1
|
Hakoupian M, Ferino E, Jickling GC, Amini H, Stamova B, Ander BP, Alomar N, Sharp FR, Zhan X. Bacterial lipopolysaccharide is associated with stroke. Sci Rep 2021; 11:6570. [PMID: 33753837 PMCID: PMC7985504 DOI: 10.1038/s41598-021-86083-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
We aimed to determine if plasma levels of bacterial lipopolysaccharide (LPS) and lipoteichoic acid (LTA) are associated with different causes of stroke and correlate with C-reactive protein (CRP), LPS-binding protein (LBP), and the NIH stroke scale (NIHSS). Ischemic stroke (cardioembolic (CE), large artery atherosclerosis (LAA), small vessel occlusion (SVO)), intracerebral hemorrhage (ICH), transient ischemic attack (TIA) and control subjects were compared (n = 205). Plasma LPS, LTA, CRP, and LBP levels were quantified by ELISA. LPS and CRP levels were elevated in ischemic strokes (CE, LAA, SVO) and ICH compared to controls. LBP levels were elevated in ischemic strokes (CE, LAA) and ICH. LTA levels were increased in SVO stroke compared to TIA but not controls. LPS levels correlated with CRP and LBP levels in stroke and TIA. LPS, LBP and CRP levels positively correlated with the NIHSS and WBC count but negatively correlated with total cholesterol. Plasma LPS and LBP associate with major causes of ischemic stroke and with ICH, whereas LPS/LBP do not associate with TIAs. LTA only associated with SVO stroke. LPS positively correlated with CRP, LBP, and WBC but negatively correlated with cholesterol. Higher LPS levels were associated with worse stroke outcomes.
Collapse
Affiliation(s)
- Marisa Hakoupian
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Eva Ferino
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Hajar Amini
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Boryana Stamova
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Bradley P Ander
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Noor Alomar
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Frank R Sharp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA. .,Department of Neurology and MIND Institute, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Naik P, Joseph J. Difference in Host Immune response to Methicillin-Resistant and Methicillin Sensitive Staphylococcus aureus (MRSA and MSSA) Endophthalmitis. Ocul Immunol Inflamm 2021; 30:1044-1054. [PMID: 33560179 DOI: 10.1080/09273948.2020.1859551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The study aimed to understand the differential immune response of methicillin susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains in in vitro models of endophthalmitis. METHODS Retinal pigment epithelium (RPE) and microglia cells (CHME-3) were exposed to MRSA and MSSA strains and analyzed for expression of inflammatory mediators by real-time quantitative PCR and validated by ELISA or immunofluorescence assay. Heatmap and STRING analysis was used to assess the differential immune expression. RESULTS Both microglia and RPE expressed TLR-2, TLR-1, TLR-6, and TLR -9 after challenge with MRSA and MSSA strains though the expression varied. MRSA-infected cells induced higher expression of IL-1β, IL-8, 1 L-10, IL-6, and GM-CSF, while TNF-α and IFN-ϒ were downregulated in comparison to MSSA-infected cells. We also demonstrate that MRSA infection leads to increased activation of MMP-9 and MMP-2 in RPE cells, while microglia expressed only MMP-9 in MRSA-infected cells. CONCLUSIONS MRSA strain can induce an exacerbated immune response in retinal cells. Giving clues for potential targets in immunomodulatory therapies.
Collapse
Affiliation(s)
- Poonam Naik
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. Neuromolecular Med 2019; 21:205-226. [PMID: 31115795 DOI: 10.1007/s12017-019-08547-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Emerging evidences indicate a critical role of the gut microbiota in etiopathogenesis of dementia, a debilitating multifactorial disorder characterized by progressive deterioration of cognition and behavior that interferes with the social and professional functions of the sufferer. Available data suggest that gut microbiota disorder that triggers development of dementia is characterized by substantial reduction in specific species belonging to the Firmicutes and Bacteroidetes phyla and presence of pathogenic species, predominantly, pro-inflammatory bacteria of the Proteobacteria phylum. These changes in gut microbiota microecology promote the production of toxic metabolites and pro-inflammatory cytokines, and reduction in beneficial substances such as short chain fatty acids and other anti-inflammatory factors, thereby, enhancing destruction of the gut epithelial barrier with concomitant activation of local and distant immune cells as well as dysregulation of enteric neurons and glia. This subsequently leads to blood-brain barrier dysfunctions that trigger neuroinflammatory reactions and predisposes to apoptotic neuronal and glial cell death, particularly in the hippocampus and cerebral cortex, which underlie the development of dementia. However, the molecular switches that control these processes in the histo-hematic barriers of the gut and brain are not exactly known. This review integrates very recent data on the molecular mechanisms that link gut microbiota disorder to gut epithelial and blood-brain barrier dysfunctions, underlying the development of dementia. The signaling pathways that link gut microbiota disorder with impairment in cognition and behavior are also discussed. The review also highlights potential therapeutic options for dementia.
Collapse
|
4
|
Coburn PS, Wiskur BJ, Astley RA, Callegan MC. Blood-Retinal Barrier Compromise and Endogenous Staphylococcus aureus Endophthalmitis. Invest Ophthalmol Vis Sci 2016; 56:7303-11. [PMID: 26559476 DOI: 10.1167/iovs.15-17488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To test the hypothesis that blood-retinal barrier compromise is associated with the development of endogenous Staphylococcus aureus endophthalmitis. METHODS To compromise the blood-retinal barrier in vivo, streptozotocin-induced diabetes was induced in C57BL/6J mice for 1, 3, or 5 months. Diabetic and age-matched nondiabetic mice were intravenously injected with 108 colony-forming units (cfu) of S. aureus, a common cause of endogenous endophthalmitis in diabetics. After 4 days post infection, electroretinography, histology, and bacterial counts were performed. Staphylococcus aureus-induced alterations in in vitro retinal pigment epithelial (RPE) cell barrier structure and function were assessed by anti-ZO-1 immunohistochemistry, FITC-dextran conjugate diffusion, and bacterial transmigration assays. RESULTS We observed one bilateral infection in a control, nondiabetic animal (mean = 1.54 × 103 ± 1.78 × 10² cfu/eye, 7% incidence). Among the 1-month diabetic mice, we observed culture-confirmed unilateral infections in two animals (mean = 5.54 × 10² ± 7.09 × 10² cfu/eye, 12% incidence). Among the 3-month diabetic mice, infections were observed in 11 animals, three with bilateral infections (mean = 2.67 × 10² ± 2.49 × 10² cfu/eye, 58% incidence). Among the 5-month diabetic mice, we observed infections in five animals (mean = 7.88 × 10² ± 1.08 × 10³ cfu/eye, 33% incidence). In vitro, S. aureus infection reduced ZO-1 immunostaining and disrupted the barrier function of cultured RPE cells, resulting in diffusion of fluorophore-conjugated dextrans and transmigration of live bacteria across a permeabilized RPE barrier. CONCLUSIONS Taken together, these results indicated that S. aureus is capable of inducing blood-retinal barrier permeability and causing endogenous bacterial endophthalmitis in normal and diabetic animals.
Collapse
Affiliation(s)
- Phillip S Coburn
- Department of Ophthalmology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Brandt J Wiskur
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger A Astley
- Department of Ophthalmology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle C Callegan
- Department of Ophthalmology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States 2Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States 3Department
| |
Collapse
|
5
|
Differential induction of inflammatory cytokines and reactive oxygen species in murine peritoneal macrophages and resident fresh bone marrow cells by acute staphylococcus aureus infection: contribution of toll-like receptor 2 (TLR2). Inflammation 2015; 38:224-44. [PMID: 25266881 DOI: 10.1007/s10753-014-0026-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Among the known Toll-like receptors (TLRs), Toll-like receptor 2 (TLR2) is a key sensor for detecting Staphylococcus aureus invasion. But the function of TLR2 during S. aureus infection in different cell populations is unclear. Two different cell subtypes were chosen to study the interaction of S. aureus with TLR2 because macrophages are extremely different from one compartment to another and their capacity to respond to live bacteria or bacterial products differs from one site to another. The contribution of TLR2 to the host innate response against acute live S. aureus infection and heat-killed S. aureus (HKSA) using anti-TLR2 antibody in murine peritoneal macrophages and resident fresh bone marrow cells has been investigated here. TLR2 blocking before infection induces the release of interleukin (IL)-10 by macrophages thereby inhibiting excessive production of oxidants by activating antioxidant enzymes. TLR2-blocked peritoneal macrophages showed impaired release of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and IL-6 in response to both live and heat-killed S. aureus infection except bone marrow cells. TLR2-mediated free radical production and killing of S. aureus were modulated by TLR2 blocking in peritoneal macrophages and resident bone marrow cells. This study supported that S. aureus persists in resident bone marrow cells in a state of quiescence.
Collapse
|
6
|
Harding MG, Zhang K, Conly J, Kubes P. Neutrophil crawling in capillaries; a novel immune response to Staphylococcus aureus. PLoS Pathog 2014; 10:e1004379. [PMID: 25299673 PMCID: PMC4192594 DOI: 10.1371/journal.ppat.1004379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/17/2014] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), particularly the USA300 strain, is a highly virulent pathogen responsible for an increasing number of skin and soft tissue infections globally. Furthermore, MRSA-induced soft tissue infections can rapidly progress into life-threatening conditions, such as sepsis and necrotizing fasciitis. The importance of neutrophils in these devastating soft tissue infections remains ambiguous, partly because of our incomplete understanding of their behaviour. Spinning disk confocal microscopy was used to visualize the behaviour of GR1-labelled neutrophils in subcutaneous tissue in response to GFP-expressing MRSA attached to a foreign particle (agarose bead). We observed significant directional neutrophil recruitment towards the S. aureus agarose bead but not a control agarose bead. A significant increase in neutrophil crawling within the capillaries surrounding the infectious nidus was noted, with impaired capillary perfusion in these vessels and increased parenchymal cell death. No neutrophils were able to emigrate from capillaries. The crawling within these capillaries was mediated by the β(2) and α(4) integrins and blocking these integrins 2 hours post infection eliminated neutrophil crawling, improved capillary perfusion, reduced cell death and reduced lesion size. Blocking prior to infection increased pathology. Neutrophil crawling within capillaries during MRSA soft tissue infections, while potentially contributing to walling off or preventing early dissemination of the pathogen, resulted in impaired perfusion and increased tissue injury with time.
Collapse
Affiliation(s)
- Mark Geoffrey Harding
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kunyan Zhang
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Conly
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- The Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
7
|
Kohanawa M, Zhao S, Ozaki M, Haga S, Nan G, Kuge Y, Tamaki N. Contribution of toll-like receptor 2 to the innate response against Staphylococcus aureus infection in mice. PLoS One 2013; 8:e74287. [PMID: 24058538 PMCID: PMC3772844 DOI: 10.1371/journal.pone.0074287] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/30/2013] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus is a common pathogen that causes a wide range of infectious diseases. The function of TLRs, specifically TLR2, during S. aureus infection is still debated. In this study, we investigated the extent to which TLR2 contributes to the host innate response against the bacterial infection using TLR2-deficient mice. Intravenous inoculation with S. aureus resulted in all TLR2-deficient mice dying within 4 d, along with a high bacterial burden in the livers. However, histological examination showed the same degree of macrophage and neutrophil accumulation in the livers of infected TLR2-deficient mice as that in infected wild-type (WT) mice. TLR2-deficient mouse macrophages also showed normal phagocytic activity, although they failed to express CD36 that appeared on the surface of WT mouse cells upon challenge with heat-killed S. aureus. These data indicate that TLR2, as well as CD36, does not directly affect S. aureus clearance and that CD36 expression on macrophages depends on the presence of TLR2. In vivo infection with S. aureus caused significantly elevated production of TNF-α and IL-6 in the livers and blood of TLR2-deficient mice compared with those in WT mice, while the hepatic and serum levels of IL-10 decreased in these mice. In contrast, lower expression of IL-6 and IL-10, but not of TNF-α, at both the gene and protein levels was found in TLR2-deficient mouse macrophages compared to that in WT mouse cells, in response to challenge with heat-killed S. aureus. These findings suggest that the S. aureus-induced pro-inflammatory cytokine response is not dependent on macrophages and that TLR2 deficiency results in decreased IL-10 release by macrophages, which contributes to dysregulated cytokine balance, impaired bacterial clearance, and mouse death. Therefore, TLR2 possesses a protective function during S. aureus infection by regulating pro- and anti-inflammatory cytokine responses.
Collapse
|
8
|
Qiu P, Li Y, Shiloach J, Cui X, Sun J, Trinh L, Kubler-Kielb J, Vinogradov E, Mani H, Al-Hamad M, Fitz Y, Eichacker PQ. Bacillus anthracis cell wall peptidoglycan but not lethal or edema toxins produces changes consistent with disseminated intravascular coagulation in a rat model. J Infect Dis 2013; 208:978-89. [PMID: 23737601 DOI: 10.1093/infdis/jit247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Disseminated intravascular coagulation (DIC) appears to be important in the pathogenesis of Bacillus anthracis infection, but its causes are unclear. Although lethal toxin (LT) and edema toxin (ET) could contribute, B. anthracis cell wall peptidoglycan (PGN), not the toxins, stimulates inflammatory responses associated with DIC. METHODS AND RESULTS To better understand the pathogenesis of DIC during anthrax, we compared the effects of 24-hour infusions of PGN, LT, ET, or diluent (control) on coagulation measures 6, 24, or 48 hours after infusion initiation in 135 rats. No control recipient died. Lethality rates (approximately 30%) did not differ among PGN, LT, and ET recipients (P = .78). Thirty-three of 35 deaths (94%) occurred between 6 and 24 hours after the start of challenge. Among challenge components, PGN most consistently altered coagulation measures. Compared with control at 6 hours, PGN decreased platelet and fibrinogen levels and increased prothrombin and activated partial thromboplastin times and tissue factor, tissue factor pathway inhibitor, protein C, plasminogen activator inhibitor (PAI), and thrombin-antithrombin complex levels, whereas LT and ET only decreased the fibrinogen level or increased the PAI level (P ≤ .05). Nearly all effects associated with PGN infusion significantly differed from changes associated with toxin infusion (P ≤ .05 for all comparisons except for PAI level). CONCLUSION DIC during B. anthracis infection may be related more to components such as PGN than to LT or ET.
Collapse
Affiliation(s)
- Ping Qiu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Franks Z, Campbell RA, Vieira de Abreu A, Holloway JT, Marvin JE, Kraemer BF, Zimmerman GA, Weyrich AS, Rondina MT. Methicillin-resistant Staphylococcus aureus-induced thrombo-inflammatory response is reduced with timely antibiotic administration. Thromb Haemost 2013; 109:684-95. [PMID: 23348831 DOI: 10.1160/th12-08-0543] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 12/15/2012] [Indexed: 11/05/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) induces a pro-thrombotic and pro-inflammatory milieu. Although timely antibiotic administration in MRSAsepsis may improve outcomes by arresting bacterial growth, the effects of antibiotics on mitigating injurious thrombo-inflammatory cellular responses remains unexplored. Using a newly developed human whole blood model and an in vivo mouse model of MRSAinfection, we examined how antibiotics inhibit MRSAinduced thrombo-inflammatory pathways. Human whole blood was inoculated with MRSA. Thrombin generation and inflammatory cytokine synthesis was measured in the presence or absence of linezolid and vancomycin. C57BL/6 mice were injected with MRSA and the effect of vancomycin administration was examined. MRSAaccelerated thrombin generation in a time- and concentration-dependent manner andinduced the release of cytokines, including interleukin (IL)-6, IL-8, and monocyte chemotactic protein (MCP)-1. The increase in thrombin generation and inflammatory responses was mediated through the synthesis of tissue factor and cytokines, respectively, and the release of microparticles. The early administration of antibiotics restored normal thrombin generation patterns and significantly reduced the synthesis of cytokines. In contrast, when antibiotic administration was delayed, thrombin generation and cytokine synthesis were not significantly reduced. In mice infected with MRSA, early antibiotic administration reduced thrombin anti-thrombin complexes and cytokine synthesis, whereas delayed antibiotic administration did not. These data provide novel mechanistic evidence of the importance of prompt antibiotic administration in infectious syndromes.
Collapse
Affiliation(s)
- Zechariah Franks
- University of Utah, Department of Internal Medicine, 50 North Medical Drive, Room 4B120, SLC, Utah 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Selectins and Associated Adhesion Proteins in Inflammatory disorders. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121831 DOI: 10.1007/978-3-7091-1065-2_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is defined as the normal response of living tissue to injury or infection. It is important to emphasize two components of this definition. First, that inflammation is a normal response and, as such, is expected to occur when tissue is damaged. Infact, if injured tissue does not exhibit signs of inflammation this would be considered abnormal and wounds and infections would never heal without inflammation. Secondly, inflammation occurs in living tissue, hence there is need for an adequate blood supply to the tissues in order to exhibit an inflammatory response. The inflammatory response may be triggered by mechanical injury, chemical toxins, and invasion by microorganisms, and hypersensitivity reactions. Three major events occur during the inflammatory response: the blood supply to the affected area is increased substantially, capillary permeability is increased, and leucocytes migrate from the capillary vessels into the surrounding interstitial spaces to the site of inflammation or injury. The inflammatory response represents a complex biological and biochemical process involving cells of the immune system and a plethora of biological mediators. Cell-to-cell communication molecules such as cytokines play an extremely important role in mediating the process of inflammation. Inflammation and platelet activation are critical phenomena in the setting of acute coronary syndromes. An extensive exposition of this complex phenomenon is beyond the scope of this article (Rankin 2004).
Collapse
|
11
|
Seidl K, Bayer AS, McKinnell JA, Ellison S, Filler SG, Xiong YQ. In vitro endothelial cell damage is positively correlated with enhanced virulence and poor vancomycin responsiveness in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Cell Microbiol 2011; 13:1530-41. [PMID: 21777408 PMCID: PMC3173605 DOI: 10.1111/j.1462-5822.2011.01639.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of Staphylococcus aureus infective endocarditis (IE) is postulated to involve invasion and damage of endothelial cells (ECs). However, the precise relationships between S. aureus-EC interactions in vitro and IE virulence and treatment outcomes in vivo are poorly defined. Ten methicillin-resistant S. aureus (MRSA) clinical isolates previously tested for their virulence and vancomycin responsiveness in an experimental IE model were assessed in vitro for their haemolytic activity, protease production, and capacity to invade and damage ECs. There was a significant positive correlation between the in vitro EC damage caused by these MRSA strains and their virulence during experimental IE (in terms of bacterial densities in target tissues; P < 0.02). Importantly, higher EC damage was also significantly correlated with poor microbiological response to vancomycin in the IE model (P < 0.001). Interestingly, the extent of EC damage was unrelated to a strain's ability to invade ECs, haemolytic activity and protease production, or β-toxin gene transcription. Inactivation of the agr locus in two MRSA strains caused ∼20% less damage as compared with the corresponding parental strains, indicating that a functional agr is required for maximal EC damage induction. Thus, MRSA-induced EC damage in vitro is a unique virulence phenotype that is independent of many other prototypical MRSA virulence factors, and may be a key biomarker for predicting MRSA virulence potential and antibiotic outcomes during endovascular infections.
Collapse
Affiliation(s)
- Kati Seidl
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Edwards AM, Massey RC. How does Staphylococcus aureus escape the bloodstream? Trends Microbiol 2011; 19:184-90. [PMID: 21227700 DOI: 10.1016/j.tim.2010.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a major cause of bacteraemia, which frequently leads to infective endocarditis, osteomyelitis, septic arthritis and metastatic abscess formation. The development of these secondary infections is due to bacterial dissemination from the blood into surrounding tissues and is associated with significantly increased morbidity and mortality. Despite the importance of S. aureus extravasation in disease progression, there is relatively little understanding of the molecular mechanisms by which this pathogen crosses the endothelial barrier and establishes new sites of infection. Recent work has identified a number of putative routes by which S. aureus can escape the bloodstream. In this article we review these new developments and set them in the context of strategies used by other established pathogens to traverse cellular barriers.
Collapse
Affiliation(s)
- Andrew M Edwards
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | |
Collapse
|
13
|
Peptidoglycan derived from Staphylococcus epidermidis induces Connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells. Biochem J 2010; 432:133-43. [PMID: 20815816 DOI: 10.1042/bj20091753] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gram-positive bacterial cell wall components including PGN (peptidoglycan) elicit a potent pro-inflammatory response in diverse cell types, including endothelial cells, by activating TLR2 (Toll-like receptor 2) signalling. The functional integrity of the endothelium is under the influence of a network of gap junction intercellular communication channels composed of Cxs (connexins) that also form hemichannels, signalling conduits that are implicated in ATP release and purinergic signalling. PGN modulates Cx expression in a variety of cell types, yet effects in endothelial cells remain unresolved. Using the endothelial cell line b.End5, a 6 h challenge with PGN induced IL-6 (interleukin 6), TLR2 and Cx43 mRNA expression that was associated with enhanced Cx43 protein expression and gap junction coupling. Cx43 hemichannel activity, measured by ATP release from the cells, was induced following 15 min of exposure to PGN. Inhibition of hemichannel activity with carbenoxolone or apyrase prevented induction of IL-6 and TLR2 mRNA expression by PGN, but had no effect on Cx43 mRNA expression levels. In contrast, knockdown of TLR2 expression had no effect on PGN-induced hemichannel activity, but reduced the level of TLR2 and Cx43 mRNA expression following 6 h of PGN challenge. PGN also acutely induced hemichannel activity in HeLa cells transfected to express Cx43, but had no effect in Cx43-deficient HeLa OHIO cells. All ATP responses were blocked with Cx-specific channel blockers. We conclude that acute Cx43 hemichannel signalling plays a role in the initiation of early innate immune responses in the endothelium.
Collapse
|
14
|
Cunha LG, Assis MC, Machado GB, Assef AP, Marques EA, Leão RS, Saliba AM, Plotkowski MC. Potential mechanisms underlying the acute lung dysfunction and bacterial extrapulmonary dissemination during Burkholderia cenocepacia respiratory infection. Respir Res 2010; 11:4. [PMID: 20082687 PMCID: PMC2817657 DOI: 10.1186/1465-9921-11-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/18/2010] [Indexed: 01/06/2023] Open
Abstract
Background Burkholderia cenocepacia, an opportunistic pathogen that causes lung infections in cystic fibrosis (CF) patients, is associated with rapid and usually fatal lung deterioration due to necrotizing pneumonia and sepsis, a condition known as cepacia syndrome. The key bacterial determinants associated with this poor clinical outcome in CF patients are not clear. In this study, the cytotoxicity and procoagulant activity of B. cenocepacia from the ET-12 lineage, that has been linked to the cepacia syndrome, and four clinical isolates recovered from CF patients with mild clinical courses were analysed in both in vitro and in vivo assays. Methods B. cenocepacia-infected BEAS-2B epithelial respiratory cells were used to investigate the bacterial cytotoxicity assessed by the flow cytometric detection of cell staining with propidium iodide. Bacteria-induced procoagulant activity in cell cultures was assessed by a colorimetric assay and by the flow cytometric detection of tissue factor (TF)-bearing microparticles in cell culture supernatants. Bronchoalveolar lavage fluids (BALF) from intratracheally infected mice were assessed for bacterial proinflammatory and procoagulant activities as well as for bacterial cytotoxicity, by the detection of released lactate dehydrogenase. Results ET-12 was significantly more cytotoxic to cell cultures but clinical isolates Cl-2, Cl-3 and Cl-4 exhibited also a cytotoxic profile. ET-12 and CI-2 were similarly able to generate a TF-dependent procoagulant environment in cell culture supernatant and to enhance the release of TF-bearing microparticles from infected cells. In the in vivo assay, all bacterial isolates disseminated from the mice lungs, but Cl-2 and Cl-4 exhibited the highest rates of recovery from mice livers. Interestingly, Cl-2 and Cl-4, together with ET-12, exhibited the highest cytotoxicity. All bacteria were similarly capable of generating a procoagulant and inflammatory environment in animal lungs. Conclusion B. cenocepacia were shown to exhibit cytotoxic and procoagulant activities potentially implicated in bacterial dissemination into the circulation and acute pulmonary decline detected in susceptible CF patients. Improved understanding of the mechanisms accounting for B. cenocepacia-induced clinical decline has the potential to indicate novel therapeutic strategies to be included in the care B. cenocepacia-infected patients.
Collapse
Affiliation(s)
- Luiz G Cunha
- Departamento de Microbiologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|