1
|
Kubo S, Miyakawa M, Tada A, Oda H, Motobayashi H, Iwabuchi S, Tamura S, Tanaka M, Hashimoto S. Lactoferrin and its digestive peptides induce interferon-α production and activate plasmacytoid dendritic cells ex vivo. Biometals 2022; 36:563-573. [PMID: 36018422 PMCID: PMC10181974 DOI: 10.1007/s10534-022-00436-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) recognise viral single-stranded RNA (ssRNA) or CpG DNA via Toll-like receptor (TLR)-7 and TLR9, and produce interferon (IFN)-α. Activated pDCs upregulate human leukocyte antigen (HLA)-DR and CD86 expression levels. Ingestion of bovine lactoferrin (LF) activates pDCs, but little is known about its effects. In this study, the effects of LF and its pepsin hydrolysate (LFH) on the production of IFN-α from peripheral blood mononuclear cells (PBMCs) and pDCs were examined. PBMCs were prepared from peripheral blood of healthy adults and incubated with LF, LFH, or lactoferricin (LFcin) in the absence or presence of ssRNA derived from human immunodeficiency virus. The concentration of IFN-α in the supernatant and the expression levels of IFN-α, HLA-DR, and CD86 in pDCs were quantified by enzyme-linked immunosorbent assay and flow cytometry. In the absence of ssRNA, the concentration of IFN-α was negligible and LF had no effect on it. In the presence of ssRNA, IFN-α was detected at a certain level, and LF and LFH significantly increased its concentration. The increase caused by LFH and LFcin were comparable. In addition, LF significantly upregulated the expression levels of IFN-α, HLA-DR, and CD86 in pDCs. LF and its digestive peptides induced IFN-α production and activated pDCs in the presence of ssRNA, suggesting that LF modulates the immune system by promoting pDC activation upon viral recognition.
Collapse
Affiliation(s)
- Shutaro Kubo
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan.
| | - Momoko Miyakawa
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Asuka Tada
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Hirotsugu Oda
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Hideki Motobayashi
- Second Department of Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| | - Miyuki Tanaka
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 1-83, 5, Higashihara, Zama, Kanagawa, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, Japan
| |
Collapse
|
2
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
3
|
Zuo NY, Zhang YD, Dong QW, Han LP. Relationship between myocardial enzyme levels, hepatic function and metabolic acidosis in children with rotavirus infection diarrhea. Pak J Med Sci 2020; 36:1366-1370. [PMID: 32968410 PMCID: PMC7501046 DOI: 10.12669/pjms.36.6.2325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: To investigate the relationship between myocardial enzymes, liver function and metabolic acidosis in children with rotavirus infection diarrhea. Methods: The data of 70 children with infectious diarrhea treated in Baoding Children’s Hospital, China, from October 2017 to April 2018 were retrospectively studied. The antigen of rotavirus in feces was positive by colloidal gold method. According to the clinical features of biochemical indicators and mental status, the patients were divided into four groups, an acidosis-free group, a mild acidosis group, a moderate acidosis group and a severe acidosis group, in line with acidosis severity. In addition to detecting the hepatic functions of the pediatric patients in the four groups, including aspartate aminotransferase (AST), alanine aminotransfer (ALT) levels, and myocardial enzyme levels (e.g., creatine kinase, or CK, and creatine kinase isoenzyme, or CK-MB), the relationships of hepatic function, myocardial enzyme levels and acidosis severity of the patients with infectious diarrhea caused by rotavirus infection were also analyzed. Results: There was no significant difference in sex and age among the four groups (P>0.05). However, there was a significant difference in the frequency of diarrhea and vomiting (p<0.05). In addition, there were significant differences in creatine kinase, CK-MB, AST and ALT levels in children with metabolic acidosis of different severities. Conclusion: With the aggravation of metabolic acidosis, infectious diarrhea caused by rotavirus is characterized by the aggravation of hepatic function and myocardial cells.
Collapse
Affiliation(s)
- Na-Ying Zuo
- Na-ying Zuo, Department of Gastroenterology, Baoding Children's Hospital, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| | - Yuan-da Zhang
- Yuan-da Zhang, Department of Gastroenterology, Baoding Children's Hospital, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| | - Qing-Wei Dong
- Qing-wei Dong, Department of Gastroenterology, Baoding Children's Hospital, Baoding, Hebei, 071000, P.R. China; Key Laborary of Clinical Research on Respiratory Digestive Disease, Hebei Baoding, 071000, China
| | - Li-Po Han
- Li-po Han, Dept. of Ophthalmology, Baoding Children's Hospital, Baoding, Hebei, 071000, P.R. China
| |
Collapse
|
4
|
Justino MCA, Campos EA, Mascarenhas JDP, Soares LS, Guerra SDFS, Furlaneto IP, Pavão MJC, Maciel TS, Farias FP, Bezerra OM, Vinente CBG, Barros RJS, Linhares AC. Rotavirus antigenemia as a common event among children hospitalised for severe, acute gastroenteritis in Belém, northern Brazil. BMC Pediatr 2019; 19:193. [PMID: 31189470 PMCID: PMC6560848 DOI: 10.1186/s12887-019-1535-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Rotavirus antigenemia and RNAemia (the presence of rotavirus RNA in serum) have been commonly identified among paediatric patients with acute gastroenteritis. In this study we examined the association between rotavirus antigenemia and clinical features, and sought to determine the genotypes of rotaviruses detected in paired stool and serum samples. Methods Paired stool and serum samples were obtained from children hospitalised for acute gastroenteritis in Belém, Brazil, between June 2012 and June 2015. The 20-point Vesikari scoring system was used to assess the disease severity upon a retrospective medical record review. Stool and serum samples were primarily screened for the presence of rotavirus antigen using a commercial ELISA assay. The rotavirus isolates from stool and serum samples were genotyped by using the classical reverse-transcriptase polymerase chain reaction (RT-PCR) and/or through nucleotide sequencing of VP4 and VP7 genes. Viral load was estimated using real-time RT-PCR. Results In total rotavirus antigen was detected in 109 (24.2%) stool samples from 451 children, whereas antigenemia occurred in 38.5% (42/109) of these patients. We demonstrated that patients positive for rotavirus RNA in paired stool and serum samples were more likely to have a higher frequency of vomiting episodes in a 24-h period (p = 0.0035). Our findings also suggested that children not vaccinated against rotavirus are more likely to develop antigenemia, as compared to those given at least one vaccine dose (p = 0.0151). G12P [8] and G2P [4] genotypes were predominant throughout the study period, accounting for 52.3% (57/109) and 27.5% (30/109) of the typed isolates, respectively. Ten stool-serum pairs could be typed for VP4 and VP7 genes. Seven of these pairs showed concordant results with G2P [4] genotype being detected in stool and serum samples, whereas discrepancies between genotypes (G2P [4]/G2P[NT] and G12P [8]/G2P[NT]) were seen in three pairs. Conclusions Rotavirus antigenemia and RNAemia occur in a significant number of children hospitalised for acute gastroenteritis in Belém, Brazil, and may contribute to a greater disease severity, particularly translated into a greater number of vomiting episodes. This study documented a high concordance of genotypes detected in a subgroup of paired stool and serum samples. Electronic supplementary material The online version of this article (10.1186/s12887-019-1535-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Cleonice A Justino
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil.
| | - Erika A Campos
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Joana D'arc P Mascarenhas
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Luana S Soares
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Sylvia de Fátima S Guerra
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | | | | | | | | | | | - Caio Breno G Vinente
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Rodrigo José S Barros
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| | - Alexandre C Linhares
- Instituto Evandro Chagas, Health Surveillance Secretariat, Brazilian Ministry of Health, Rodovia BR 316, Km 7, s/n, Levilândia, Belém, 67.030-000, Brazil
| |
Collapse
|
5
|
Rotavirus Double Infection Model to Study Preventive Dietary Interventions. Nutrients 2019; 11:nu11010131. [PMID: 30634561 PMCID: PMC6357201 DOI: 10.3390/nu11010131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are the main cause of acute diarrhea among young children worldwide with an increased frequency of reinfection. Several life style factors, such as dietary components, may influence such processes by affecting the outcome of the first rotavirus infection and therefore having a beneficial impact on the anti-rotavirus immune responses during any subsequent reinfections. The aim of this research was to develop a double-infection model in rat that mimics real-life clinical scenarios and would be useful in testing whether nutritional compounds can modulate the rotavirus-associated disease and immune response. Three experimental designs and a preventive dietary-like intervention were conducted in order to achieve a differential response in the double-infected animals compared to the single-infected ones and to study the potential action of a modulatory agent in early life. Diarrhea was only observed after the first infection, with a reduction of fecal pH and fever. After the second infection an increase in body temperature was also found. The immune response against the second infection was regulated by the preventive effect of the dietary-like intervention during the first infection in terms of specific antibodies and DTH. A rotavirus-double-infection rat model has been developed and is suitable for use in future preventive dietary intervention studies.
Collapse
|
6
|
Gómez-Rial J, Sánchez-Batán S, Rivero-Calle I, Pardo-Seco J, Martinón-Martínez JM, Salas A, Martinón-Torres F. Rotavirus infection beyond the gut. Infect Drug Resist 2018; 12:55-64. [PMID: 30636886 PMCID: PMC6307677 DOI: 10.2147/idr.s186404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The landscape of rotavirus (RV) infection has changed substantially in recent years. Autoimmune triggering has been added to clinical spectrum of this pathology, which is now known to be much broader than diarrhea. The impact of RV vaccines in these other conditions is becoming a growing field of research. The importance of host genetic background in RV susceptibility has been revealed, therefore increasing our understanding of vaccine effectiveness and giving some clues about the limited efficacy of RV vaccines in low-income settings. Also, interaction of RV with intestinal microbiota seems to play a key role in the process of infection vaccine effect. This article reviews current findings on the extraintestinal impact of RV infection and their widening clinical picture, and the recently described mechanisms of host susceptibility to infection and vaccine effectiveness. RV infection is a systemic disease with clinical and pathophysiological implications beyond the gut. We propose an “iceberg” model for this pathology with almost hidden clinical implications away from the gastrointestinal tract and eventually triggering the development of autoimmune diseases. Impact of current vaccines is being influenced by host genetics and gut microbiota interactions and these factors must be taken into account in the development of public health programs.
Collapse
Affiliation(s)
- José Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Sonia Sánchez-Batán
- Laboratorio de Inmunología, Servicio de Análisis Clínicos, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Irene Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - Jacobo Pardo-Seco
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - José María Martinón-Martínez
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| | - Antonio Salas
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forense, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain, .,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, Spain,
| |
Collapse
|
7
|
Hippich M, Oleynik A, Jain K, Winkler C, Ferreira RC, Bonifacio E, Ziegler AG, Briese T. Searching peripheral blood mononuclear cells of children with viral respiratory tract infections preceding islet autoimmunity for viruses by high-throughput sequencing. Acta Diabetol 2018; 55:881-884. [PMID: 29687279 DOI: 10.1007/s00592-018-1138-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Alexandra Oleynik
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes e.V., at Helmholtz Zentrum München, German Research Center for Environmental, Munich, Germany
| | - Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ezio Bonifacio
- DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Technische Universität Dresden, Dresden, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
- Forschergruppe Diabetes e.V., at Helmholtz Zentrum München, German Research Center for Environmental, Munich, Germany.
- Forschergruppe Diabetes, at Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Rigo-Adrover MDM, van Limpt K, Knipping K, Garssen J, Knol J, Costabile A, Franch À, Castell M, Pérez-Cano FJ. Preventive Effect of a Synbiotic Combination of Galacto- and Fructooligosaccharides Mixture With Bifidobacterium breve M-16V in a Model of Multiple Rotavirus Infections. Front Immunol 2018; 9:1318. [PMID: 29942312 PMCID: PMC6004411 DOI: 10.3389/fimmu.2018.01318] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022] Open
Abstract
Rotavirus (RV) causes morbidity and mortality among infants worldwide, and there is evidence that probiotics and prebiotics can have a positive influence against infective processes such as that due to RV. The aim of this study was to evidence a preventive role of one prebiotic mixture (of short-chain galactooligosaccharide/long-chain fructooligosaccharide), the probiotic Bifidobacterium breve M-16V and the combination of the prebiotic and the probiotic, as a synbiotic, in a suckling rat double-RV infection model. Hyperimmune bovine colostrum was used as protection control. The first infection was induced with RV SA11 and the second one with EDIM. Clinical variables and immune response were evaluated after both infections. Dietary interventions ameliorated clinical symptoms after the first infection. The prebiotic and the synbiotic significantly reduced viral shedding after the first infection, but all the interventions showed higher viral load than in the RV group after the second infection. All interventions modulated ex vivo antibody and cytokine production, gut wash cytokine levels and small intestine gene expression after both infections. In conclusion, a daily supplement of the products tested in this preclinical model is highly effective in preventing RV-induced diarrhea but allowing the boost of the early immune response for a future immune response against reinfection, suggesting that these components may be potential agents for modulating RV infection in infants.
Collapse
Affiliation(s)
- Maria Del Mar Rigo-Adrover
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| | | | - Karen Knipping
- Nutricia Research, Utrecht, Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Nutricia Research, Utrecht, Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jan Knol
- Nutricia Research, Utrecht, Netherlands
| | - Adele Costabile
- Health Sciences Research Centre, Life Science Department, Whitelands College, University of Roehampton, London, United Kingdom
| | - Àngels Franch
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| | - Margarida Castell
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| | - Francisco José Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona (UB), Barcelona, Spain.,Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona (UB), Santa Coloma de Gramanet, Spain
| |
Collapse
|
9
|
Rotavirus Degrades Multiple Interferon (IFN) Type Receptors To Inhibit IFN Signaling and Protects against Mortality from Endotoxin in Suckling Mice. J Virol 2017; 92:JVI.01394-17. [PMID: 29070687 DOI: 10.1128/jvi.01394-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
STAT1 phosphorylation in response to exogenous interferon (IFN) administration can be inhibited by rotaviral replication both in vitro and in vivo In addition many rotavirus strains are resistant to the actions of different IFN types. The regulation by rotaviruses (RVs) of antiviral pathways mediated by multiple IFN types is not well understood. In this study, we find that during infection in vitro and in vivo, RVs significantly deplete IFN type I, II, and III receptors (IFNRs). Regulation of IFNRs occurred exclusively within RV-infected cells and could be abrogated by inhibiting the lysosomal-endosomal degradation pathway. In vitro, IFNR degradation was conserved across multiple RV strains that differ in their modes of regulating IFN induction. In suckling mice, exogenously administered type I, II, or III IFN induced phosphorylation of STAT1-Y701 within intestinal epithelial cells (IECs) of suckling mice. Murine EW strain RV infection transiently activated intestinal STAT1 at 1 day postinfection (dpi) but not subsequently at 2 to 3 dpi. In response to injection of purified IFN-α/β or -λ, IECs in EW-infected mice exhibited impaired STAT1-Y701 phosphorylation, correlating with depletion of different intestinal IFNRs and impaired IFN-mediated transcription. The ability of EW murine RV to inhibit multiple IFN types led us to test protection of suckling mice from endotoxin-mediated shock, an outcome that is dependent on the host IFN response. Compared to mortality in controls, mice infected with EW murine RV were substantially protected against mortality following parenteral endotoxin administration. These studies identify a novel mechanism of IFN subversion by RV and reveal an unexpected protective effect of RV infection on endotoxin-mediated shock in suckling mice.IMPORTANCE Antiviral functions of types I, II, and III IFNs are mediated by receptor-dependent activation of STAT1. Here, we find that RV degrades the types I, II, and III IFN receptors (IFNRs) in vitro In a suckling mouse model, RV effectively blocked STAT1 activation and transcription following injection of different purified IFNs. This correlated with significantly decreased protein expression of intestinal types I and II IFNRs. Recent studies demonstrate that in mice lipopolysaccharide (LPS)-induced lethality is prevented by genetic ablation of IFN signaling genes such as IFNAR1 and STAT1. When suckling mice were infected with RV, they were substantially protected from lethal exposure to endotoxin. These findings provide novel insights into the mechanisms underlying rotavirus regulation of different interferons and are likely to stimulate new research into both rotavirus pathogenesis and endotoxemia.
Collapse
|
10
|
Yeom JS, Kim YS, Jun JS, Do HJ, Park JS, Seo JH, Park ES, Lim JY, Woo HO, Park CH, Youn HS. NSP4 antibody levels in rotavirus gastroenteritis patients with seizures. Eur J Paediatr Neurol 2017; 21:367-373. [PMID: 27847298 DOI: 10.1016/j.ejpn.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Rotavirus nonstructural protein 4 (NSP4) has been suggested as a pathogen of rotavirus-associated seizures. We investigated pre-existing serum antibodies against NSP4 and VP6 (the most highly immunogenic rotavirus protein) in patients with rotavirus gastroenteritis and its correlation with the occurrence of seizures. METHODS With an enzyme-linked immunosorbent assay, IgG and IgA titers against NSP4 (genotype [A] and [B]) and VP6 were measured in acute-phase sera of 202 children aged 0.5-6.0 years with rotavirus gastroenteritis. The clinical characteristics and antibody levels were compared between patients with (seizure group) and without seizures (non-seizure group). RESULTS The non-seizure and seizure groups comprised 173 and 29 patients, respectively. Age, sex, hospital stay, presence of fever, white blood cell counts, C-reactive protein, vaccine status, IgG/IgA titers for VP6, and IgA titers for both NSP4s did not differ between the groups. The seizure group showed a lower level of IgG against NSP4 [A] (184.5 vs. 163.0 U/mL; P = 0.03) and NSP4 [B] (269.0 vs. 196.0 U/mL; P = 0.02). Delayed sampling time from the onset of gastroenteritis symptoms (3 vs. 2 days; P = 0.02) and lower serum sodium level (133.4 vs. 136.3 mEq/L; P < 0.01) were observed in the seizure group. Even after adjusting these factors, anti-NSP4 [A] IgG (OR 2.56 per 100 U/mL increment; 95% CI, 1.20-5.26, P = 0.01) and anti-NSP4 [B] IgG (OR 1.51 per 100 U/mL-increment; 95% CI, 1.04-2.22, P = 0.03) were independently associated with protection against seizures. CONCLUSIONS Serum anti-NSP4 IgG might protect rotavirus-associated seizures.
Collapse
Affiliation(s)
- Jung Sook Yeom
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Young-Soo Kim
- Department of Neurology, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Jin-Su Jun
- Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Hyun Jung Do
- Department of Pediatrics, Gyeongsang National University School of Medicine, Changwon, South Korea
| | - Ji Sook Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Ji-Hyun Seo
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Eun Sil Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Jae-Young Lim
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Hyang-Ok Woo
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Chan-Hoo Park
- Gyeongsang Institute of Health Science, Jinju, South Korea; Department of Pediatrics, Gyeongsang National University School of Medicine, Changwon, South Korea
| | - Hee-Shang Youn
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea.
| |
Collapse
|
11
|
Meier AF, Suter M, Schraner EM, Humbel BM, Tobler K, Ackermann M, Laimbacher AS. Transfer of Anti-Rotavirus Antibodies during Pregnancy and in Milk Following Maternal Vaccination with a Herpes Simplex Virus Type-1 Amplicon Vector. Int J Mol Sci 2017; 18:E431. [PMID: 28212334 PMCID: PMC5343965 DOI: 10.3390/ijms18020431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses (RVs) are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs) are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species.
Collapse
Affiliation(s)
- Anita F Meier
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| | - Mark Suter
- Immunology Division, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| | - Elisabeth M Schraner
- Institutes of Veterinary Anatomy and Virology, University of Zurich, 8057 Zurich, Switzerland.
| | - Bruno M Humbel
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Kurt Tobler
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| | - Mathias Ackermann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| | - Andrea S Laimbacher
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
12
|
Salas A, Marco-Puche G, Triviño JC, Gómez-Carballa A, Cebey-López M, Rivero-Calle I, Vilanova-Trillo L, Rodríguez-Tenreiro C, Gómez-Rial J, Martinón-Torres F. Strong down-regulation of glycophorin genes: A host defense mechanism against rotavirus infection. INFECTION GENETICS AND EVOLUTION 2016; 44:403-411. [PMID: 27491455 DOI: 10.1016/j.meegid.2016.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 12/19/2022]
Abstract
The mechanisms of rotavirus (RV) infection have been analyzed from different angles but the way in which RV modifies the transcriptome of the host is still unknown. Whole transcriptome shotgun sequencing of peripheral blood samples was used to reveal patterns of expression from the genome of RV-infected patients. RV provokes global changes in the transcriptome of infected cells, involving an over-expression of genes involved in cell cycle and chromatin condensation. While interferon IFI27 was hyper-activated, interferon type II was not suggesting that RV has developed mechanisms to evade the innate response by host cells after virus infection. Most interesting was the inhibition of genes of the glycophorins A and B (GYPA/B) family, which are the major sialoglycoproteins of the human erythrocyte membrane and receptor of several viruses for host invasion. RV infection induces a complex and global response in the host. The strong inhibition of glycophorins suggests a novel defense mechanism of the host to prevent viral infection, inhibiting the expression of receptors used by the virus for infection. The present results add further support to the systemic nature of RV infection.
Collapse
Affiliation(s)
- Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GENPOB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain; Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,.
| | | | | | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GENPOB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain; Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Miriam Cebey-López
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Irene Rivero-Calle
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Lucía Vilanova-Trillo
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Carmen Rodríguez-Tenreiro
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - José Gómez-Rial
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela (USC), Galicia, Spain,; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| |
Collapse
|
13
|
Abstract
A growing body of evidence warrants a revision of the received/conventional wisdom of rotavirus infection as synonymous with acute gastroenteritis. Rotavirus vaccines have boosted our interest and knowledge of this virus, but also importantly, they may have changed the landscape of the disease. Extraintestinal spread of rotavirus is well documented, and the clinical spectrum of the disease is widening. Furthermore, the positive impact of current rotavirus vaccines in reducing seizure hospitalization rates should prompt a reassessment of the actual burden of extraintestinal manifestations of rotavirus diseases. This article discusses current knowledge of the systemic extraintestinal manifestations of rotavirus infection and their underlying mechanisms, and aims to pave the way for future clinical, public health and research questions.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - José Gómez-Rial
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain.
| |
Collapse
|
14
|
|
15
|
Yeom JS, Kim YS, Kim RB, Park JS, Seo JH, Park E, Lim JY, Park CH, Woo HO, Youn HS. Impact of rotavirus vaccine introduction on rotavirus-associated seizures and a related possible mechanism. J Child Neurol 2015; 30:729-34. [PMID: 25117417 DOI: 10.1177/0883073814542944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/15/2022]
Abstract
To determine whether clinical features of rotavirus-associated seizures have been altered by rotavirus vaccination, we compared clinical and laboratory data of 2 groups of patients with rotavirus-associated seizures: pre- and post-vaccine introduction groups. The seizure characteristics differed significantly between the groups, with a lower incidence of fever at seizure onset, longer interval between the onset of gastroenteritis and seizures, and more frequent seizures in the postintroduction group. These characteristics may suggest that seizure susceptibility was increased in the postintroduction group. Based on the lower serum Cl(-) (102.1 ± 4.1 vs 98.2 ± 3.2 mg/dL; P < .01) and Ca(2+) levels (9.2 ± 0.4 vs 9.0 ± 0.3 mg/dL; P = .12) in the postintroduction group, we propose that a change in the subjects' susceptibility to the rotavirus enterotoxin may have played a role in increasing the seizure susceptibility in this group. Our results suggest that a rotavirus vaccination program may modulate the manifestations of rotavirus-associated seizures.
Collapse
Affiliation(s)
- Jung Sook Yeom
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Young-Soo Kim
- Department of Neurology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Rock Bum Kim
- Department of Preventive Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ji Sook Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Ji-Hyun Seo
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Eunsil Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Jae-Young Lim
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Chan-Hoo Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Hyang-Ok Woo
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| | - Hee-Shang Youn
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea Gyeongsang Institute of Health Science, Jinju, Korea
| |
Collapse
|
16
|
Biology of Viruses and Viral Diseases. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152303 DOI: 10.1016/b978-1-4557-4801-3.00134-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
17
|
Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr Infect Dis J 2014; 33:366-71. [PMID: 24136370 DOI: 10.1097/inf.0000000000000118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rotavirus (RV) antigenemia and RNAemia are common findings in rotavirus-infected children. Sporadic associations between RV antigenemia and extraintestinal manifestations of RV infection have been observed. We examined the clinical severity of RV gastroenteritis in patients with and without RV antigenemia or RNAemia. METHODS Stool, serum and whole blood samples were collected from children seen with acute gastroenteritis in Tampere University Hospital and studied for RV using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Only exclusively RV-positive specimens were included into this study. The patients were divided into groups according to RV findings from stool, serum and blood specimens. Clinical manifestations were graded according to 20-point Vesikari scoring system. RESULTS Of 374 children, 155 (41%) had RV in their stools. Of these 155 children, 105 (67%) were found to have RV RNA in the serum; of those, 94 (90%) had also RV enzyme-linked immunosorbent assay antigen. Thus antigenemia occurred in 61% (94 cases) of RV-infected children all of whom had concomitant RNAemia. Neither antigenemia nor RNAemia were detected in 85 patients with non-RV gastroenteritis. Patients who had RV RNA and RV antigen in both serum and stools were more likely to have a higher level of fever and more severe vomiting than patients who had RV only in stools. G1 genogroup RV was more often associated with RNAemia and antigenemia than other genogroups combined. CONCLUSION Rotavirus antigenemia and viremia are commonly detected in children hospitalized for RV gastroenteritis and may be associated with increased severity of fever and vomiting.
Collapse
|
18
|
Evidences and consequences of extra-intestinal spread of rotaviruses in humans and animals. Virusdisease 2014; 25:186-94. [PMID: 25674584 DOI: 10.1007/s13337-014-0197-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022] Open
Abstract
Rotavirus is recognized as one of the main diarrheal pathogens in young children and animals. The prevailing central dogma of rotavirus infection states that the infection is confined in the gastrointestinal tract. However, increasing evidences indicate that rotavirus infection is systemic. Clinical case reports of systemic manifestations to rotavirus infection in children has continued to accumulate over the past years. The use of animal models provided pathological and molecular evidences for extra-intestinal infection of rotaviruses. The mechanism correlated with the extra-intestinal spread of rotavirus infection from the intestine is through cell-free and cell-associated viremia. The extent of the extra-intestinal spread of rotavirus infection has not yet been fully elucidated; whether it can only affect a limited number of organs and tissues or capable of involving the body as a whole. Moreover, the influence of systemic rotavirus infections remains to be determined. In this review, combination of previous and new data are outlined to help in better understanding of the extra-intestinal infections of rotaviruses.
Collapse
|
19
|
McAllister CS, Lakhdari O, Pineton de Chambrun G, Gareau MG, Broquet A, Lee GH, Shenouda S, Eckmann L, Kagnoff MF. TLR3, TRIF, and caspase 8 determine double-stranded RNA-induced epithelial cell death and survival in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 190:418-27. [PMID: 23209324 DOI: 10.4049/jimmunol.1202756] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
TLR3 signaling is activated by dsRNA, a virus-associated molecular pattern. Injection of dsRNA into mice induced a rapid, dramatic, and reversible remodeling of the small intestinal mucosa with significant villus shortening. Villus shortening was preceded by increased caspase 3 and 8 activation and apoptosis of intestinal epithelial cells (IECs) located in the mid to upper villus with ensuing luminal fluid accumulation and diarrhea because of an increased secretory state. Mice lacking TLR3 or the adaptor molelcule TRIF mice were completely protected from dsRNA-induced IEC apoptosis, villus shortening, and diarrhea. dsRNA-induced apoptosis was independent of TNF signaling. Notably, NF-κB signaling through IκB kinase β protected crypt IECs but did not protect villus IECs from dsRNA-induced or TNF-induced apoptosis. dsRNA did not induce early caspase 3 activation with subsequent villus shortening in mice lacking caspase 8 in IECs but instead caused villus destruction with a loss of small intestinal surface epithelium and death. Consistent with direct activation of the TLR3-TRIF-caspase 8 signaling pathway by dsRNA in IECs, dsRNA-induced signaling of apoptosis was independent of non-TLR3 dsRNA signaling pathways, IL-15, TNF, IL-1, IL-6, IFN regulatory factor 3, type I IFN receptor, adaptive immunity, as well as dendritic cells, NK cells, and other hematopoietic cells. We conclude that dsRNA activation of the TLR3-TRIF-caspase 8 signaling pathway in IECs has a significant impact on the structure and function of the small intestinal mucosa and suggest signaling through this pathway has a host protective role during infection with viral pathogens.
Collapse
|
20
|
Moon S, Wang Y, Edens C, Gentsch JR, Prausnitz MR, Jiang B. Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine 2012; 31:3396-402. [PMID: 23174199 DOI: 10.1016/j.vaccine.2012.11.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Skin immunization is effective against a number of infectious diseases, including smallpox and tuberculosis, but is difficult to administer. Here, we assessed the use of an easy-to-administer microneedle (MN) patch for skin vaccination using an inactivated rotavirus vaccine (IRV) in mice. Female inbred BALB/c mice in groups of six were immunized once in the skin using MN coated with 5 μg or 0.5 μg of inactivated rotavirus antigen or by intramuscular (IM) injection with 5 μg or 0.5 μg of the same antigen, bled at 0 and 10 days, and exsanguinated at 28 days. Rotavirus-specific IgG titers increased over time in sera of mice immunized with IRV using MN or IM injection. However, titers of IgG and neutralizing activity were generally higher in MN immunized mice than in IM immunized mice; the titers in mice that received 0.5 μg of antigen with MN were comparable or higher than those that received 5 μg of antigen IM, indicating dose sparing. None of the mice receiving negative-control, antigen-free MN had any IgG titers. In addition, MN immunization was at least as effective as IM administration in inducing a memory response of dendritic cells in the spleen. Our findings demonstrate that MN delivery can reduce the IRV dose needed to mount a robust immune response compared to IM injection and holds promise as a strategy for developing a safer and more effective rotavirus vaccine for use among children throughout the world.
Collapse
Affiliation(s)
- Sungsil Moon
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Rotavirus infection is the most common cause of severe diarrhea disease in infants and young children worldwide and continues to have a major global impact on childhood morbidity and mortality. Vaccination is the only control measure likely to have a significant impact on the incidence of severe dehydrating rotavirus disease. Rotavirus vaccines have reduced the burden of rotavirus disease in the United States. Long-term monitoring will need to continue to assess the effects of rotavirus immunization programs and epidemiologic strain surveillance is necessary to determine whether changes in strain ecology will affect the rotavirus vaccine effectiveness and whether rotaviruses with the ability to evade vaccine immunity emerge.
Collapse
Affiliation(s)
- Penelope H Dennehy
- Division of Pediatric Infectious Diseases, Hasbro Children's Hospital, Providence, RI, USA.
| |
Collapse
|