1
|
Hasan MI, Aggarwal S. Matrix matters: How extracellular substances shape biofilm structure and mechanical properties. Colloids Surf B Biointerfaces 2024; 246:114341. [PMID: 39536603 DOI: 10.1016/j.colsurfb.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Biofilms possess unique mechanical properties that are vital to their stability and function. Biofilms are made of extracellular polymeric substances (EPS) secreted by microorganisms and comprise polysaccharides, proteins, extracellular DNA (eDNA), and lipids. EPS is the primary contributor and driver of the biofilm structure and mechanical properties such as stiffness, cohesion, and adhesion. EPS enhances the elasticity and viscosity of biofilms, allowing them to withstand mechanical stresses, shear forces, and deformation. Therefore, biofilms are notoriously difficult to remove and can result in billions of dollars in losses for various industries due to their adverse effects, such as contamination, pressure loss, and corrosion. As a result, it is essential to comprehend the mechanical properties of biofilms to control or remove them in various scenarios. We undertook a fundamental study to determine the relationship between individual EPS components and biofilm mechanical properties. In this study, a CDC biofilm reactor was used to grow pure culture biofilms (Staphylococcus epidermidis) which were treated with six EPS modifier agents (Ca2+, Mg2+, periodic acid, protease K, lipase, and DNAase I) to modify or cleave specific EPS components. The mechanical properties (Young's Modulus) of treated biofilms were subsequently tested using atomic force microscopy (AFM), the biofilm EPS functional groups were measured via the Fourier transform infrared (FTIR) spectroscopy, and biofilm structural characteristics using confocal imaging. The FTIR results showed that EPS modifier agents successfully reduced their target EPS components. Similarly, the confocal microscopic analysis results showed that most of these modifier agents (except lipase) significantly reduced (P-value <0.05) the biovolume and thickness of treated biofilms. Conversely, most of these modifier agents (except protease K) significantly increased (P-value <0.05) the roughness coefficient of the biofilms. Finally, data from AFM showed that biofilm mechanical properties (Young's modulus) significantly (P-value <0.05) changed with their EPS composition. These results have significant ramifications for biofilm management and control in myriad scenarios.
Collapse
Affiliation(s)
- Md Ibnul Hasan
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Srijan Aggarwal
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| |
Collapse
|
2
|
Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens 2024; 13:668. [PMID: 39204268 PMCID: PMC11357414 DOI: 10.3390/pathogens13080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The extracellular matrix of most bacterial biofilms contains polysaccharides, proteins, and nucleic acids. These biopolymers have been shown to mediate fundamental biofilm-related phenotypes including surface attachment, intercellular adhesion, and biocide resistance. Enzymes that degrade polymeric biofilm matrix components, including glycoside hydrolases, proteases, and nucleases, are useful tools for studying the structure and function of biofilm matrix components and are also being investigated as potential antibiofilm agents for clinical use. Dispersin B is a well-studied, broad-spectrum antibiofilm glycoside hydrolase produced by Aggregatibacter actinomycetemcomitans. Dispersin B degrades poly-N-acetylglucosamine, a biofilm matrix polysaccharide that mediates biofilm formation, stress tolerance, and biocide resistance in numerous Gram-negative and Gram-positive pathogens. Dispersin B has been shown to inhibit biofilm and pellicle formation; detach preformed biofilms; disaggregate bacterial flocs; sensitize preformed biofilms to detachment by enzymes, detergents, and metal chelators; and sensitize preformed biofilms to killing by antiseptics, antibiotics, bacteriophages, macrophages, and predatory bacteria. This review summarizes the results of nearly 100 in vitro and in vivo studies that have been carried out on dispersin B since its discovery 20 years ago. These include investigations into the biological function of the enzyme, its structure and mechanism of action, and its in vitro and in vivo antibiofilm activities against numerous bacterial species. Also discussed are potential clinical applications of dispersin B.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
| | - Svetlana A. Sukhishvili
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA;
| | | | - Khalaf Kridin
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| |
Collapse
|
3
|
Jonblat S, As-Sadi F, Zibara K, Sabban ME, Dermesrobian V, Khoury AE, Kallassy M, Chokr A. Staphylococcus epidermidis biofilm assembly and self-dispersion: bacteria and matrix dynamics. Int Microbiol 2024; 27:831-844. [PMID: 37824024 DOI: 10.1007/s10123-023-00433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Staphylococcus epidermidis, despite being a commensal of human skin and mucosa, is a major nosocomial pathogen implicated in device-associated infections. The dissemination of infection to other body sites is related to biofilm dispersal. This study focused on the dispersion stage of S. epidermidis CIP 444 biofilm, with the assessment of biofilm matrix composition in a time-dependent experiment (7 days extended) with 3 independent repetitions, using confocal laser scanning microcopy (CLSM) in association with ZEN 3.4 blue edition, COMSTAT, and ImageJ software. SYTO-9, propidium iodide (PI), DID'OIL, FITC, and calcofluor white M2R (CFW) were used to stain biofilm components. The results indicated that the biomass of dead cells increased from 15.18 ± 1.81 µm3/µm2 (day 3) to 23.15 ± 6.075 µm3/µm2 (day 4), along with a decrease in alive cells' biomass from 22.75 ± 2.968 µm3/µm2 (day 3) to 18.95 ± 5.713 µm3/µm2 (day 4). When the intensities were measured after marking the biofilm components, in a 24-h-old biofilm, polysaccharide made up the majority of the investigated components (52%), followed by protein (18.9%). Lipids make up just 11.6% of the mature biofilm. Protein makes up the largest portion (48%) of a 4-day-old biofilm, followed by polysaccharides (37.8%) and lipids (7.27%). According to our findings, S. epidermidis CIP 444 dispersion occurred on day 4 of incubation, and new establishment of the biofilm occurred on day 7. Remarkable changes in biofilm composition will pave the way for a new approach to understanding bacterial strategies inside biofilms and finding solutions to their impacts in the medical field.
Collapse
Affiliation(s)
- Suzanne Jonblat
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
- Functional Genomics and Proteomic Laboratory, Faculté Des Sciences, Université Saint-Joseph de Beyrouth, Campus Des Sciences Et Technologies, Mar Roukos, Matn, Lebanon
- Centre d'Analyses Et de Recherche (CAR), Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Faculté Des Sciences, Université Saint-Joseph de Beyrouth, Campus Des Sciences Et Technologies, Mar Roukos, Matn, Lebanon
| | - Falah As-Sadi
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Department of Plant Production, Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, 999095, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107, Lebanon
| | - Vera Dermesrobian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107, Lebanon
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Louvain, Belgium
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Faculté Des Sciences, Université Saint-Joseph de Beyrouth, Campus Des Sciences Et Technologies, Mar Roukos, Matn, Lebanon
| | - Mireille Kallassy
- Functional Genomics and Proteomic Laboratory, Faculté Des Sciences, Université Saint-Joseph de Beyrouth, Campus Des Sciences Et Technologies, Mar Roukos, Matn, Lebanon
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon.
| |
Collapse
|
4
|
Visperas A, Santana D, Klika AK, Higuera‐Rueda CA, Piuzzi NS. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J Orthop Res 2022; 40:1477-1491. [PMID: 35437846 PMCID: PMC9322555 DOI: 10.1002/jor.25345] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) remains a devastating complication after total joint arthroplasty. Bacteria involved in these infections are notorious for adhering to foreign implanted surfaces and generating a biofilm matrix. These biofilms protect the bacteria from antibiotic treatment and the immune system making eradication difficult. Current treatment strategies including debridement, antibiotics, and implant retention, and one- and two-stage revisions still present a relatively high overall failure rate. One of the main shortcomings that has been associated with this high failure rate is the lack of a robust approach to treating bacterial biofilm. Therefore, in this review, we will highlight new strategies that have the potential to combat PJI by targeting biofilm integrity, therefore giving antibiotics and the immune system access to the internal network of the biofilm structure. This combination antibiofilm/antibiotic therapy may be a new strategy for PJI treatment while promoting implant retention.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - Daniel Santana
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Alison K. Klika
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | | | - Nicolas S. Piuzzi
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
5
|
Obuobi S, Ngoc Phung A, Julin K, Johannessen M, Škalko-Basnet N. Biofilm Responsive Zwitterionic Antimicrobial Nanoparticles to Treat Cutaneous Infection. Biomacromolecules 2021; 23:303-315. [PMID: 34914360 PMCID: PMC8753600 DOI: 10.1021/acs.biomac.1c01274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
To avert the poor
bioavailability of antibiotics during S. aureus biofilm
infections, a series of zwitterionic nanoparticles
containing nucleic acid nanostructures were fabricated for the delivery
of vancomycin. The nanoparticles were prepared with three main lipids:
(i) neutral (soy phosphatidylcholine; P), (ii) positively charged
ionizable (1,2-dioleyloxy-3-dimethylaminopropane; D), and (iii) anionic
(1,2-dipalmitoyl-sn-glycero-3-phospho((ethyl-1′,2′,3′-triazole)
triethylene glycolmannose; M) or (cholesteryl hemisuccinate; C) lipids.
The ratio of the anionic lipid was tuned between 0 and 10 mol %, and
its impact on surface charge, size, stability, toxicity, and biofilm
sensitivity was evaluated. Under biofilm mimicking conditions, the
enzyme degradability (via dynamic light scattering (DLS)), antitoxin
(via DLS and spectrophotometry), and antibiotic release profile was
assessed. Additionally, biofilm penetration, prevention (in
vitro), and eradication (ex vivo) of the
vancomycin loaded formulation was investigated. Compared with the
unmodified nanoparticles which exhibited the smallest size (188 nm),
all three surface modified formulations showed significantly larger
sizes (i.e., 222–277 nm). Under simulations of biofilm pH conditions,
the mannose modified nanoparticle (PDM 90/5/5) displayed ideal charge
reversal from a neutral (+1.69 ± 1.83 mV) to a cationic surface
potential (+17.18 ± 2.16 mV) to improve bacteria binding and
biofilm penetration. In the presence of relevant bacterial enzymes,
the carrier rapidly released the DNA nanoparticles to function as
an antitoxin against α-hemolysin. Controlled release of vancomycin
prevented biofilm attachment and significantly reduced early stage
biofilm formations within 24 h. Enhanced biocompatibility and significant ex vivo potency of the PDM 90/5/5 formulation was also observed.
Taken together, these results emphasize the benefit of these nanocarriers
as potential therapies against biofilm infections and fills the gap
for multifunctional nanocarriers that prevent biofilm infections.
Collapse
Affiliation(s)
- Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Anna Ngoc Phung
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Kjersti Julin
- Host Microbe Interaction research group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Mona Johannessen
- Host Microbe Interaction research group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø 9037, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø 9037, Norway
| |
Collapse
|
6
|
Lamret F, Varin-Simon J, Velard F, Terryn C, Mongaret C, Colin M, Gangloff SC, Reffuveille F. Staphylococcus aureus Strain-Dependent Biofilm Formation in Bone-Like Environment. Front Microbiol 2021; 12:714994. [PMID: 34557170 PMCID: PMC8453086 DOI: 10.3389/fmicb.2021.714994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus species is an important threat for hospital healthcare because of frequent colonization of indwelling medical devices such as bone and joint prostheses through biofilm formations, leading to therapeutic failure. Furthermore, bacteria within biofilm are less sensitive to the host immune system responses and to potential antibiotic treatments. We suggested that the periprosthetic bone environment is stressful for bacteria, influencing biofilm development. To provide insights into S. aureus biofilm properties of three strains [including one methicillin-resistant S. aureus (MRSA)] under this specific environment, we assessed several parameters related to bone conditions and expected to affect biofilm characteristics. We reported that the three strains harbored different behaviors in response to the lack of oxygen, casamino acids and glucose starvation, and high concentration of magnesium. Each strain presented different biofilm biomass and live adherent cells proportion, or matrix production and composition. However, the three strains shared common responses in a bone-like environment: a similar production of extracellular DNA and engagement of the SOS response. This study is a step toward a better understanding of periprosthetic joint infections and highlights targets, which could be common among S. aureus strains and for future antibiofilm strategies.
Collapse
Affiliation(s)
- Fabien Lamret
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France
| | | | - Frédéric Velard
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France
| | - Christine Terryn
- Plateforme en Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | - Céline Mongaret
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Service Pharmacie, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, Reims, France
| | - Sophie C Gangloff
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, Reims, France
| | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, Laboratory BIOS EA 4691, Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, Reims, France
| |
Collapse
|
7
|
van Dijk B, Allen KJH, Helal M, Vogely HC, Lam MGEH, de Klerk JMH, Weinans H, van der Wal BCH, Dadachova E. Radioimmunotherapy of methicillin-resistant Staphylococcus aureus in planktonic state and biofilms. PLoS One 2020; 15:e0233086. [PMID: 32407350 PMCID: PMC7224548 DOI: 10.1371/journal.pone.0233086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Implant associated infections such as periprosthetic joint infections are difficult to treat as the bacteria form a biofilm on the prosthetic material. This biofilm complicates surgical and antibiotic treatment. With rising antibiotic resistance, alternative treatment options are needed to treat these infections in the future. The aim of this article is to provide proof-of-principle data required for further development of radioimmunotherapy for non-invasive treatment of implant associated infections. Methods Planktonic cells and biofilms of Methicillin-resistant staphylococcus aureus are grown and treated with radioimmunotherapy. The monoclonal antibodies used, target wall teichoic acids that are cell and biofilm specific. Three different radionuclides in different doses were used. Viability and metabolic activity of the bacterial cells and biofilms were measured by CFU dilution and XTT reduction. Results Alpha-RIT with Bismuth-213 showed significant and dose dependent killing in both planktonic MRSA and biofilm. When planktonic bacteria were treated with 370 kBq of 213Bi-RIT 99% of the bacteria were killed. Complete killing of the bacteria in the biofilm was seen at 185 kBq. Beta-RIT with Lutetium-177 and Actinium-225 showed little to no significant killing. Conclusion Our results demonstrate the ability of specific antibodies loaded with an alpha-emitter Bismuth-213 to selectively kill staphylococcus aureus cells in vitro in both planktonic and biofilm state. RIT could therefore be a potentially alternative treatment modality against planktonic and biofilm-related microbial infections.
Collapse
Affiliation(s)
- B. van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K. J. H. Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - M. Helal
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - H. C. Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. M. H. de Klerk
- Department of Nuclear Medicine, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical engineering, TU Delft, Delft, The Netherlands
| | - B. C. H. van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
8
|
Kaplan JB, Mlynek KD, Hettiarachchi H, Alamneh YA, Biggemann L, Zurawski DV, Black CC, Bane CE, Kim RK, Granick MS. Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS One 2018; 13:e0205526. [PMID: 30304066 PMCID: PMC6179274 DOI: 10.1371/journal.pone.0205526] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 02/04/2023] Open
Abstract
Staphylococcal extracellular polymeric substances (EPS) such as extracellular DNA (eDNA) and poly-N-acetylglucosamine surface polysaccharide (PNAG) mediate numerous virulence traits including host colonization and antimicrobial resistance. Previous studies showed that EPS-degrading enzymes increase staphylococcal biocide susceptibility in vitro and in vivo, and decrease virulence in animal models. In the present study we tested the effect of EPS-degrading enzymes on staphylococcal skin colonization and povidone iodine susceptibility using a novel in vivo pig model that enabled us to colonize and treat 96 isolated areas of skin on a single animal in vivo. To quantitate skin colonization, punch biopsies of colonized areas were homogenized, diluted, and plated on agar for colony forming unit enumeration. Skin was colonized with either Staphylococcus epidermidis or Staphylococcus aureus. Two EPS-degrading enzymes, DNase I and the PNAG-degrading enzyme dispersin B, were employed. Enzymes were tested for their ability to inhibit skin colonization and detach preattached bacteria. The effect of enzymes on the susceptibility of preattached S. aureus to killing by povidone iodine was also measured. We found that dispersin B significantly inhibited skin colonization by S. epidermidis and detached preattached S. epidermidis cells from skin. A cocktail of dispersin B and DNase I detached preattached S. aureus cells from skin and increased their susceptibility to killing by povidone iodine. These findings suggest that staphylococcal EPS components such as eDNA and PNAG contribute to skin colonization and biocide resistance in vivo. EPS-degrading enzymes may be a useful adjunct to conventional skin antisepsis procedures in order to further reduce skin bioburden.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Department of Biology, American University, Washington, District of Columbia, United States of America
- * E-mail:
| | - Kevin D. Mlynek
- Department of Biology, American University, Washington, District of Columbia, United States of America
| | - Hashani Hettiarachchi
- Department of Biology, American University, Washington, District of Columbia, United States of America
| | - Yonas A. Alamneh
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Lionel Biggemann
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel V. Zurawski
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Chad C. Black
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Charles E. Bane
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Robert K. Kim
- Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mark S. Granick
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
9
|
Parthiban C, Varudharasu D, Shanmugam M, Gopal P, Ragunath C, Thomas L, Nitz M, Ramasubbu N. Structural and functional analysis of de-N-acetylase PgaB from periodontopathogen Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2017; 32:324-340. [PMID: 27706922 PMCID: PMC11471279 DOI: 10.1111/omi.12175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 10/15/2024]
Abstract
The oral pathogen Aggregatibacter actinomycetemcomitans uses pga gene locus for the production of an exopolysaccharide made up of a linear homopolymer of β-1,6-N-acetyl-d-glucosamine (PGA). An enzyme encoded by the pgaB of the pga operon in A. actinomycetemcomitans is a de-N-acetylase, which is used to alter the PGA. The full length enzyme (AaPgaB) and the N-terminal catalytic domain (residues 25-290, AaPgaBN) from A. actinomycetemcomitans were cloned, expressed and purified. The enzymatic activities of the AaPgaB enzymes were determined using 7-acetoxycoumarin-3-carboxylic acid as the substrate. The AaPgaB enzymes displayed significantly lower de-N-acetylase activity compared with the activity of the deacetylase PdaA from Bacillus subtilis, a member of the CE4 family of enzymes. To delineate the differences in the activity and the active site architecture, the structure of AaPgaBN was determined. The AaPgaBN structure has two metal ions in the active site instead of one found in other CE4 enzymes. Based on the crystal structure comparisons among the various CE4 enzymes, two residues, Q51 and R271, were identified in AaPgaB, which could potentially affect the enzyme activity. Of the two mutants generated, Q51E and R271K, the variant Q51E showed enhanced activity compared with AaPgaB, validating the requirement that an activating aspartate residue in the active site is essential for higher activity. In summary, our study provides the first structural evidence for a di-nuclear metal site at the active site of a member of the CE4 family of enzymes, evidence that AaPgaBN is catalytically active and that mutant Q51E exhibits higher de-N-acetylase activity.
Collapse
Affiliation(s)
- C Parthiban
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - D Varudharasu
- Selvam Structure Based Drug Design Laboratory, Selvam College of Technology, Namakkal, Tamilnadu, India
| | - M Shanmugam
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - P Gopal
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - C Ragunath
- Scientific Chemical Technologies, Malden, MA, USA
| | - L Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - M Nitz
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - N Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
10
|
The antifungal caspofungin increases fluoroquinolone activity against Staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase. Nat Commun 2016; 7:13286. [PMID: 27808087 PMCID: PMC5097165 DOI: 10.1038/ncomms13286] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/20/2016] [Indexed: 01/04/2023] Open
Abstract
Biofilms play a major role in Staphylococcus aureus pathogenicity but respond poorly to antibiotics. Here, we show that the antifungal caspofungin improves the activity of fluoroquinolones (moxifloxacin, delafloxacin) against S. aureus biofilms grown in vitro (96-well plates or catheters) and in vivo (murine model of implanted catheters). The degree of synergy among different clinical isolates is inversely proportional to the expression level of ica operon, the products of which synthesize poly-N-acetyl-glucosamine polymers, a major constituent of biofilm matrix. In vitro, caspofungin inhibits the activity of IcaA, which shares homology with β-1-3-glucan synthase (caspofungin's pharmacological target in fungi). This inhibition destructures the matrix, reduces the concentration and polymerization of exopolysaccharides in biofilms, and increases fluoroquinolone penetration inside biofilms. Our study identifies a bacterial target for caspofungin and indicates that IcaA inhibitors could potentially be useful in the treatment of biofilm-related infections. Biofilms formed by Staphylococcus aureus are poorly responsive to antibiotics. Here, Siala et al. show that an antifungal drug (caspofungin) enhances the activity of fluoroquinolone antibiotics against S. aureus biofilms by inhibiting an enzyme involved in synthesis of the biofilm matrix.
Collapse
|
11
|
Kanaan H, El-Mestrah M, Sweidan A, As-Sadi F, Bazzal AA, Chokr A. Screening for antibacterial and antibiofilm activities in Astragalus angulosus. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 6:50-57. [PMID: 28163960 PMCID: PMC5289088 DOI: 10.5455/jice.20161018101720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Aim: In a search for finding novel therapeutic agents, extracts from an endemic Lebanese plant, Astragalus angulosus, were evaluated for their potential in-vitro antibacterial and antibiofilm activities against three Gram-positive bacterial strains; Staphylococcus epidermidis (CIP444), Staphylococcus aureus (ATCC25923), and Enterococcus faecalis (ATCC29212); in addition to two Gram-negative strains, Escherichia coli (ATCC35218) and Pseudomonas aeruginosa (ATCC27853). Materials and Methods: The plant was collected in April of 2013 and divided into several different portions, then its extracts were obtained by maceration using two different solvents. Extract analysis followed directly where microtiter broth dilution method was employed to assess antibacterial activity, while antibiofilm potential was tested using colorimetric method. Results: Whole plant ethanolic extract showed the highest bacteriostatic effect at a concentration of 12.78 mg/ml and also was the most versatile exerting its effect against 3 different strains. Other extracts also exhibited an effect but at higher concentrations and each against a single strain. Regarding antibiofilm activity, the majority of the extracts were able to eradicate >50% of S. epidermidis preformed biofilm, where the highest activity was obtained with flower fraction extracted in water, achieving 67.7% biofilm eradication at 0.2 mg/ml. Conclusions: This plant possesses a promising potential in regard to eradicating bacteria and their biofilms and it is the first contributing step of establishing a library for the endemic Lebanese plants in this domain.
Collapse
Affiliation(s)
- Hussein Kanaan
- Department of Life & Earth Sciences, Faculty of Sciences I, Laboratory of Microbiology, Lebanese University, Beirut, Lebanon; Centre International de Recherche en Infectiologie-Inserm U1111-Ecole Normale Supérieure de Lyon-CNRS UMR530, Beirut, Lebanon
| | - Majid El-Mestrah
- Department of Life & Earth Sciences, Faculty of Sciences I, Laboratory of Microbiology, Lebanese University, Beirut, Lebanon
| | - Alaa Sweidan
- Department of Life & Earth Sciences, Faculty of Sciences I, Laboratory of Microbiology, Lebanese University, Beirut, Lebanon; Microbiology Team, EA 1254, UFR Sciences Pharmaceutiques et Biologiques, University of Rennes 1, Université Bretagne
| | - Falah As-Sadi
- Department of Life & Earth Sciences, Faculty of Sciences I, Laboratory of Microbiology, Lebanese University, Beirut, Lebanon; PRASE, Platform of Research and Analysis in Environmental Sciences, Doctoral School of Sciences, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Al Bazzal
- Department of Life & Earth Sciences, Faculty of Sciences I, Laboratory of Microbiology, Lebanese University, Beirut, Lebanon; PRASE, Platform of Research and Analysis in Environmental Sciences, Doctoral School of Sciences, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Chokr
- Department of Life & Earth Sciences, Faculty of Sciences I, Laboratory of Microbiology, Lebanese University, Beirut, Lebanon; PRASE, Platform of Research and Analysis in Environmental Sciences, Doctoral School of Sciences, Lebanese University, Hadat Campus, Beirut, Lebanon
| |
Collapse
|
12
|
Cornelissen A, Sadovskaya I, Vinogradov E, Blangy S, Spinelli S, Casey E, Mahony J, Noben JP, Dal Bello F, Cambillau C, van Sinderen D. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase. J Biol Chem 2016; 291:16816-27. [PMID: 27268053 PMCID: PMC4974393 DOI: 10.1074/jbc.m116.728279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Indexed: 11/06/2022] Open
Abstract
Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca(2+) ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage.
Collapse
Affiliation(s)
| | - Irina Sadovskaya
- Equipe Biochimie des Produits Aquatiques, Université du Littoral-Côte d'Opale, Boulevard du Bassin Napoléon, BP 120, 62327 Boulogne-sur-mer, France
| | | | - Stéphanie Blangy
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, 13288 Marseille Cedex 09, France, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Silvia Spinelli
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, 13288 Marseille Cedex 09, France, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Campus de Luminy, 13288 Marseille Cedex 09, France
| | | | | | - Jean-Paul Noben
- Biomedical Research Institute (Biomed) and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt University, Agoralaan-Building C, BE-3590 Diepenbeek, Belgium, and
| | | | - Christian Cambillau
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, 13288 Marseille Cedex 09, France, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Douwe van Sinderen
- From the School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland,
| |
Collapse
|
13
|
Li T, Zhang L, Han LI, Wang G, Yin P, Li Z, Zhang L, Guo QI, Liu D, Tang P. Early application of negative pressure wound therapy to acute wounds contaminated with Staphylococcus aureus: An effective approach to preventing biofilm formation. Exp Ther Med 2016; 11:769-776. [PMID: 26997991 PMCID: PMC4774327 DOI: 10.3892/etm.2016.3008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
Negative pressure wound therapy (NPWT) has been demonstrated to be effective at preventing biofilm-associated infections; however, its role in biofilm prevention is unknown. The present study evaluated the effect of NPWT on biofilm prevention when rapidly initiated following wound contamination. Full-thickness dermal wounds (8 mm) were created in rabbit ears and inoculated with green fluorescent protein-labeled Staphylococcus aureus (S. aureus). At 6 h following inoculation, continuous NPWT at -125 mmHg was initiated, with the wounds on the contralateral ear left untreated in order to serve as self-controls. S. aureus rapidly formed mature biofilms in the wound beds post-inoculation, with a persistent bacterial burden of ~105-107 colony-forming units (CFUs)/wound and impaired wound healing. Compared with the untreated group, NPWT resulted in a significant reduction in biofilm matrix, which was verified by scanning electron microscopy and epifluorescence. A reduction in bacterial counts followed (P<0.05) with ~103 CFUs/wound on postoperative day 13 and improvement in all healing parameters (P<0.05) relative to control wounds. The results of the present investigation suggest that NPWT is an effective strategy to impeding the formation of S. aureus wound biofilms when initiated rapidly following bacterial contamination. The early application of NPWT, aimed at biofilm prevention, may improve wound care.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Clinical Medicine, Medical College, Nankai University, Tianjin 300071, P.R. China; Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lihai Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - L I Han
- Center for Hospital Infection Control, Chinese PLA Institute for Disease Control and Prevention, Beijing 100071, P.R. China
| | - Guoqi Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Peng Yin
- Department of Clinical Medicine, Medical College, Nankai University, Tianjin 300071, P.R. China; Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhirui Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Q I Guo
- Department of Clinical Medicine, Medical College, Nankai University, Tianjin 300071, P.R. China; Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Daohong Liu
- Department of Orthopedics, The 309 Hospital of PLA, Beijing 100091, P.R. China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
14
|
Effect of negative pressure on growth, secretion and biofilm formation of Staphylococcus aureus. Antonie van Leeuwenhoek 2015; 108:907-17. [DOI: 10.1007/s10482-015-0545-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023]
|
15
|
Tseng SP, Lin YT, Tsai JC, Hung WC, Chen HJ, Chen PF, Hsueh PR, Teng LJ. Genotypes and phenotypes of Staphylococcus lugdunensis isolates recovered from bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:397-405. [DOI: 10.1016/j.jmii.2013.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
|
16
|
The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin AtlL and its role in biofilm formation and internalization. Int J Med Microbiol 2014; 305:129-39. [PMID: 25515664 DOI: 10.1016/j.ijmm.2014.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022] Open
Abstract
Although it belongs to the group of coagulase-negative staphylococci, Staphylococcus lugdunensis has been known to cause aggressive courses of native and prosthetic valve infective endocarditis with high mortality similar to Staphylococcus aureus. In contrast to S. aureus, only little is known about the equipment of S. lugdunensis with virulence factors including adhesins and their role in mediating attachment to extracellular matrix and plasma proteins and host cells. In this study, we show that the multifunctional autolysin/adhesin AtlL of S. lugdunensis binds to the extracellular matrix and plasma proteins fibronectin, fibrinogen, and vitronectin as well as to human EA.hy926 endothelial cells. Furthermore, we demonstrate that AtlL also plays an important role in the internalization of S. lugdunensis by eukaryotic cells: The atlL-deficient mutant Mut17 adheres to and becomes internalized by eukaryotic cells to a lesser extent than the isogenic wild-type strain Sl253 and the complemented mutant Mut17 (pCUatlL) shows an increased internalization level in comparison to Mut17. Thus, surface localized AtlL that exhibits a broad binding spectrum also mediates the internalization of S. lugdunensis by eukaryotic cells. We therefore propose an internalization pathway for S. lugdunensis, in which AtlL plays a major role. Investigating the role of AtlL in biofilm formation of S. lugdunensis, Mut17 shows a significantly reduced ability for biofilm formation, which is restored in the complemented mutant. Thus, our data provide evidence for a significant role for AtlL in adherence and internalization processes as well as in biofilm formation of S. lugdunensis.
Collapse
|
17
|
Chmit M, Kanaan H, Habib J, Abbass M, Mcheik A, Chokr A. Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. ASIAN PAC J TROP MED 2014; 7S1:S546-52. [DOI: 10.1016/s1995-7645(14)60288-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/10/2014] [Indexed: 11/30/2022] Open
|
18
|
Comparison of the antibiotic activities of Daptomycin, Vancomycin, and the investigational Fluoroquinolone Delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 2014; 58:6385-97. [PMID: 25114142 DOI: 10.1128/aac.03482-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related infections remain a scourge. In an in vitro model of biofilms using Staphylococcus aureus reference strains, delafloxacin and daptomycin were found to be the most active among the antibiotics from 8 different pharmacological classes (J. Bauer, W. Siala, P. M. Tulkens, and F. Van Bambeke, Antimicrob. Agents Chemother. 57:2726-2737, 2013, doi:10.1128/AAC.00181-13). In this study, we compared delafloxacin to daptomycin and vancomycin using biofilms produced by 7 clinical strains (S. aureus epidemic clones CC5 and CC8) in order to rationalize the differences observed between the antibiotics and strains. The effects of the antibiotics on bacterial viability (resazurin reduction assay) and biomass (crystal violet staining) were measured and correlated with the proportion of polysaccharides in the matrix, the local microenvironmental pH (micro-pH), and the antibiotic penetration in the biofilm. At clinically meaningful concentrations, delafloxacin, daptomycin, and vancomycin caused a ≥25% reduction in viability against the biofilms formed by 5, 4, and 3 strains, respectively. The antibiotic penetration within the biofilms ranged from 0.6 to 52% for delafloxacin, 0.2 to 10% for daptomycin, and 0.2 to 1% for vancomycin; for delafloxacin, this was inversely related to the polysaccharide proportion in the matrix. Six biofilms were acidic, explaining the high potency of delafloxacin (lower MICs at acidic pH). Norspermidine and norspermine (disassembling the biofilm matrix) drastically increased delafloxacin potency and efficacy (50% reduction in viability for 6 biofilms at clinically meaningful concentrations) in direct correlation with its increased penetration within the biofilm, while they only modestly improved daptomycin efficacy (50% reduction in viability for 2 biofilms) and penetration, and they showed marginal effects with vancomycin. Delafloxacin potency and efficacy against biofilms are benefited by its penetration into the matrix and the local acidic micro-pH.
Collapse
|
19
|
Zhou S, Chao X, Fei M, Dai Y, Liu B. Analysis of S. Epidermidis icaA and icaD genes by polymerase chain reaction and slime production: a case control study. BMC Infect Dis 2013; 13:242. [PMID: 23705749 PMCID: PMC3671247 DOI: 10.1186/1471-2334-13-242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background Staphylococcus epidermidis is a common pathogen in medical device-associated infections and have an ability to form adherent slime. We aimed to study the effects of icaA and icaD genes on the slime formation of Staphylococcus epidermidis associated with catheter-associated infections. Methods S. epidermidis isolates from the central venous catheter blood of patients with catheter-associated infections, and from the nasal vestibules of healthy volunteers, intensive care unit hospital staff, and patients, were collected. Slime phenotype was determined by Congo red agar test. The icaA/D was detected by polymerase chain reaction. Slime was examined using scanning electron microscopy. Results A total of 82 S. epidermidis isolates were collected. We found a statistically significant difference with regards to slime production between the clinical isolates from the catheter blood specimens and those from the nasal vestibules (p<0.05). All S. epidermidis slime positive strains isolated were icaA positive. There was a greater correlation between the presence of both icaA and icaD and the slime production than the single expression of icaA or icaD and the presence of slime in all groups. The co-expression of mecA and icaD was associated with enhanced resistance to antibiotics. Conclusion S. epidermidis bacteria are significant nosocomial pathogens, and icaA/D can clarify the adhesion mechanism in the pathogenesis of infections associated with medical devices. This study result could be useful for the development of rapid diagnosis for slime producing and methicillin resistant S. epidermidis strains.
Collapse
Affiliation(s)
- Shusheng Zhou
- Department of Critical Care Medicine, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.
| | | | | | | | | |
Collapse
|
20
|
Staphylococcus epidermidis biofilms induce lower complement activation in neonates as compared with adults. Pediatr Res 2013; 73:294-300. [PMID: 23232670 DOI: 10.1038/pr.2012.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Staphylococcus epidermidis (SE) is an important cause of late-onset sepsis in neonates. SE frequently produces a polysaccharide intercellular adhesin (PIA) biofilm, important in the pathogenesis of these infections. Little is known about how the neonatal innate immune system reacts to SE biofilm-associated infections. Our hypothesis was that SE biofilms induce a lower complement activation in neonates as compared with adults. METHODS Cord blood from term infants (n = 15) and blood from adults (n = 6) were studied in an ex vivo whole-blood sepsis model. A PIA biofilm-producing strain (SE1457) and its isogenic mutant (M10), producing a non-PIA biofilm, were used. RESULTS Both SE biofilms induced stronger complement activation in adult than in cord blood (P ≤ 0.033). We found lower levels of antibodies toward both PIA (P = 0.002) and the whole bacterium (P = 0.001) in cord vs. adult blood. By contrast, the interleukin-8 (IL-8) and IL-6 secretion were higher in cord than in adult blood (P ≤ 0.002). The PIA biofilm induced stronger complement activation than the non-PIA biofilm. CONCLUSION We conclude that the neonatal complement system exhibits a maturational deficiency. This may reduce the ability of neonates to combat biofilm-associated SE infections.
Collapse
|
21
|
|
22
|
Fredheim EGA, Granslo HN, Flægstad T, Figenschau Y, Rohde H, Sadovskaya I, Mollnes TE, Klingenberg C. Staphylococcus epidermidis polysaccharide intercellular adhesin activates complement. ACTA ACUST UNITED AC 2012; 63:269-80. [PMID: 22077230 DOI: 10.1111/j.1574-695x.2011.00854.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcus epidermidis is a frequent cause of nosocomial infections. The central virulence factor of S. epidermidis is biofilm formation. Polysaccharide intercellular adhesin (PIA) constitutes the major biofilm matrix-component. PIA and biofilm have been implicated in S. epidermidis evasion of host immune defence. We examined the effects of S. epidermidis PIA on the inflammatory response with focus on complement activation. We used a human whole-blood ex vivo model of infection and compared the effects of a PIA-positive S. epidermidis strain (SE1457) and its PIA-negative isogenic mutant (M10). The independent effect of purified PIA on complement activation was investigated. In glucose-rich media, the mutant formed a proteinacious DNA-rich biofilm, whereas SE1457 formed a thick PIA-biofilm. In biofilm growth, SE1457 induced a stronger activation of the complement system compared with M10. We verified that purified PIA was independently responsible for a strong activation of the complement system. In contrast, M10 induced higher granulocyte activation by expression of CD11b and higher secretion of cytokines. We conclude that PIA has potent pro-inflammatory properties by activating the complement system. However, in a complex balance of the immune response, the decreased activation of granulocytes and cytokines by a PIA biofilm may limit host eradication of S. epidermidis.
Collapse
|
23
|
Abstract
Bacteria of the genus Staphylococcus are a prominent cause of acute and chronic infections. The ability of the staphylococci to establish biofilms has been linked to the persistence of chronic infections, which has drawn considerable interest from researchers over the past decade. Biofilms can be defined as sessile communities of surface-attached cells encased in an extracellular matrix, and treatment of bacteria in this mode of growth is challenging due to the resistance of biofilm structures to both antimicrobials and host defenses. In this review of the literature, we introduce Staphylococcus aureus and Staphylococcus epidermidis biofilms and summarize current antibiotic treatment approaches for staphylococcal biofilm infections. We also review recent studies on alternative strategies for preventing biofilm formation and dispersing established biofilms, including matrix-degrading enzymes, small-molecule approaches, and manipulation of natural staphylococcal disassembly mechanisms. While research on staphylococcal biofilm development is still in its early stages, new discoveries in the field hold promise for improved therapies that target staphylococcal biofilm infections.
Collapse
Affiliation(s)
- Megan R Kiedrowski
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
24
|
Craigen B, Dashiff A, Kadouri DE. The Use of Commercially Available Alpha-Amylase Compounds to Inhibit and Remove Staphylococcus aureus Biofilms. Open Microbiol J 2011; 5:21-31. [PMID: 21760865 PMCID: PMC3134978 DOI: 10.2174/1874285801105010021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/09/2011] [Accepted: 04/12/2011] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus, a versatile human pathogen, is commonly associated with medical device infections. Its capacity to establish and maintain these infections is thought to be related to its ability to form adherent biofilms. In this study, commercially available α-amylase compounds from various biological sources were evaluated for their ability to reduce and prevent biofilm formation of several S. aureus isolates. Our data demonstrates that α-amylase compounds can rapidly detach biofilms of S. aureus, as well as inhibit biofilm formation. Our data also demonstrates that α-amylase compounds have an ability to reduce and disassociate S. aureus cell-aggregates grown in liquid suspension. These findings suggest that commercially available α-amylase compounds could be used in the future to control S. aureus biofilm-related infections.
Collapse
Affiliation(s)
- Bradford Craigen
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ, 07101, USA
| | | | | |
Collapse
|
25
|
Kaplan JB, Jabbouri S, Sadovskaya I. Extracellular DNA-dependent biofilm formation by Staphylococcus epidermidis RP62A in response to subminimal inhibitory concentrations of antibiotics. Res Microbiol 2011; 162:535-41. [PMID: 21402153 DOI: 10.1016/j.resmic.2011.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
We measured the ability of Staphylococcus epidermidis to form biofilms in the presence of subminimal inhibitory concentrations (sub-MICs) of vancomycin, tigecycline, linezolid and novobiocin. Six strains that produce different amounts of biofilm were tested. The three strains that produced the highest amounts of biofilm exhibited steady-state or decreased biofilm formation in the presence of sub-MIC antibiotics, whereas the three strains that produced lower amounts of biofilm exhibited up to 10-fold-increased biofilm formation in the presence of sub-MIC antibiotics. In two of the inducible strains (9142 and 456a), antibiotic-induced biofilm formation was inhibited by dispersin B, an enzyme that degrades poly-N-acetylglucosamine (PNAG) biofilm polysaccharide. In the third inducible strain (RP62A), dispersin B inhibited biofilm formation in response to sub-MIC vancomycin, but not to sub-MIC tigecycline. In contrast, DNase I efficiently inhibited biofilm formation by strain RP62A in response to sub-MIC tigecycline and vancomycin. DNase I had no effect on antibiotic-induced biofilm formation in strains 9142 and 456a. Our findings indicate that antibiotic-induced biofilm formation in S. epidermidis is both strain- and antibiotic-dependent and that S. epidermidis RP62A utilizes an extracellular DNA-dependent mechanism to form biofilms in response to sub-MIC antibiotics.
Collapse
Affiliation(s)
- Jeffrey B Kaplan
- Department of Oral Biology, New Jersey Dental School, Medical Science Building, Room C636, 185 S. Orange Ave., Newark, NJ 07103, USA.
| | | | | |
Collapse
|
26
|
Influence of bacteria on spinal implant-centered infection: an in vitro and in vivo experimental comparison between Staphylococcus aureus and mycobacterium tuberculosis. Spine (Phila Pa 1976) 2011; 36:103-8. [PMID: 20543766 DOI: 10.1097/brs.0b013e3181cb46ba] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN an in vitro and in vivo experimental study. OBJECTIVE this study was undertaken to evaluate differences in the capability of inducing an implant-centered infection between Staphylococcus aureus and Mycobacterium tuberculosis. SUMMARY OF BACKGROUND DATA bacterial infection is still one of the most serious and devastating complications after orthopedic implant surgery despite the advent of new antibiotics and treatment methods. METHODS S. aureus and M. tuberculosis were separately cultured with titanium plates. The bacteria colonized on the plates were isolated and cultured on culture medium. They were evaluated and compared by colony-forming units enumeration. Scanning electron microscopy was used to evaluate the difference in the colonization features of the 2 pathogens. In the in vivo experiment, 22 dogs were used to assess the susceptibility to infection after a local bacterial challenge with either S. aureus or M. tuberculosis. RESULTS S. aureus showed heavy adhesion and multiplication on the surface of titanium plates in vitro, whereas M. tuberculosis rarely adhered to the surface of the plates. Under scanning electron microscopy, S. aureus colonization was observed: the coccoid was widespread on the surface of the plates but only a few M. tuberculosis cells scattered on the surface of the plates. In in vivo test, the infection rateforthe S. aureus inoculation was higher than that for the M. tuberculosis challenge. The infection rate for the entire test population (n = 44 sites) was 39.58% (19/48). The infection rates were 54.17% (13/24) for the S. aureus challenge and 25% (6/24) for the M. tuberculosis challenge, respectively (P < 0.05). CONCLUSION it is less likely for M. tuberculosis to adhere and form a biofilm on an implant surface than S. aureus. Under otherwise identical conditions, M. tuberculosis contamination following instrumented spine surgery might lead to less occurrence of infection than S. aureus contamination.
Collapse
|
27
|
Jabbouri S, Sadovskaya I. Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication ofStaphylococcus epidermidisassociated with medical implant infections. ACTA ACUST UNITED AC 2010; 59:280-91. [DOI: 10.1111/j.1574-695x.2010.00695.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Abstract
Biofilm is a complex aggregation of microorganisms. Biofilm, also called glycocalyx, functions within an extracellular slimy exopolysaccharide material. The morphology and pathogenesis of biofilm as it relates to Staphylococcus epidermidis in orthopaedic implant patients are presented.
Collapse
|
29
|
Hudetz D, Ursic Hudetz S, Harris LG, Luginbühl R, Friederich NF, Landmann R. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants. Clin Microbiol Infect 2009; 14:1135-45. [PMID: 19046165 DOI: 10.1111/j.1469-0691.2008.02096.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, ica is considered to be the major operon responsible for staphylococcal biofilm. The effect of biofilm on susceptibility to staphylococcal infection of different implant materials in vivo is unclear. The interaction of ica-positive (wild-type (WT)) and ica-negative (ica(-)) Staphylococcus aureus and Staphylococcus epidermidis strains with titanium and both smooth and rough stainless steel surfaces was studied by scanning electron microscopy in vitro and in a mouse tissue cage model during 2 weeks following perioperative or postoperative inoculation in vivo. In vitro, WT S. epidermidis adhered equally and more strongly than did WT S. aureus to all materials. Both WT strains, but not ica(-) strains, showed multilayered biofilm. In vivo, 300 CFUs of WT and ica(-)S. aureus led, in all metal cages, to an infection with a high level of planktonic CFUs and only 0.89% adherent CFUs after 8 days. In contrast, 10(6) CFUs of the WT and ica(-) strains were required for postoperative infection with S. epidermidis. In all metal types, planktonic numbers of S. epidermidis dropped to <100 WT, and adherent CFUs were low in WT-infected cages and absent in ica(-)-infected cages after 14 days. Perioperative S. epidermidis inoculation resulted in slower clearance than postoperative inoculation, and in titanium cages adherent WT bacteria survived in higher numbers than ica(-) bacteria. In conclusion, the metal played a minor role in susceptibility to and persistence of staphylococcal infection; the presence of ica genes had a strong effect on biofilm in vitro and a weak effect in vivo; and S. epidermidis was more pathogenic when introduced during implantation than after implantation.
Collapse
Affiliation(s)
- D Hudetz
- Division of Infectious Diseases, Department of Biomedicine, University Hospital, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Stevens NT, Sadovskaya I, Jabbouri S, Sattar T, O'Gara JP, Humphreys H, Greene CM. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2. Cell Microbiol 2008; 11:421-32. [PMID: 19016779 DOI: 10.1111/j.1462-5822.2008.01264.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.
Collapse
Affiliation(s)
- Niall T Stevens
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education & Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Frank KL, Patel R. Staphylococcus lugdunensis — Not the Average Coagulase-Negative Staphylococcus Species. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.clinmicnews.2008.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 2008; 21:111-33. [PMID: 18202439 DOI: 10.1128/cmr.00036-07] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus lugdunensis has gained recognition as an atypically virulent pathogen with a unique microbiological and clinical profile. S. lugdunensis is coagulase negative due to the lack of production of secreted coagulase, but a membrane-bound form of the enzyme present in some isolates can result in misidentification of the organism as Staphylococcus aureus in the clinical microbiology laboratory. S. lugdunensis is a skin commensal and an infrequent pathogen compared to S. aureus and S. epidermidis, but clinically, infections caused by this organism resemble those caused by S. aureus rather than those caused by other coagulase-negative staphylococci. S. lugdunensis can cause acute and highly destructive cases of native valve endocarditis that often require surgical treatment in addition to antimicrobial therapy. Other types of S. lugdunensis infections include abscess and wound infection, urinary tract infection, and infection of intravascular catheters and other implanted medical devices. S. lugdunensis is generally susceptible to antimicrobial agents and shares CLSI antimicrobial susceptibility breakpoints with S. aureus. Virulence factors contributing to this organism's heightened pathogenicity remain largely unknown. Those characterized to date suggest that the organism has the ability to bind to and interact with host cells and to form biofilms on host tissues or prosthetic surfaces.
Collapse
|
33
|
Wagstaff JL, Sadovskaya I, Vinogradov E, Jabbouri S, Howard MJ. Poly-N-acetylglucosamine and poly(glycerol phosphate) teichoic acid identification from staphylococcal biofilm extracts using excitation sculptured TOCSY NMR. MOLECULAR BIOSYSTEMS 2007; 4:170-4. [PMID: 18213410 DOI: 10.1039/b715242f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the successful application of selective excitation sculptured TOCSY NMR (SXS-TOCSY) to identify individual solution components from a heterogeneous system using selectively acquired (1)H NMR spin system patterns. SXS-TOCSY application is illustrated by detection of the simultaneous presence of poly-beta-(1,6)-N-acetylglucosamine (PNAG) and poly(glycerol phosphate) teichoic acid (TA) carbohydrate polymer components in crude biofilm extracts from Staphylococcus epidermidis without the need for further sample purification and component separation. Biofilms are implicated in the barriers for resistance of microbes toward antibiotics and immune responses, therefore efficient rapid detection and quantification of key components are important to assist in the design of a clinical infection response.
Collapse
Affiliation(s)
- Jane L Wagstaff
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent, UKCT2 7NJ
| | | | | | | | | |
Collapse
|
34
|
Potential use of poly-N-acetyl-beta-(1,6)-glucosamine as an antigen for diagnosis of staphylococcal orthopedic-prosthesis-related infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1609-15. [PMID: 17942607 DOI: 10.1128/cvi.00215-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus and coagulase-negative staphylococci are microorganisms most frequently isolated from orthopedic-implant-associated infections. Their capacity to maintain these infections is thought to be related to their ability to form adherent biofilms. Poly-N-acetyl-beta-(1,6)-glucosamine (PNAG) is an important constituent of the extracellular biofilm matrix of staphylococci. In the present study, we explored the possibility of using PNAG as an antigen for detecting antibodies in the blood sera of patients with staphylococcal orthopedic-prosthesis-associated infections. First, we tested the presence of anti-PNAG antibodies in an animal model, in the blood sera of guinea pigs that developed an implant-associated infection caused by biofilm-forming, PNAG-producing strains of Staphylococcus epidermidis. Animals infected with S. epidermidis RP62A showed levels of anti-PNAG immunoglobulin G (IgG) significantly higher than those of the control group. The comparative study of healthy individuals and patients with staphylococcal prosthesis-related infections showed that (i) relatively high levels of anti-PNAG IgG were present in the blood sera of the healthy control group, (ii) the corresponding levels in the infected patients were slightly but not significantly higher, and (iii) only 1 of 10 patients had a level of anti-PNAG IgM significantly higher than that of the control group. In conclusion, the encouraging results obtained in the animal study could not be readily applied for the diagnosis of staphylococcal orthopedic-prosthesis-related infections in humans, and PNAG does not seem to be an appropriate antigen for this purpose. Further studies are necessary to determine whether the developed enzyme-linked immunosorbent assay method could serve as a complementary test in the individual follow-up treatment of such infections caused by PNAG-producing staphylococci.
Collapse
|
35
|
Frank KL, Patel R. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun 2007; 75:4728-42. [PMID: 17635864 PMCID: PMC2044555 DOI: 10.1128/iai.00640-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus lugdunensis is a pathogen of heightened virulence that causes infections resembling those caused by Staphylococcus aureus rather than those caused by its coagulase-negative staphylococcal counterparts. Many types of S. lugdunensis infection, including native valve endocarditis, prosthetic joint infection, and intravascular catheter-related infection, are associated with biofilm etiology. Poly-N-acetylglucosamine (PNAG), a polysaccharide synthesized by products of the icaADBC locus, is a common mechanism of intercellular adhesion in staphylococcal biofilms. Here we report the characterization of ica homologues and the in vitro biofilm formation properties of a collection of S. lugdunensis clinical isolates. Isolates formed biofilms in microtiter wells to various degrees. Biofilm formation by most isolates was enhanced with glucose but diminished by sodium chloride or ethanol. icaADBC homologues were found in all S. lugdunensis isolates tested, although the locus organization differed substantially from that of other staphylococcal ica loci. icaR was not detected in S. lugdunensis, but a novel open reading frame with putative glycosyl hydrolase function is located upstream of the ica locus. icaADBC sequence heterogeneity did not explain the variability in biofilm formation among isolates. PNAG was not detected in S. lugdunensis extracts by immunoblotting with an anti-deacetylated PNAG antibody or wheat germ agglutinin. Confocal microscopy with fluorescently labeled wheat germ agglutinin showed a paucity of PNAG in S. lugdunensis biofilms, but abundant extracellular protein was visualized with SYPRO Ruby staining. Biofilms were resistant to detachment by dispersin B and sodium metaperiodate but were susceptible to detachment by proteases. Despite the genetic presence of icaADBC homologues in S. lugdunensis isolates, PNAG is not a major component of the extracellular matrix of in vitro biofilms formed by this species. Our data suggest that the S. lugdunensis biofilm matrix contains proteinaceous factors.
Collapse
Affiliation(s)
- Kristi L Frank
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
36
|
Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K, Ragunath C, Kher WB, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 2007; 43:1-9. [PMID: 17412552 PMCID: PMC1950449 DOI: 10.1016/j.micpath.2007.02.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 11/17/2022]
Abstract
Most field isolates of the swine pathogen Actinobacillus pleuropneumoniae form tenacious biofilms on abiotic surfaces in vitro. We purified matrix polysaccharides from biofilms produced by A. pleuropneumoniae field isolates IA1 and IA5 (serotypes 1 and 5, respectively), and determined their chemical structures by using NMR spectroscopy. Both strains produced matrix polysaccharides consisting of linear chains of N-acetyl-D-glucosamine (GlcNAc) residues in beta(1,6) linkage (poly-beta-1,6-GlcNAc or PGA). A small percentage of the GlcNAc residues in each polysaccharide were N-deacetylated. These structures were nearly identical to those of biofilm matrix polysaccharides produced by Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. PCR analyses indicated that a gene encoding the PGA-specific glycoside transferase enzyme PgaC was present on the chromosome of 15 out of 15 A. pleuropneumoniae reference strains (serotypes 1-12) and 76 out of 77 A. pleuropneumoniae field isolates (serotypes 1, 5 and 7). A pgaC mutant of strain IA5 failed to form biofilms in vitro, as did wild-type strains IA1 and IA5 when grown in broth supplemented with the PGA-hydrolyzing enzyme dispersin B. Treatment of IA5 biofilms with dispersin B rendered them more sensitive to killing by ampicillin. Our findings suggest that PGA functions as a major biofilm adhesin in A. pleuropneumoniae. Biofilm formation may have relevance to the colonization and pathogenesis of A. pleuropneumoniae in pigs.
Collapse
Affiliation(s)
- Era A. Izano
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Irina Sadovskaya
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies INSERM ERI 002, Université du Littoral-Côte d’Opale, Boulogne-sur-mer 62327, France
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, K1A 0R6 Ontario, Canada
| | - Martha H. Mulks
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | - Chandran Ragunath
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - William B. Kher
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | | | - Saïd Jabbouri
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies INSERM ERI 002, Université du Littoral-Côte d’Opale, Boulogne-sur-mer 62327, France
| | - Malcolm B. Perry
- Institute for Biological Sciences, National Research Council, Ottawa, K1A 0R6 Ontario, Canada
| | - Jeffrey B. Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| |
Collapse
|
37
|
Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 2007; 75:125-32. [PMID: 17221196 DOI: 10.1007/s00253-006-0790-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 11/28/2022]
Abstract
Bacterial infections are serious complications after orthopaedic implant surgery. Staphylococci, with Staphylococcus epidermidis as a leading species, are the prevalent and most important species involved in orthopaedic implant-related infections. The biofilm mode of growth of these bacteria on an implant surface protects the organisms from the host's immune system and from antibiotic therapy. Therapeutic agents that disintegrate the biofilm matrix would release planktonic cells into the environment and therefore allow antibiotics to eliminate the bacteria. An addition of a biofilm-degrading agent to a solution used for washing-draining procedures of infected orthopaedic implants would greatly improve the efficiency of the procedure and thus help to avoid the removal of the implant. We have previously shown that the extracellular staphylococcal matrix consists of a poly-N-acetylglucosamine (PNAG), extracellular teichoic acids (TAs) and protein components. In this study, we accessed the sensitivity of pre-formed biofilms of five clinical staphylococcal strains associated with orthopaedic prosthesis infections and with known compositions of the biofilm matrix to periodate, Pectinex Ultra SP, proteinase K, trypsin, pancreatin and dispersin B, an enzyme with a PNAG-hydrolysing activity. We also tested the effect of these agents on the purified carbohydrate components of staphylococcal biofilms, PNAG and TA. We found that the enzymatic detachment of staphylococcal biofilms depends on the nature of their constituents and varies between the clinical isolates. We suggest that a treatment with dispersin B followed by a protease (proteinase K or trypsin) could be capable to eradicate biofilms of a variety of staphylococcal strains on inert surfaces.
Collapse
Affiliation(s)
- P Chaignon
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral-Côte d'Opale, Bassin Napoléon, BP 120, 62327, Boulogne-sur-Mer Cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Chokr A, Leterme D, Watier D, Jabbouri S. Neither the presence of ica locus, nor in vitro-biofilm formation ability is a crucial parameter for some Staphylococcus epidermidis strains to maintain an infection in a guinea pig tissue cage model. Microb Pathog 2006; 42:94-7. [PMID: 17084581 DOI: 10.1016/j.micpath.2006.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 09/08/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022]
Abstract
The pathogenesis of Staphylococcus epidermidis is thought to be based on its capacity to colonize medical devices by forming a biofilm. Biofilm formation is in part mediated by the polysaccharide intercellular adhesin (PIA), which is encoded by the icaADBC operon. We have previously investigated in vitro the correlation existing between biofilm formation (B+/-), presence of ica locus (I+/-) and PIA production (P+/-) in some clinical isolates of coagulase-negative staphylococci (CoNS). Here, we used a guinea pig model of subcutaneous implanted tissue cages to assess the implication of B, I and P parameters in the capacity of nine S. epidermidis and one S. carnosus strains to develop and maintain an infection in vivo. Using clinical isolates and a model strain of S. epidermidis, we showed that the "B+, I+, P+" type confers the ability to maintain an infection in vivo. Surprisingly, the opposite type "B-, I-, P-" tested with clinical and commensal isolates, presented infection rates ranging from 25% to 60%. Other clinical isolates having a "B+, I+, P-" type, were not able to cause an infection in the present model. These results showed that, depending on the strains the capacity to colonize the tissue cage might be independent of the ability to form biofilm.
Collapse
Affiliation(s)
- Ali Chokr
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Inserm-ERI 002, Université du Littoral Côte d'Opale, Bassin Napoléon, BP 120, 62327 Boulogne sur mer, France
| | | | | | | |
Collapse
|