1
|
Hoque NJ, Weinert EE. Control of bacterial second messenger signaling and motility by heme-based direct oxygen-sensing proteins. Curr Opin Microbiol 2023; 76:102396. [PMID: 37864983 DOI: 10.1016/j.mib.2023.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/23/2023]
Abstract
Bacteria sense and respond to their environment, allowing them to maximize their survival and growth under changing conditions, such as oxygen levels. Direct oxygen-sensing proteins allow bacteria to rapidly sense concentration changes and adapt by regulating signaling pathways and/or cellular machinery. Recent work has identified roles for direct oxygen-sensing proteins in controlling second messenger levels and motility machinery, as well as effects on biofilm formation, virulence, and motility. In this review, we discuss recent progress in understanding O2-dependent regulation of cyclic di-GMP signaling and motility and highlight the emerging importance in controlling bacterial physiology and behavior.
Collapse
Affiliation(s)
- Nushrat J Hoque
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Emily E Weinert
- Department of Chemistry, Penn State University, University Park, PA 16802, USA; Department of Biochemistry & Molecular Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Gastaldi Guerrieri C, Teixeira Gonçalves M, Ferreira da Silva A, Souza Dos Santos AL, Dos Santos KV, Cruz Spano L. Remarkable antibiofilm activity of ciprofloxacin, cefoxitin, and tobramycin, by themselves or in combination, against enteroaggregative Escherichia coli in vitro. Diagn Microbiol Infect Dis 2023; 107:116048. [PMID: 37657231 DOI: 10.1016/j.diagmicrobio.2023.116048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC), a biofilm forming pathogen, causes acute and persistent diarrhea worldwide, requiring antimicrobial therapy in severe or persistent cases. To determine the susceptibility of EAEC biofilm to antimicrobials, as single-agent or combined therapy, biofilm formation was investigated using EAEC clinical strains via peg lid. Of the 78 initially analyzed strains, 35 could form biofilms, 15 (42.9%; 15/35) were resistant to at least 1 tested antimicrobial and 20 (57.1%) were susceptible to all of them in the planktonic form. The biofilms of these susceptible strains were challenged against chosen antimicrobials, and displayed resistance to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, ampicillin, cefotaxime, ceftriaxone (85%-100%), tobramycin (25%), cefoxitin (20%), and ciprofloxacin (5%). Moreover, ciprofloxacin combined with ampicillin, and tobramycin eradicated the biofilm of 2 of the 4 tested strains. Ciprofloxacin, cefoxitin, and tobramycin maintained their activity well against EAEC biofilm, suggesting their possible effectiveness to treat diarrhea caused by biofilm-forming EAEC strains.
Collapse
Affiliation(s)
- Caroline Gastaldi Guerrieri
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
| | - Mariana Teixeira Gonçalves
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Anazi Ferreira da Silva
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - André Luis Souza Dos Santos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kênia Valéria Dos Santos
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Liliana Cruz Spano
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
3
|
Para-Aminobenzoic Acid, Calcium, and c-di-GMP Induce Formation of Cohesive, Syp-Polysaccharide-Dependent Biofilms in Vibrio fischeri. mBio 2021; 12:e0203421. [PMID: 34607467 PMCID: PMC8546588 DOI: 10.1128/mbio.02034-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The marine bacterium Vibrio fischeri efficiently colonizes its symbiotic squid host, Euprymna scolopes, by producing a transient biofilm dependent on the symbiosis polysaccharide (SYP). In vitro, however, wild-type strain ES114 fails to form SYP-dependent biofilms. Instead, genetically engineered strains, such as those lacking the negative regulator BinK, have been developed to study this phenomenon. Historically, V. fischeri has been grown using LBS, a complex medium containing tryptone and yeast extract; supplementation with calcium is required to induce biofilm formation by a binK mutant. Here, through our discovery that yeast extract inhibits biofilm formation, we uncover signals and underlying mechanisms that control V. fischeri biofilm formation. In contrast to its inability to form a biofilm on unsupplemented LBS, a binK mutant formed cohesive, SYP-dependent colony biofilms on tTBS, modified LBS that lacks yeast extract. Moreover, wild-type strain ES114 became proficient to form cohesive, SYP-dependent biofilms when grown in tTBS supplemented with both calcium and the vitamin para-aminobenzoic acid (pABA); neither molecule alone was sufficient, indicating that this phenotype relies on coordinating two cues. pABA/calcium supplementation also inhibited bacterial motility. Consistent with these phenotypes, cells grown in tTBS with pABA/calcium were enriched in transcripts for biofilm-related genes and predicted diguanylate cyclases, which produce the second messenger cyclic-di-GMP (c-di-GMP). They also exhibited elevated levels of c-di-GMP, which was required for the observed phenotypes, as phosphodiesterase overproduction abrogated biofilm formation and partially rescued motility. This work thus provides insight into conditions, signals, and processes that promote biofilm formation by V. fischeri.
Collapse
|
4
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
5
|
Suchanek VM, Esteban-López M, Colin R, Besharova O, Fritz K, Sourjik V. Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli. Mol Microbiol 2019; 113:728-739. [PMID: 31793092 DOI: 10.1111/mmi.14438] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Indexed: 12/18/2022]
Abstract
Attachment to surfaces is an important early step during bacterial infection and during formation of submerged biofilms. Although flagella-mediated motility is known to be important for attachment of Escherichia coli and other bacteria, implications of motility regulation by cellular signalling remain to be understood. Here, we show that motility largely promotes attachment of E. coli, including that mediated by type 1 fimbriae, by allowing cells to reach, get hydrodynamically trapped at and explore the surface. Inactivation or inhibition of the chemotaxis signalling pathway improves attachment by suppressing cell reorientations and thereby increasing surface residence times. The attachment is further enhanced by deletion of genes encoding the cyclic diguanosine monophosphate (c-di-GMP)-dependent flagellar brake YcgR or the diguanylate cyclase DgcE. Such increased attachment in absence of c-di-GMP signalling is in contrast to its commonly accepted function as a positive regulator of the sessile state. It is apparently due to the increased swimming speed of E. coli in absence of YcgR-mediated motor control, which strengthens adhesion mediated by the type 1 fimbriae. Thus, both signalling networks that regulate motility of E. coli also control its engagement with both biotic and abiotic surfaces, which has likely implications for infection and biofilm formation.
Collapse
Affiliation(s)
- Verena Maria Suchanek
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - María Esteban-López
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Rémy Colin
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Olga Besharova
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Kirstin Fritz
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| |
Collapse
|
6
|
Lengalova A, Fojtikova-Proskova V, Vavra J, Martínek V, Stranava M, Shimizu T, Martinkova M. Kinetic analysis of a globin-coupled diguanylate cyclase, YddV: Effects of heme iron redox state, axial ligands, and heme distal mutations on catalysis. J Inorg Biochem 2019; 201:110833. [PMID: 31520879 DOI: 10.1016/j.jinorgbio.2019.110833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Heme-based oxygen sensors allow bacteria to regulate their activity based on local oxygen levels. YddV, a globin-coupled oxygen sensor with diguanylate cyclase activity from Escherichia coli, regulates cyclic-di-GMP synthesis based on oxygen availability. Stable and active samples of the full-length YddV protein were prepared by attaching it to maltose binding protein (MBP). To better understand the full-length protein's structure, the interactions between its domains were examined by performing a kinetic analysis. The diguanylate cyclase reaction catalyzed by YddV-MBP exhibited Michaelis-Menten kinetics. Its pH optimum was 8.5-9.0, and catalysis required either Mg2+ or Mn2+; other divalent metal ions gave no activity. The most active form of YddV-MBP had a 5-coordinate Fe(III) heme complex; its kinetic parameters were KmGTP 84 ± 21 μM and kcat 1.2 min-1. YddV-MBP with heme Fe(II), heme Fe(II)-O2, and heme Fe(II)-CO complexes had kcat values of 0.3 min-1, 0.95 min-1, and 0.3 min-1, respectively, suggesting that catalysis is regulated by the heme iron's redox state and axial ligand binding. The kcat values for heme Fe(III) complexes of L65G, L65Q, and Y43A YddV-MBP mutants bearing heme distal amino acid replacements were 0.15 min-1, 0.26 min-1 and 0.54 min-1, respectively, implying that heme distal residues play key regulatory roles by mediating signal transduction between the sensing and functional domains. Ultracentrifugation and size exclusion chromatography experiments showed that YddV-MBP is primarily dimeric in solution, with a sedimentation coefficient around 8. The inactive heme-free H93A mutant is primarily octameric, suggesting that catalytically active dimer formation requires heme binding.
Collapse
Affiliation(s)
- Alzbeta Lengalova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Veronika Fojtikova-Proskova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Jakub Vavra
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Martin Stranava
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Marketa Martinkova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic.
| |
Collapse
|
7
|
Gilles-Gonzalez MA, Sousa EHS. Escherichia coli DosC and DosP: a role of c-di-GMP in compartmentalized sensing by degradosomes. Adv Microb Physiol 2019; 75:53-67. [PMID: 31655742 DOI: 10.1016/bs.ampbs.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli operon dosCP, also called yddV-yddU, co-expresses two heme proteins, DosC and DosP, both of which are direct oxygen sensors but paradoxically have opposite effects on the levels of the second messenger c-di-GMP. DosC is a diguanylate cyclase that synthesizes c-di-GMP from GTP, whereas DosP is a phosphodiesterase that linearizes c-di-GMP to pGpG. Both proteins are associated with the large degradosome enzyme complex that regulates many bacterial genes post-transcriptionally by processing or degrading the corresponding RNAs. Moreover, the c-di-GMP directly binds to PNPase, a key degradosome enzyme, and enhances its activity. This review combines biochemical, biophysical, and genetic findings on DosC and DosP, a task that has not been undertaken until now, partly because of the varied nomenclature. The DosC and DosP system is examined in the context of the current knowledge of degradosomes and considered as a possible prototype for the compartmentalization of sensing by E. coli.
Collapse
Affiliation(s)
| | - Eduardo H S Sousa
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Center for Sciences, Fortaleza, Ceara, Brazil
| |
Collapse
|
8
|
Rossi E, Paroni M, Landini P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J Appl Microbiol 2018; 125:1587-1602. [PMID: 30153375 DOI: 10.1111/jam.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Most bacteria can switch between a planktonic, sometimes motile, form and a biofilm mode, in which bacterial cells can aggregate and attach to a solid surface. The transition between these two forms represents an example of bacterial adaptation to environmental signals and stresses. In 'environmental pathogens', namely, environmental bacteria that are also able to cause disease in animals and humans, signals associated either with the host or with the external environment, such as temperature, oxygen availability, nutrient concentrations etc., play a major role in triggering the switch between the motile and the biofilm mode, via complex regulatory mechanisms that control flagellar synthesis and motility, and production of adhesion factors. In this review article, we present examples of how environmental signals can impact biofilm formation and cell motility in the Gram negative bacteria Pseudomonas aeruginosa, Escherichia coli and in the Burkholderia genus, and how the switch between motile and biofilm mode can be an essential part of a more general process of adaptation either to the host or to the external environment.
Collapse
Affiliation(s)
- E Rossi
- Department of Clinical Microbiology, Rigshospitalet, København, Denmark
| | - M Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - P Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Markova JA, Anganova EV, Turskaya AL, Bybin VA, Savilov ED. Regulation of Escherichia coli Biofilm Formation (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818010040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Cimdins A, Simm R, Li F, Lüthje P, Thorell K, Sjöling Å, Brauner A, Römling U. Alterations of c-di-GMP turnover proteins modulate semi-constitutive rdar biofilm formation in commensal and uropathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28913868 PMCID: PMC5635171 DOI: 10.1002/mbo3.508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
Agar plate‐based biofilm of enterobacteria like Escherichia coli is characterized by expression of the extracellular matrix components amyloid curli and cellulose exopolysaccharide, which can be visually enhanced upon addition of the dye Congo Red, resulting in a red, dry, and rough (rdar) colony morphology. Expression of the rdar morphotype depends on the transcriptional regulator CsgD and occurs predominantly at ambient temperature in model strains. In contrast, commensal and pathogenic isolates frequently express the csgD‐dependent rdar morphotype semi‐constitutively, also at human host body temperature. To unravel the molecular basis of temperature‐independent rdar morphotype expression, biofilm components and c‐di‐GMP turnover proteins of seven commensal and uropathogenic E. coli isolates were analyzed. A diversity within the c‐di‐GMP signaling network was uncovered which suggests alteration of activity of the trigger phosphodiesterase YciR to contribute to (up)regulation of csgD expression and consequently semi‐constitutive rdar morphotype development.
Collapse
Affiliation(s)
- Annika Cimdins
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Simm
- Norwegian Veterinary Institute, Oslo, Norway
| | - Fengyang Li
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Lüthje
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP. Proc Natl Acad Sci U S A 2017; 114:E5236-E5245. [PMID: 28607054 DOI: 10.1073/pnas.1700264114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diverse organisms secrete redox-active antibiotics, which can be used as extracellular electron shuttles by resistant microbes. Shuttle-mediated metabolism can support survival when substrates are available not locally but rather at a distance. Such conditions arise in multicellular communities, where the formation of chemical gradients leads to resource limitation for cells at depth. In the pathogenic bacterium Pseudomonas aeruginosa PA14, antibiotics called phenazines act as oxidants to balance the intracellular redox state of cells in anoxic biofilm subzones. PA14 colony biofilms show a profound morphogenic response to phenazines resulting from electron acceptor-dependent inhibition of ECM production. This effect is reminiscent of the developmental responses of some eukaryotic systems to redox control, but for bacterial systems its mechanistic basis has not been well defined. Here, we identify the regulatory protein RmcA and show that it links redox conditions to PA14 colony morphogenesis by modulating levels of bis-(3',5')-cyclic-dimeric-guanosine (c-di-GMP), a second messenger that stimulates matrix production, in response to phenazine availability. RmcA contains four Per-Arnt-Sim (PAS) domains and domains with the potential to catalyze the synthesis and degradation of c-di-GMP. Our results suggest that phenazine production modulates RmcA activity such that the protein degrades c-di-GMP and thereby inhibits matrix production during oxidizing conditions. RmcA thus forms a mechanistic link between cellular redox sensing and community morphogenesis analogous to the functions performed by PAS-domain-containing regulatory proteins found in complex eukaryotes.
Collapse
|
12
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
13
|
Burns JL, Rivera S, Deer DD, Joynt SC, Dvorak D, Weinert EE. Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry 2016; 55:6642-6651. [PMID: 27933792 DOI: 10.1021/acs.biochem.6b00526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria sense their environment to alter phenotypes, including biofilm formation, to survive changing conditions. Heme proteins play important roles in sensing the bacterial gaseous environment and controlling the switch between motile and sessile (biofilm) states. Globin coupled sensors (GCS), a family of heme proteins consisting of a globin domain linked by a central domain to an output domain, are often found with diguanylate cyclase output domains that synthesize c-di-GMP, a major regulator of biofilm formation. Characterization of diguanylate cyclase-containing GCS proteins from Bordetella pertussis and Pectobacterium carotovorum demonstrated that cyclase activity is controlled by ligand binding to the heme within the globin domain. Both O2 binding to the heme within the globin domain and c-di-GMP binding to a product-binding inhibitory site (I-site) within the cyclase domain control oligomerization states of the enzymes. Changes in oligomerization state caused by c-di-GMP binding to the I-site also affect O2 kinetics within the globin domain, suggesting that shifting the oligomer equilibrium leads to broad rearrangements throughout the protein. In addition, mutations within the I-site that eliminate product inhibition result in changes to the accessible oligomerization states and decreased catalytic activity. These studies provide insight into the mechanism by which ligand binding to the heme and I-site controls activity of GCS proteins and suggests a role for oligomerization-dependent activity in vivo.
Collapse
Affiliation(s)
- Justin L Burns
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Shannon Rivera
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - D Douglas Deer
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Shawnna C Joynt
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - David Dvorak
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Emily E Weinert
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| |
Collapse
|
14
|
Abstract
Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies.
Collapse
Affiliation(s)
- Joke Donné
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Tarnawski M, Barends TRM, Schlichting I. Structural analysis of an oxygen-regulated diguanylate cyclase. ACTA ACUST UNITED AC 2015; 71:2158-77. [PMID: 26527135 DOI: 10.1107/s139900471501545x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022]
Abstract
Cyclic di-GMP is a bacterial second messenger that is involved in switching between motile and sessile lifestyles. Given the medical importance of biofilm formation, there has been increasing interest in understanding the synthesis and degradation of cyclic di-GMPs and their regulation in various bacterial pathogens. Environmental cues are detected by sensing domains coupled to GGDEF and EAL or HD-GYP domains that have diguanylate cyclase and phosphodiesterase activities, respectively, producing and degrading cyclic di-GMP. The Escherichia coli protein DosC (also known as YddV) consists of an oxygen-sensing domain belonging to the class of globin sensors that is coupled to a C-terminal GGDEF domain via a previously uncharacterized middle domain. DosC is one of the most strongly expressed GGDEF proteins in E. coli, but to date structural information on this and related proteins is scarce. Here, the high-resolution structural characterization of the oxygen-sensing globin domain, the middle domain and the catalytic GGDEF domain in apo and substrate-bound forms is described. The structural changes between the iron(III) and iron(II) forms of the sensor globin domain suggest a mechanism for oxygen-dependent regulation. The structural information on the individual domains is combined into a model of the dimeric DosC holoprotein. These findings have direct implications for the oxygen-dependent regulation of the activity of the cyclase domain.
Collapse
Affiliation(s)
- Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Rossi E, Motta S, Mauri P, Landini P. Sulfate assimilation pathway intermediate phosphoadenosine 59-phosphosulfate acts as a signal molecule affecting production of curli fibres in Escherichia coli. MICROBIOLOGY-SGM 2015; 160:1832-1844. [PMID: 24934621 DOI: 10.1099/mic.0.079699-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The enterobacterium Escherichia coli can utilize a variety of molecules as sulfur sources, including cysteine, sulfate, thiosulfate and organosulfonates. An intermediate of the sulfate assimilation pathway, adenosine 59-phosphosulfate (APS), also acts as a signal molecule regulating the utilization of different sulfur sources. In this work, we show that inactivation of the cysH gene, leading to accumulation of phosphoadenosine 59-phosphosulfate (PAPS), also an intermediate of the sulfate assimilation pathway, results in increased surface adhesion and cell aggregation by activating the expression of the curli-encoding csgBAC operon. In contrast, curli production was unaffected by the inactivation of any other gene belonging to the sulfate assimilation pathway. Overexpression of the cysH gene downregulated csgBAC transcription, further suggesting a link between intracellular PAPS levels and curli gene expression. In addition to curli components, the Flu, OmpX and Slp proteins were also found in increased amounts in the outer membrane compartment of the cysH mutant; deletion of the corresponding genes suggested that these proteins also contribute to surface adhesion and cell surface properties in this strain. Our results indicate that, similar to APS, PAPS also acts as a signal molecule, albeit with a distinct mechanism and role: whilst APS regulates organosulfonate utilization, PAPS would couple availability of sulfur sources to remodulation of the cell surface, as part of a more global effect on cell physiology.
Collapse
Affiliation(s)
- Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Sara Motta
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| |
Collapse
|
17
|
Anwar N, Rouf SF, Römling U, Rhen M. Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615. PLoS One 2014; 9:e106095. [PMID: 25153529 PMCID: PMC4143323 DOI: 10.1371/journal.pone.0106095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3′, 5′-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators.
Collapse
Affiliation(s)
- Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
19
|
Su F, Ou HY, Tao F, Tang H, Xu P. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes. BMC Genomics 2013; 14:924. [PMID: 24373418 PMCID: PMC3882776 DOI: 10.1186/1471-2164-14-924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Results Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. Conclusions PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.
Collapse
Affiliation(s)
| | | | | | | | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, P,R, China.
| |
Collapse
|
20
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1228] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
21
|
The influence of CsgD on the expression of genes of folate metabolism and hmp in Escherichia coli K-12. Arch Microbiol 2013; 195:559-69. [PMID: 23824318 DOI: 10.1007/s00203-013-0909-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/04/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The csgD gene codes for the regulatory protein CsgD. CsgD upregulates the synthesis of the adhesive fimbriae, curli, that are important for biofilm formation and downregulates flagellar synthesis. We compared the expression of genes involved in folate metabolism and a gene (hmp) in strains with an intact csgD gene and with a deletion in csgD. The hmp gene codes a flavohemoglobin that inactivates nitric oxide. Expression was monitored by measuring light production from single copy lux operon fusions. At late times of growth, expression of genes responsible for methylene tetrahydrofolate synthesis (glyA and gcvTHP) and formyltetrahydrofolate recycling (purU) was higher in cells with CsgD than those without. In contrast, expression of hmp was lower in the presence of CsgD throughout the period monitored. We used a novel defined medium which should assist in defining nutritional factors that contribute to curli formation.
Collapse
|
22
|
Dubrovin EV, Koroleva ON, Khodak YA, Kuzmina NV, Yaminsky IV, Drutsa VL. AFM study of Escherichia coli RNA polymerase σ⁷⁰ subunit aggregation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2011; 8:54-62. [PMID: 21703992 DOI: 10.1016/j.nano.2011.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED The self-assembly of Escherichia coli RNA polymerase σ⁷⁰ subunit was investigated using several experimental approaches. A novel rodlike shape was reported for σ⁷⁰ subunit aggregates. Atomic force microscopy reveals that these aggregates, or σ⁷⁰ polymers, have a straight rodlike shape 5.4 nm in diameter and up to 300 nm in length. Atomic force microscopy data, Congo red binding assay, and sodium dodecyl sulfate gel electrophoresis confirm the amyloid nature of observed aggregates. The process of formation of rodlike structures proceeds spontaneously under nearly physiological conditions. E. coli RNA polymerase σ⁷⁰ subunit may be an interesting object for investigation of amyloidosis as well as for biotechnological applications that exploit self-assembled bionanostructures. Polymerization of σ⁷⁰ subunit may be a competitive process with its three-dimensional crystallization and association with core RNA polymerase. FROM THE CLINICAL EDITOR In this basic science study, the self-assembly of Escherichia coli RNA polymerase σ⁷⁰( subunit was investigated using atomic force microscopy and other complementary approaches.
Collapse
Affiliation(s)
- Evgeniy V Dubrovin
- Department of Physics of Polymers and Crystals, Faculty of Physics, Moscow State University, Russia.
| | | | | | | | | | | |
Collapse
|
23
|
Distinct acid resistance and survival fitness displayed by Curli variants of enterohemorrhagic Escherichia coli O157:H7. Appl Environ Microbiol 2011; 77:3685-95. [PMID: 21478320 DOI: 10.1128/aem.02315-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Curli are adhesive fimbriae of Enterobacteriaceae and are involved in surface attachment, cell aggregation, and biofilm formation. Here, we report that both inter- and intrastrain variations in curli production are widespread in enterohemorrhagic Escherichia coli O157:H7. The relative proportions of curli-producing variants (C(+)) and curli-deficient variants (C(-)) in an E. coli O157:H7 cell population varied depending on the growth conditions. In variants derived from the 2006 U.S. spinach outbreak strains, the shift between the C(+) and C(-) subpopulations occurred mostly in response to starvation and was unidirectional from C(-) to C(+); in variants derived from the 1993 hamburger outbreak strains, the shift occurred primarily in response to oxygen depletion and was bidirectional. Furthermore, curli variants derived from the same strain displayed marked differences in survival fitness: C(+) variants grew to higher concentrations in nutrient-limited conditions than C(-) variants, whereas C(-) variants were significantly more acid resistant than C(+) variants. This difference in acid resistance does not appear to be linked to the curli fimbriae per se, since a csgA deletion mutant in either a C(+) or a C(-) variant exhibited an acid resistance similar to that of its parental strain. Our data suggest that natural curli variants of E. coli O157:H7 carry several distinct physiological properties that are important for their environmental survival. Maintenance of curli variants in an E. coli O157:H7 population may provide a survival strategy in which C(+) variants are selected in a nutrient-limited environment, whereas C(-) variants are selected in an acidic environment, such as the stomach of an animal host, including that of a human.
Collapse
|
24
|
Sanchez-Torres V, Hu H, Wood TK. GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Appl Microbiol Biotechnol 2010; 90:651-8. [PMID: 21181144 DOI: 10.1007/s00253-010-3074-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/14/2023]
Abstract
The second messenger 3'-5'-cyclic diguanylic acid (c-di-GMP) promotes biofilm formation, and c-di-GMP is synthesized by diguanylate cyclases (characterized by a GGDEF domain) and degraded by phosphodiesterases. Here, we evaluated the effect of the 12 E. coli GGDEF-only proteins on biofilm formation and motility. Deletions of the genes encoding the GGDEF proteins YeaI, YedQ, YfiN, YeaJ, and YneF increased swimming motility as expected for strains with reduced c-di-GMP. Alanine substitution in the EGEVF motif of YeaI abolished its impact on swimming motility. In addition, extracellular DNA (eDNA) was increased as expected for the deletions of yeaI (tenfold), yedQ (1.8-fold), and yfiN (3.2-fold). As a result of the significantly enhanced motility, but contrary to current models of decreased biofilm formation with decreased diguanylate cyclase activity, early biofilm formation increased dramatically for the deletions of yeaI (30-fold), yedQ (12-fold), and yfiN (18-fold). Our results indicate that YeaI, YedQ, and YfiN are active diguanylate cyclases that reduce motility, eDNA, and early biofilm formation and contrary to the current paradigm, the results indicate that c-di-GMP levels should be reduced, not increased, for initial biofilm formation so c-di-GMP levels must be regulated in a temporal fashion in biofilms.
Collapse
Affiliation(s)
- Viviana Sanchez-Torres
- Department of Chemical Engineering, Texas A & M University, 220 Jack E. Brown Building, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
25
|
Tagliabue L, Antoniani D, Maciąg A, Bocci P, Raffaelli N, Landini P. The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. MICROBIOLOGY-SGM 2010; 156:2901-2911. [PMID: 20576684 DOI: 10.1099/mic.0.041350-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Gram-negative bacteria, production of adhesion factors and extracellular polysaccharides (EPS) is promoted by the activity of diguanylate cyclases (DGCs), a class of enzymes able to catalyse the synthesis of the signal molecule bis-(3',5')-cyclic di-guanylic acid (c-di-GMP). In this report we show that in Escherichia coli, overexpression of the YddV protein, but not of other DGCs such as AdrA and YcdT, induces the production of the EPS poly-N-acetylglucosamine (PNAG) by stimulating expression of pgaABCD, the PNAG-biosynthetic operon. Stimulation of PNAG production and activation of pgaABCD expression by the YddV protein are abolished by inactivation of its GGDEF motif, responsible for DGC activity. Consistent with the effects of YddV overexpression, inactivation of the yddV gene negatively affects pgaABCD transcription and PNAG-mediated biofilm formation. pgaABCD regulation by the yddV gene also takes place in a mutant carrying a partial deletion of the csrA gene, which encodes the main regulator of pgaABCD expression, suggesting that YddV does not regulate pgaABCD through modulation of CsrA activity. Our results demonstrate that PNAG production does not simply respond to intracellular c-di-GMP concentration, but specifically requires the DGC activity of the YddV protein, thus supporting the notion that in E. coli, c-di-GMP biosynthesis by a given DGC protein triggers regulatory events that lead to activation of specific sets of EPS biosynthetic genes or proteins.
Collapse
Affiliation(s)
- Letizia Tagliabue
- Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Davide Antoniani
- Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Anna Maciąg
- Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Paola Bocci
- Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Via Ranieri, 60131 Ancona, Italy
| | - Nadia Raffaelli
- Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Via Ranieri, 60131 Ancona, Italy
| | - Paolo Landini
- Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|