique to identify a potentially predominant species in a hypersaline microbial mat. We anticipate that rRNA-SSCP will be useful for community profiling; for clone library construction by directed cloning of individual rRNAs; and for following incorporation of radiolabeled substrates at the species level, by gel autoradiography, without advance information or guesswork about which species might be active and abundant.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, Germany.
| | | |
Collapse
|
8
|
Abstract
The exact knowledge on the ribosomal RNA (rRNA) structure is an important prerequisite for work with rRNA sequences in bioinformatic analyses and in experimental research. Most available rRNA sequences of bacteria are based on gene sequences and on similarity analyses using Escherichia coli rRNA as a standard. Therefore, it is often overlooked that many bacteria harbour mature rRNA 'in pieces'. In some cases, the processing steps during the fragmentation lead to the removal of rRNA segments that are usually found in the ribosome. In this review, the current knowledge on the mechanisms of rRNA fragmentation and on the occurrence of fragmented rRNA in bacteria is summarized, and the physiological implications of this phenomenon are discussed.
Collapse
Affiliation(s)
- Elena Evguenieva-Hackenberg
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
9
|
Klein F, Samorski R, Klug G, Evguenieva-Hackenberg E. Atypical processing in domain III of 23S rRNA of Rhizobium leguminosarum ATCC 10004(T) at a position homologous to an rRNA fragmentation site in protozoa. J Bacteriol 2002; 184:3176-85. [PMID: 12029033 PMCID: PMC135100 DOI: 10.1128/jb.184.12.3176-3185.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For still unknown reasons, the 23S rRNA of many alpha-Proteobacteria shows a unique fragmentation pattern compared to other bacteria. The 23S rRNA processing involves RNase III and additional, yet unidentified enzymes. The alpha-proteobacterium Rhizobium leguminosarum ATCC 10004(T) possesses two fragmentation sites in its 23S rRNA. The first one harbors an intervening sequence in helix 9 which is cleaved by RNase III. We demonstrate that the mature 5' end of the resulting 2.6-kb rRNA fragment is generated by additional removal of helix 10. A fraction of the 2.6-kb rRNA is further processed in domain III, giving rise to two 1.3-kb rRNA fragments. We mapped the domain III fragmentation site and found it to be at a position which has only been reported for trypanosomatid protozoa. This fragmentation site is also unique in that it lacks an intervening sequence. We found that the simultaneous occurrence of 2.6-kb and 1.3-kb rRNA fragments is not due to interoperonal sequence differences but rather reflects slow processing. The different characteristics of the two fragmentation sites in the 23S rRNA suggest that they are processed by different mechanisms. Interestingly, the amount of 2.6-kb rRNA varies during culture growth. We observed a transient increase in the relative amount of 2.6-kb rRNA fragments during the first hours after inoculation, which points to changes in the ratio of rRNA synthesis rate to domain III processing rate during the growth of a culture.
Collapse
MESH Headings
- Animals
- Base Sequence
- Crithidia
- Endoribonucleases/metabolism
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Rhizobium leguminosarum/genetics
- Rhizobium leguminosarum/growth & development
- Rhizobium leguminosarum/metabolism
- Ribonuclease III
- Trypanosomatina/genetics
- Trypanosomatina/metabolism
Collapse
Affiliation(s)
- Franziska Klein
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
10
|
Nilsson HO, Blom J, Abu-Al-Soud W, Ljungh A A, Andersen LP, Wadström T. Effect of cold starvation, acid stress, and nutrients on metabolic activity of Helicobacter pylori. Appl Environ Microbiol 2002; 68:11-9. [PMID: 11772603 PMCID: PMC126563 DOI: 10.1128/aem.68.1.11-19.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori can transform, in vivo as well as in vitro, from dividing spiral-shaped forms into nonculturable coccoids, with intermediate forms called U forms. The importance of nonculturable coccoid forms of H. pylori in disease transmission and antibiotic treatment failures is unclear. Metabolic activities of actively growing as well as nonculturable H. pylori were investigated by comparing the concentrations of cellular ATP and total RNA, gene expression, presence of cytoplasmic polyphosphate granules and iron inclusions, and cellular morphology during extended broth culture and nutritional cold starvation. In addition, the effect of exposing broth-cultured or cold-starved cells to a nutrient-rich or acidic environment on the metabolic activities was investigated. ATP was detectable up to 14 days and for at least 25 days after transformation from the spiral form to the coccoid form or U form in broth-cultured and cold-starved cells, respectively. mRNAs of VacA, a 26-kDa protein, and urease A were detected by using reverse transcription-PCR in cells cultured for 2 months in broth or cold starved for at least 28 months. The ATP concentration was not affected during exposure to fresh or acidified broth, while 4- to 12-h exposures of nonculturable cells to lysed human erythrocytes increased cellular ATP 12- to 150-fold. Incubation of nonculturable cold-starved cells with an erythrocyte lysate increased total RNA expression and ureA mRNA transcription as measured by quantitative real-time reverse transcription-PCR. Furthermore, the number of structurally intact starved coccoids containing polyphosphate granules increased almost fourfold (P = 0.0022) under the same conditions. In conclusion, a specific environmental stimulus can induce ATP, polyphosphate, and RNA metabolism in nonculturable H. pylori, indicating viability of such morphological forms.
Collapse
Affiliation(s)
- Hans-Olof Nilsson
- Department of Medical Microbiology, Dermatology and Infection, Lund University, SE-223 62 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Monstein H, Nikpour-Badr S, Jonasson J. Rapid molecular identification and subtyping of Helicobacter pylori by pyrosequencing of the 16S rDNA variable V1 and V3 regions. FEMS Microbiol Lett 2001; 199:103-7. [PMID: 11356575 DOI: 10.1111/j.1574-6968.2001.tb10658.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We describe here the use of real-time DNA sequence analysis of Helicobacter pylori 16S rRNA gene fragments by pyrosequencing for rapid molecular identification and subtyping of clinical isolates based on DNA sequence heterogeneity within the variable V1 and V3 regions. Six individual 16S rDNA V1 alleles (position 75-100) were identified in 23 clinical isolates obtained from gastric biopsy specimens. Eleven of these revealed sequence identities with H. pylori 26695 and one was identical with the rrn genes in strain J99. The other V1 alleles showing single or double nucleotide mutations or single nucleotide insertions could be divided into four groups with 5, 4, 1, and 1 isolates each. Two out of 25 isolates demonstrated single C to T transitions in the V3 region (position 990-1020). The present findings show that subtle DNA sequence variation occurs sufficiently often in the 16S rDNA variable V1 and V3 regions of H. pylori to provide a consistent system for subtyping.
Collapse
Affiliation(s)
- H Monstein
- Molecular Biology Laboratory-LMO, Clinical Microbiology, Faculty of Health Sciences, Linköping, Sweden.
| | | | | |
Collapse
|
12
|
Monstein HJ, Jonasson J. Differential virulence-gene mRNA expression in coccoid forms of Helicobacter pylori. Biochem Biophys Res Commun 2001; 285:530-6. [PMID: 11444875 DOI: 10.1006/bbrc.2001.5179] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controversy exists whether coccoid forms of Helicobacter pylori maintain transcriptional and translational processes. The aim of the present study was to investigate mRNA levels in coccoid H. pylori and, if possible, to establish a correlation with the state of nonrandom fragmentation of rRNA in those cells. For that purpose, UreA, UreI, CagA, VacA, SodB, and Hsp60 mRNA levels in bacillary and coccoid forms of H. pylori CCUG 17874(T), H. pylori 26695, and H. pylori J99, respectively, were studied by means of a multiplex reverse-transcription PCR assay and Southern blot analysis of the RT-PCR-amplified products. Nonrandom fragmentation of 23S rRNA was assessed by a recently described assay. Virulence-gene-derived mRNA transcripts were visualized in DNase I-treated RNA preparations. All three strains revealed the presence of different mRNA patterns in bacillary and coccoid forms. Putative promoter sequences similar to the consensus Escherichia coli -10 hexamer TATAAA box were present in all six virulence genes analyzed. Moreover, the decrease seen in mRNA levels during conversion into the coccoid form appeared to correlate with the 23S rRNA nonrandom fragmentation pattern. The present data indicate that modulation of virulence-gene expression is differently regulated in bacillary and coccoid H. pylori.
Collapse
Affiliation(s)
- H J Monstein
- Molecular Biology Laboratory-LMO, Clinical Microbiology, Faculty of Health Sciences, S-581 85 Linköping, Sweden.
| | | |
Collapse
|
13
|
Willén R, Carlén B, Wang X, Papadogiannakis N, Odselius R, Wadström T. Morphologic conversion of Helicobacter pylori from spiral to coccoid form. Scanning (SEM) and transmission electron microscopy (TEM) suggest viability. Ups J Med Sci 2000; 105:31-40. [PMID: 10893051 DOI: 10.1517/03009734000000045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Helicobacter pylori is a pathogen associated with type B gastritis, peptic ulcer disease, gastric atrophy, and stomach cancer. H. pylori exists in two morphological forms, spirals and coccoids. The latter has been described as viable but non-cultivable. The role of the coccoid form in the pathogenesis of gastric disease is disputed. Some authors consider the coccoid form to be a degenerative or dead form of H. pylori, while others consider it a resting but still metabolically active form. This study reports the conversion from spiral to coccoid form ultrastructurally. Dense material is accumulated in the periplasmic space, the spiral bacteria bend and the outer membrane is separated from the inner cell wall layer. Remodeling of inner structures takes place, ending in the coccoid form of the bacteria with preserved light polyphosphate areas. Reduction of surface takes place by production of surface membrane vesicles, which later are squeezed off. The finding of preserved subcellular structures and intact double membranes in combination with degenerative forms suggests that some of the coccoids are viable. Scanning electron microscopy (SEM) demonstrates coccoid form of bacteria with slightly ruffled surfaces but no spiral forms.
Collapse
Affiliation(s)
- R Willén
- Department of Pathology, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|