1
|
Pacyga-Prus K, Sandström C, Šrůtková D, Schwarzer M, Górska S. Phosphorylation-dependent immunomodulatory properties of B.PAT polysaccharide isolated from Bifidobacterium animalis ssp. animalis CCDM 218. Carbohydr Polym 2024; 344:122518. [PMID: 39218543 DOI: 10.1016/j.carbpol.2024.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A wide range of articles describe the role of different probiotics in the prevention or treatment of various diseases. However, currently, the focus is shifting from whole microorganisms to their easier-to-define components that can confer similar or stronger benefits on the host. Here, we aimed to describe polysaccharide B.PAT, which is a surface antigen isolated from Bifidobacterium animalis ssp. animalis CCDM 218 and to understand the relationship between its structure and function. For this reason, we determined its glycerol phosphate-substituted structure, which consists of glucose, galactose, and rhamnose residues creating the following repeating unit: To fully understand the role of glycerol phosphate substitution on the B.PAT function, we prepared the dephosphorylated counterpart (B.MAT) and tested their immunomodulatory properties. The results showed that the loss of glycerol phosphate increased the production of IL-6, IL-10, IL-12, and TNF-α in bone marrow dendritic cells alone and after treatment with Lacticaseibacillus rhamnosus GG. Further studies indicated that dephosphorylation can enhance B.PAT properties to suppress IL-1β-induced inflammatory response in Caco-2 and HT-29 cells. Thus, we suggest that further investigation of B.PAT and B.MAT may reveal distinct functionalities that can be exploited in the treatment of various diseases and may constitute an alternative to probiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga-Prus
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Corine Sandström
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden.
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| |
Collapse
|
2
|
Siwińska M, Zabłotni A, Levina EA, Shashkov AS, Ovchinnikova OG, Różalski A, Knirel YA. The unique structure of bacterial polysaccharides - Immunochemical studies on the O-antigen of Proteus penneri 4034-85 clinical strain classified into a new O83 Proteus serogroup. Int J Biol Macromol 2020; 163:1168-1174. [PMID: 32652158 DOI: 10.1016/j.ijbiomac.2020.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
The serological classification scheme of the opportunistic Proteus bacilli includes a number of Proteus penneri strains. The tested P. penneri 4034-85 strain turned out to be serologically distinguished in ELISA and Western blotting. The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of this strain and studied by sugar and methylation analyses and dephosphorylation along with 1H and 13C NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HSQC, HMBC, and HSQC-TOCSY experiments, The O-polysaccharide was found to have a linear repeating unit containing glycerol 1-phosphate and two residues each of Gal and GlcNAc. The following O-polysaccharide structure was established, which, to our knowledge, is unique among known bacterial polysaccharide structures.
Collapse
Affiliation(s)
- Małgorzata Siwińska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Zabłotni
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Evgeniya A Levina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, 125047 Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Olga G Ovchinnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Antoni Różalski
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
Zabłotni A, Matusiak D, Arbatsky NP, Moryl M, Maciejewska A, Kondakova AN, Shashkov AS, Ługowski C, Knirel YA, Różalski A. Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth. Med Microbiol Immunol 2018; 207:129-139. [PMID: 29330591 PMCID: PMC5878192 DOI: 10.1007/s00430-018-0534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022]
Abstract
The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofilm formation. Lipopolysaccharide was isolated from planktonic and biofilm cells of the investigated strain and analyzed by SDS–PAGE with silver staining, Western blotting and ELISA, as well as NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry techniques. Chemical and NMR spectroscopic analyses revealed that the structure of the O-polysaccharide of P. mirabilis 9B-m strain did not depend on the form of cell growth, but the full-length chains of the O-antigen were reduced when bacteria grew in biofilm. The study also revealed structural modifications of the core region in the lipopolysaccharide of biofilm-associated cells—peaks assigned to compounds absent in cells from the planktonic culture and not previously detected in any of the known Proteus core oligosaccharides. No differences in the lipid A structure were observed. In summary, our study demonstrated for the first time that changes in the lifestyle of P. mirabilis bacteria leads to the modifications of their important virulence factor—lipopolysaccharide.
Collapse
Affiliation(s)
- Agnieszka Zabłotni
- Laboratory of General Microbiology, Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| | - Dominik Matusiak
- Laboratory of General Microbiology, Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Magdalena Moryl
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Anna Maciejewska
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wrocław, Poland
| | - Anna N Kondakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Czesław Ługowski
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wrocław, Poland
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Antoni Różalski
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| |
Collapse
|
4
|
Zdorovenko EL, Kadykova AA, Shashkov AS, Varbanets LD, Bulyhina TV, Knirel YA. Lipopolysaccharide of Pantoea agglomerans 7969: Chemical identification, function and biological activity. Carbohydr Polym 2017; 165:351-358. [PMID: 28363559 DOI: 10.1016/j.carbpol.2017.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
Lipopolysaccharide (LPS) of Pantoea agglomerans 7969 isolated from apple tree was purified and characterized chemically by sugar and fatty acid analysis. Lipid A was analysed by negative-ion mode ESI MS and found to consist mainly of hexa- and tetra-acyl species typical of E. coli lipid A. The O-specific polysaccharide of the LPS was studied by sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. The polysaccharide is built up of linear tetrasaccharide repeating units, and about ∼25% repeats contain glycerol 1-phosphate on the GlcNAc residue: →3)-α-l-Rha p-(1→6)-α-d-Man p-(1→3)-α-d-Fuc p-(1→3)-β-d-Glc pNAc-(1→∼25% Gro-1-P-(O→6)⌋ The LPS showed low levels of toxic and pyrogenic activities and reduced the average adhesion and the index of adhesiveness.
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia.
| | - Alexandra A Kadykova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Ludmila D Varbanets
- D.K. Zabolotny Insitute of Microbiology and Virology of the National Academy of Sciences, 154 Zabolotnoho Str., 03143 Kiev, Ukraine
| | - Tetiana V Bulyhina
- D.K. Zabolotny Insitute of Microbiology and Virology of the National Academy of Sciences, 154 Zabolotnoho Str., 03143 Kiev, Ukraine
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| |
Collapse
|
5
|
Fontana C, Zaccheus M, Weintraub A, Ansaruzzaman M, Widmalm G. Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-16000. Carbohydr Res 2016; 432:41-9. [PMID: 27392309 DOI: 10.1016/j.carres.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed d-Glc, d-GalN, d-QuiN and l-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by (1)H and (13)C NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using (1)H, (13)C, (15)N and (31)P NMR spectroscopy; inter-residue correlations were identified by (1)H,(13)C-heteronuclear multiple-bond correlation, (1)H,(1)H-NOESY and (1)H,(31)P-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: →3)-d-Gro-(1-P-6)-β-d-Glcp-(1→4)-α-l-FucpNAc-(1→3)-β-d-QuipNAc-(1→ with a side-chain consisting of α-d-Glcp-(1→6)-α-d-GalpNAc-(1→ linked to the O3 position of the FucNAc residue.
Collapse
Affiliation(s)
- Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mona Zaccheus
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrej Weintraub
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | | | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
Structure of the alanopine-containing O-polysaccharide and serological cross-reactivity of the lipopolysaccharide of Proteus vulgaris HSC 438 classified into a new Proteus serogroup, O76. Microbiology (Reading) 2013; 159:1036-1043. [DOI: 10.1099/mic.0.067231-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Nazarenko EL, Crawford RJ, Ivanova EP. The structural diversity of carbohydrate antigens of selected gram-negative marine bacteria. Mar Drugs 2011; 9:1914-1954. [PMID: 22073003 PMCID: PMC3210612 DOI: 10.3390/md9101914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria.
Collapse
Affiliation(s)
- Evgeny L. Nazarenko
- Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; E-Mail:
| | - Russell J. Crawford
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia; E-Mail:
| | - Elena P. Ivanova
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia; E-Mail:
| |
Collapse
|
8
|
Phillips NJ, Adin DM, Stabb EV, McFall-Ngai MJ, Apicella MA, Gibson BW. The lipid A from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety. J Biol Chem 2011; 286:21203-19. [PMID: 21498521 PMCID: PMC3122182 DOI: 10.1074/jbc.m111.239475] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Vibrio fischeri, a bioluminescent marine bacterium, exists in an exclusive symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, whose light organ it colonizes. Previously, it has been shown that the lipopolysaccharide (LPS) or free lipid A of V. fischeri can trigger morphological changes in the juvenile squid's light organ that occur upon colonization. To investigate the structural features that might be responsible for this phenomenon, the lipid A from V. fischeri ES114 LPS was isolated and characterized by multistage mass spectrometry (MS(n)). A microheterogeneous mixture of mono- and diphosphorylated diglucosamine disaccharides was observed with variable states of acylation ranging from tetra- to octaacylated forms. All lipid A species, however, contained a set of conserved primary acyl chains consisting of an N-linked C14:0(3-OH) at the 2-position, an unusual N-linked C14:1(3-OH) at the 2'-position, and two O-linked C12:0(3-OH) fatty acids at the 3- and 3'-positions. The fatty acids found in secondary acylation were considerably more variable, with either a C12:0 or C16:1 at the 2-position, C14:0 or C14:0(3-OH) at the 2'-position, and C12:0 or no substituent at the 3'-position. Most surprising was the presence of an unusual set of modifications at the secondary acylation site of the 3-position consisting of phosphoglycerol (GroP), lysophosphatidic acid (GroP bearing C12:0, C16:0, or C16:1), or phosphatidic acid (GroP bearing either C16:0 + C12:0 or C16:0 + C16:1). Given their unusual nature, it is possible that these features of the V. fischeri lipid A may underlie the ability of E. scolopes to recognize its symbiotic partner.
Collapse
Affiliation(s)
- Nancy J. Phillips
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Dawn M. Adin
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Eric V. Stabb
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Margaret J. McFall-Ngai
- the Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael A. Apicella
- the Department of Microbiology, University of Iowa College of Medicine, Iowa City, Iowa 52242, and
| | - Bradford W. Gibson
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
- the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
9
|
Knirel YA, Perepelov AV, Kondakova AN, Senchenkova SN, Sidorczyk Z, Rozalski A, Kaca W. Structure and serology of O-antigens as the basis for classification of Proteus strains. Innate Immun 2010; 17:70-96. [DOI: 10.1177/1753425909360668] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This review is devoted to structural and serological characteristics of the O-antigens (O-polysaccharides) of the lipopolysaccharides of various Proteus species, which provide the basis for classifying Proteus strains to Oserogroups. The antigenic relationships of Proteus strains within and beyond the genus as well as their O-antigenrelated bioactivities are also discussed.
Collapse
Affiliation(s)
- Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia,
| | - Andrei V. Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna N. Kondakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sof'ya N. Senchenkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Zygmunt Sidorczyk
- Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
| | - Antoni Rozalski
- Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
| | - Wieslaw Kaca
- Department of Microbiology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
10
|
Palusiak A, Sidorczyk Z. Serological characterization of the core region of lipopolysaccharides of rough Proteus sp. strains. Arch Immunol Ther Exp (Warsz) 2009; 57:303-10. [DOI: 10.1007/s00005-009-0034-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 10/29/2008] [Indexed: 11/24/2022]
|
11
|
Katzenellenbogen E, Kocharova NA, Korzeniowska-Kowal A, Bogulska M, Rybka J, Gamian A, Kachala VV, Shashkov AS, Knirel YA. Structure of the glycerol phosphate-containing O-specific polysaccharide and serological studies on the lipopolysaccharides of Citrobacter werkmanii PCM 1548 and PCM 1549 (serogroup O14). ACTA ACUST UNITED AC 2008; 54:255-62. [PMID: 18811720 DOI: 10.1111/j.1574-695x.2008.00477.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Citrobacter werkmanii PCM 1548 and PCM 1549 (serogroup O14) and found to contain D-glucose, D-glucosamine and glycerol-1-phosphate in molar ratios 2 : 2 : 1. Based on methylation analysis and 1H and 13C nuclear magnetic resonance spectroscopy data, it was established that the O-specific polysaccharides from both strains have the identical branched tetrasaccharide repeating unit with 3,6-disubstituted GlcNAc, followed by 2,4-disubstituted Glc residues carrying at the branching points lateral residues of Glc and GlcNAc at positions 6 and 2, respectively. Glycerol-1-phosphate is linked to position 6 of the chain Glc. All sugars have a beta configuration, except for the side-chain Glc, which is alpha. Serological studies revealed a close relatedness of the lipopolysaccharides of C. werkmanii PCM 1548 and PCM 1549, both belonging to serogroup O14. In immunoblotting, anti-C. werkmanii PCM 1548 serum showed no cross-reactivity with the O-polysaccharide bands of the lipopolysaccharides of Citrobacter youngae PCM 1550 (serogroup O16) and Hafnia alvei PCM 1207, also containing a lateral glycerol phosphate residue.
Collapse
Affiliation(s)
- Ewa Katzenellenbogen
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Palusiak A, Dzieciatkowska M, Sidorczyk Z. Application of two different kinds of sera against the Proteus penneri lipopolysaccharide core region in search of epitopes determining cross-reactions with antibodies. Arch Immunol Ther Exp (Warsz) 2008; 56:135-40. [PMID: 18373243 PMCID: PMC2766494 DOI: 10.1007/s00005-008-0012-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/25/2007] [Indexed: 11/30/2022]
Abstract
Introduction: Proteus penneri lipopolysaccharide (LPS) core regions are characterized by a greater structural variability than that observed in other Enterobacteriaceae. This fact and the small amount of published data concerning the serological activity of this part of P. penneri LPS prompted an examination of which fragment might determine cross-reactions with antibodies. To date, such epitopes have been found in the LPS core regions of P. mirabilis and P. vulgaris strains. Materials and Methods: Proteus sp. LPSs were tested with unabsorbed rabbit antisera by enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot, and once again by ELISA or passive immunohemolysis after the absorption of these antisera with selected LPSs. Results: The serological studies of P. penneri 8 LPS demonstrated antibodies in the tested antisera recognizing a common epitope located in the core regions of six of the LPSs, i.e. P. penneri 8, 34, 133, 7, 14, and 15. Additionally, another type of antibody directed against some fragment of P. penneri 13 and the core regions of other LPSs investigated was observed in one antiserum. Conclusions: A distal, trisaccharide fragment of the P. penneri 8 LPS core region is suggested to determine the cross-reactions of the tested antisera with the six P. penneri LPSs.
Collapse
Affiliation(s)
- Agata Palusiak
- Department of General Microbiology, Institute of Microbiology and Immunology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | | | |
Collapse
|
13
|
Serological and structural characterization of the O-antigens of the unclassified Proteus mirabilis strains TG 83, TG 319, and CCUG 10700 (OA). Arch Immunol Ther Exp (Warsz) 2008; 55:347-52. [PMID: 18219766 PMCID: PMC2766449 DOI: 10.1007/s00005-007-0040-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Lipopolysaccharide (endotoxin, LPS) is an important potential virulence factor of Proteus rods. The serological specificity of the bacteria is defined by the structure of the O-polysaccharide chain (O-antigen) of the LPS. Until now, 76 O-serogroups have been differentiated among Proteus strains. Materials and Methods: LPSs were isolated from Proteus mirabilis TG 83, TG 319, and CCUG 10700 (OA) strains by phenol/water extraction. Antisera were raised by immunization of rabbits with heat-killed bacteria. Serological investigations were performed using enzyme immunosorbent assay, passive immunohemolysis, inhibition of both assays, absorption of antisera, and Western blot. Results: The cross-reactive epitope shared by these strains and P. penneri O72a,O72b is located on the O-polysaccharide and is most likely associated with an α-D-Glcp-(1→6)-β-D-GalpNAc disaccharide fragment. The serological data indicated the occurrence of two core types in the LPSs studied, one characteristic for P. mirabilis TG 319 and CCUG 10700 (OA) and the other for P. mirabilis TG 83 and O57. Conclusions: The serological and structural data showed that P. mirabilis TG 83, TG 319, CCUG 10700 (OA), and O57 have the same O-antigen structure and could be qualified to the Proteus O57 serogroup.
Collapse
|
14
|
Wang Z, Liu X, Li J, Altman E. Structural characterization of the O-chain polysaccharide of Aeromonas caviae ATCC 15468 lipopolysaccharide. Carbohydr Res 2007; 343:483-8. [PMID: 18068695 DOI: 10.1016/j.carres.2007.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/28/2022]
Abstract
The O-chain polysaccharide produced by a mild acid degradation of Aeromonas caviae ATCC 15468 lipopolysaccharide was found to be composed of L-rhamnose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose and phosphoglycerol. Subsequent methylation and CE-ESIMS analyses and 1D/2D NMR ((1)H, (13)C and (31)P) spectroscopy showed that the O-chain polysaccharide is a high-molecular-mass acidic branched polymer of tetrasaccharide repeating units with a phosphoglycerol substituent having the following structure: [structure: see text] where Gro represents glycerol and P represents a phosphate group.
Collapse
Affiliation(s)
- Zhan Wang
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|