1
|
Ma L, Zhu Y, Zhu La ALT, Lourenco JM, Callaway TR, Bu D. Schizochytrium sp. and lactoferrin supplementation alleviates Escherichia coli K99-induced diarrhea in preweaning dairy calves. J Dairy Sci 2024; 107:1603-1619. [PMID: 37769949 DOI: 10.3168/jds.2023-23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1β, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingkun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100193, China.
| |
Collapse
|
2
|
Zeng L, Shi X, Xuan L, Zheng J. Comparative N-Glycoproteomic Investigation of Eggshell Cuticle and Mineralized Layer Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390300 DOI: 10.1021/acs.jafc.3c00708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The eggshell cuticle layer (ECL) and eggshell mineralized layer (EML) contain amounts of glycoproteins and proteoglycans. However, there were few comprehensive reports about the effect of post-translational modifications on protein structure and function which requires investigation. Therefore, we used comparative N-glycoproteomics to study glycoproteins in the ECL and EML. We identified a total of 272 glycoproteins in this experiment and found that glycoproteins located in EML were more than that in ECL. Moreover, they showed distinct functional difference between both layers. As N-glycosylation of ovocleidin-17 and ovocleidin-116 in the EML affected eggshell mineralization, some glycoproteins located in ECL, like ovotransferrin and ovostatin-like, possessed antibacterial activity. The several regulated glycoproteins in the EML may pertain to the regulation of mineralization, while glycosylated proteins in the ECL may contribute to molecular adhesion and defense against microbial invasion. This study provides new insights into the eggshell matrix protein contents of the ECL and EML.
Collapse
Affiliation(s)
- Lingsen Zeng
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Xuefeng Shi
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Lin Xuan
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
4
|
Legros J, Jan S, Bonnassie S, Gautier M, Croguennec T, Pezennec S, Cochet MF, Nau F, Andrews SC, Baron F. The Role of Ovotransferrin in Egg-White Antimicrobial Activity: A Review. Foods 2021; 10:823. [PMID: 33920211 PMCID: PMC8070150 DOI: 10.3390/foods10040823] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Eggs are a whole food which affordably support human nutritional requirements worldwide. Eggs strongly resist bacterial infection due to an arsenal of defensive systems, many of which reside in the egg white. However, despite improved control of egg production and distribution, eggs remain a vehicle for foodborne transmission of Salmonella enterica serovar Enteritidis, which continues to represent a major public health challenge. It is generally accepted that iron deficiency, mediated by the iron-chelating properties of the egg-white protein ovotransferrin, has a key role in inhibiting infection of eggs by Salmonella. Ovotransferrin has an additional antibacterial activity beyond iron-chelation, which appears to depend on direct interaction with the bacterial cell surface, resulting in membrane perturbation. Current understanding of the antibacterial role of ovotransferrin is limited by a failure to fully consider its activity within the natural context of the egg white, where a series relevant environmental factors (such as alkalinity, high viscosity, ionic composition, and egg white protein interactions) may exert significant influence on ovotransferrin activity. This review provides an overview of what is known and what remains to be determined regarding the antimicrobial activity of ovotransferrin in egg white, and thus enhances understanding of egg safety through improved insight of this key antimicrobial component of eggs.
Collapse
Affiliation(s)
- Julie Legros
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6AX, UK;
| | - Sophie Jan
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Sylvie Bonnassie
- UFR Sciences de la vie et de L’environnement, Université de Rennes 1, 35000 Rennes, France;
| | - Michel Gautier
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Thomas Croguennec
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Stéphane Pezennec
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Marie-Françoise Cochet
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Françoise Nau
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Simon C. Andrews
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6AX, UK;
| | - Florence Baron
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| |
Collapse
|
5
|
Rathnapala ECN, Ahn DU, Abeyrathne S. Functional properties of ovotransferrin from chicken egg white and its derived peptides: a review. Food Sci Biotechnol 2021; 30:619-630. [PMID: 33814941 PMCID: PMC8006106 DOI: 10.1007/s10068-021-00901-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023] Open
Abstract
With emerging trends in the food and pharmaceutical industries, potential applications of egg-derived bioactive compounds were recognized. Ovotransferrin is a major egg white functional protein responsible for multiple bioactivities. The objectives of this review are to provide scientific evidence of the functional properties of chicken ovotransferrin and its derived peptides and to identify future research approaches and applications. Various easy, economical, and non-toxic methods have been reported to produce ovotransferrin with high yield and purity, and chemical and enzymatic approaches have been employed to release bioactive peptides. The native ovotransferrin is known to have antimicrobial, antioxidant, anticancer, and immunomodulatory activities. The peptides produced from ovotransferrin also are reported to have antioxidant, antimicrobial, antihypertensive, and anticancer properties. However, little or no application of these compounds in the food and pharmaceutical areas is available yet. Therefore, the practical application of OTF in nutraceutical and pharmaceutical areas are among the emerging areas of research.
Collapse
|
6
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
7
|
Mann JK, Ndung'u T. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19. Future Virol 2020. [PMCID: PMC7543043 DOI: 10.2217/fvl-2020-0170] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS coronavirus 2 (SARS-CoV-2), is spreading rapidly with no established effective treatments. While most cases are mild, others experience uncontrolled inflammatory responses with oxidative stress, dysregulation of iron and coagulation as features. Lactoferrin, ovotransferrin and lysozyme are abundant, safe antimicrobials that have wide antiviral as well as immunomodulatory properties. In particular, lactoferrin restores iron homeostasis and inhibits replication of SARS-CoV, which is closely related to SARS-CoV-2. Ovotransferrin has antiviral peptides and activities that are shared with lactoferrin. Both lactoferrin and lysozyme are ‘immune sensing’ as they may stimulate immune responses or resolve inflammation. Mechanisms by which these antimicrobials may treat or prevent COVID-19, as well as sources and forms of these, are reviewed.
Collapse
Affiliation(s)
- Jaclyn Kelly Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
- Africa Health Research Institute, Durban, 4001, South Africa
- Ragon Institute of MGH, MIT & Harvard University, Cambridge, MA 02139, USA
- Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
- Division of Infection & Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Sessa R, Di Pietro M, Filardo S, Bressan A, Mastromarino P, Biasucci AV, Rosa L, Cutone A, Berlutti F, Paesano R, Valenti P. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection. Pathog Dis 2018; 75:3828106. [PMID: 28505248 DOI: 10.1093/femspd/ftx054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 11/14/2022] Open
Abstract
In the cervicovaginal microenvironment, lactobacilli are known to protect against genital infections and, amongst the host defence compounds, lactoferrin has recently acquired importance for its anti-microbial and anti-inflammatory properties. An abnormal genital microenvironment facilitates the acquisition of pathogens like Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections worldwide. The aim of our study is to investigate the effects of Lactobacillus crispatus, Lactobacillus brevis and bovine lactoferrin on chlamydial infection, in order to shed light on the complex interplay between host defence mechanisms and C. trachomatis. We have also evaluated the effect of these defence factors to modulate the chlamydia-mediated inflammatory state. To this purpose, we have determined the infectivity and progeny production of C. trachomatis as well as interleukin-8 and interleukin-6 synthesis. The main result of our study is that the combination of L. brevis and bovine lactoferrin is the most effective in inhibiting the early phases (adhesion and invasion) of C. trachomatis infection of cervical epithelial cells and in decreasing the levels of both cytokines. In conclusion, the interaction between L. brevis and lactoferrin seems to play a role in the protection against C. trachomatis, reducing the infection and regulating the immunomodulatory activity, thus decreasing the risk of severe complications.
Collapse
Affiliation(s)
- Rosa Sessa
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Alessia Bressan
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | | | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Francesca Berlutti
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome 'Sapienza', 00185 Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| |
Collapse
|
9
|
Baron F, Nau F, Guérin-Dubiard C, Bonnassie S, Gautier M, Andrews SC, Jan S. Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen. Food Microbiol 2015; 53:82-93. [PMID: 26678134 DOI: 10.1016/j.fm.2015.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/23/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Salmonella enterica serovar Enteritidis is the prevalent egg-product-related food-borne pathogen. The egg-contamination capacity of S. Enteritidis includes its exceptional survival capability within the harsh conditions provided by egg white. Egg white proteins, such as lysozyme and ovotransferrin, are well known to play important roles in defence against bacterial invaders. Indeed, several additional minor proteins and peptides have recently been found to play known or potential roles in protection against bacterial contamination. However, although such antibacterial proteins are well studied, little is known about their efficacy under the environmental conditions prevalent in egg white. Thus, the influence of factors such as temperature, alkalinity, nutrient restriction, viscosity and cooperative interactions on the activities of antibacterial proteins in egg white remains unclear. This review critically assesses the available evidence on the antimicrobial components of egg white. In addition, mechanisms employed by S. Enteritidis to resist egg white exposure are also considered along with various genetic studies that have shed light upon egg white resistance systems. We also consider how multiple, antibacterial proteins operate in association with specific environmental factors within egg white to generate a lethal protective cocktail that preserves sterility.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France.
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Sylvie Bonnassie
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; Université de Rennes I, 2 rue du Thabor, Rennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Simon C Andrews
- School of Biological Sciences, Knight Building, University of Reading, Reading RG6 6AJ, UK
| | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| |
Collapse
|
10
|
Ho CL, Hwang IY, Loh K, Chang MW. Matrix-immobilized yeast for large-scale production of recombinant human lactoferrin. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00537f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved method of recombinant human lactoferrin (hLF) expression in rich culture medium is demonstrated using macroporous microencapsulation.
Collapse
Affiliation(s)
- Chun Loong Ho
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- and Synthetic Biology Research Program
- Life Sciences Institute
- National University of Singapore
| | - In Young Hwang
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- and Synthetic Biology Research Program
- Life Sciences Institute
- National University of Singapore
| | - Kathy Loh
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- and Synthetic Biology Research Program
- Life Sciences Institute
- National University of Singapore
| | - Matthew Wook Chang
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- and Synthetic Biology Research Program
- Life Sciences Institute
- National University of Singapore
| |
Collapse
|
11
|
Baron F, Jan S, Gonnet F, Pasco M, Jardin J, Giudici B, Gautier M, Guérin-Dubiard C, Nau F. Ovotransferrin plays a major role in the strong bactericidal effect of egg white against the Bacillus cereus group. J Food Prot 2014; 77:955-62. [PMID: 24853518 DOI: 10.4315/0362-028x.jfp-13-473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacillus cereus group bacteria are opportunistically pathogenic spore-forming microorganisms well known in the sector of pasteurized food products because of their involvement in spoilage events. In the sector of egg product processing, these bacteria may lead to important economic losses. It seemed then relevant to study their behavior in egg white, a widely used egg product usually recognized as developing different levels of antimicrobial activities depending on the environmental conditions. A strong bactericidal effect (decrease in the bacterial population of 6.1 ± 0.2 log CFU/ml) was observed for 68 B. cereus group isolates, independently incubated at 30°C in egg white at pH 9.3 (natural egg white pH). To determine which components could explain such a strong bactericidal effect, an experimental strategy was carried out, based on egg white fractionation by ultrafiltration and by anion-exchange liquid chromatography. The role of the protein fraction was thus demonstrated, and subsequent nano-liquid chromatography-tandem mass spectrometry analyses allowed identification of ovotransferrin as a major protein involved. The strong bactericidal effect was confirmed in the presence of commercial ovotransferrin. Such a bactericidal effect (i.e., a decrease in the bacterial population through cell death) had never been described because ovotransferrin is known for its bacteriostatic effect (i.e., inhibition of growth) due to its ability to chelate iron. Surprisingly, the addition of iron did not reverse the bactericidal effect of ovotransferrin under alkaline conditions (pH 9.3), whereas it completely reversed this effect at pH 7.3. Ovotransferrin was shown to provoke a perturbation of the electrochemical potential of the cytoplasmic membrane. A membrane disturbance mechanism could, hence, be involved, leading to the lysis of B. cereus group bacteria incubated in egg white.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France.
| | - Sophie Jan
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Fabienne Gonnet
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Maryvonne Pasco
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Julien Jardin
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Bérangère Giudici
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Michel Gautier
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Françoise Nau
- Agrocampus Ouest and Institut national de la recherche agronomique (INRA), UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| |
Collapse
|
12
|
The identification of surface interaction of apotransferrin with Candida albicans. Arch Pharm Res 2013; 37:1301-7. [PMID: 24263410 DOI: 10.1007/s12272-013-0301-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
Our recent data indicate that apotransferrin, an iron-chelating protein, has anti-candidal activity by binding to the Candida albicans surface rather than just simple iron-chelation. Following that study, in this present study, we investigated the nature of the candidal surface substance that is responsible for the anticandidal activity by using (59)Fe(3+)-apotransferrin and biological assay methods. Data resulting from the binding studies showed that the yeast cells had one class of binding sites as analyzed by the Scatchard equation, and the binding was specific as determined by competitive binding assay with unlabeled and labeled transferrin. All these observations indicate that there is a substance(s) that mediates the binding. Thus, a mannoprotein-like substance was extracted from C. albicans surface using hot water-treatment. Radioisotope binding study revealed that the substance blocked the transferrin binding. At 25 μg of IHS (inhibitory substance) addition, there was 65 % inhibition of the transferrin binding to C. albicans (5 × 10(7) cells/ml) (P < 0.05). The blockage of the transferrin binding disrupted the anticandidal activity of transferrin, resulting in a full recovery from growth inhibition. These results explain our previous observation that there is partial growth inhibition when C. albicans interacts directly with iron-saturated transferrin (100 %). Thus, it was concluded that a candidate for transferrin receptor is involved in the anticandidal activity of transferrin when in direct contact with C. albicans.
Collapse
|
13
|
Han Y. Apotransferrin has a second mechanism for anticandidal activity through binding of Candida albicans. Arch Pharm Res 2013; 37:270-5. [PMID: 24155020 DOI: 10.1007/s12272-013-0263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/11/2013] [Indexed: 11/29/2022]
Abstract
It has been reported that transferrin has antibacterial and antifungal activities via iron chelation in the environment surrounding the microbes. In the present study, we investigated whether the binding of transferrin to Candida albicans mediates growth inhibition. By using cultures that contained iron-free (apo)transferrin glycoprotein either in contact with candidal cells or separated from candidal cells by a dialysis membrane, we distinguished the growth inhibition by transferrin-cell interaction from that of simple iron chelation. Maximal growth inhibition always occurred when the apotransferrin interacted directly with the cells. Additionally, there was partial inhibition even when candidal cells were in contact with iron-saturated transferrin. Binding studies with (59)Fe(3+) radiolabeled-transferrin indicated that the apo-protein can bind to the candidal cell surface. The binding sites were saturable and it was dose dependent. Chemicals (hydrogen peroxide, dithiothreitol, sodium dodecyl sulfate) blocked transferrin binding to C. albicans, and among the three, hydrogen peroxide (HP) was the most effective for the blocking. When HP-treated yeast cells were added to the culture that was pretreated with apotransferrin, candidal cell growth increased by 5-fold as compared to the growth of HP-untreated candidal cells under apotransferrin-regulation (P < 0.05). Combined all data together, it was concluded that transferrin has a second mechanism of anticandidal activity that is mediated by binding to the surface of C. albicans yeast cells.
Collapse
Affiliation(s)
- Yongmoon Han
- Department of ImmunoMicrobiology, College of Pharmacy, Dongduk Women's University, 23-1 Wolgok-Dong, Sungbuk-Gu, Seoul, 136-714, Korea,
| |
Collapse
|
14
|
|
15
|
García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta Gen Subj 2012; 1820:226-36. [PMID: 21726601 PMCID: PMC7127262 DOI: 10.1016/j.bbagen.2011.06.018] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lactoferrin (Lf) is an 80kDa iron-binding glycoprotein of the transferrin family. It is abundant in milk and in most biological fluids and is a cell-secreted molecule that bridges innate and adaptive immune function in mammals. Its protective effects range from anticancer, anti-inflammatory and immune modulator activities to antimicrobial activities against a large number of microorganisms. This wide range of activities is made possible by mechanisms of action involving not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both hosts and pathogens. SCOPE OF REVIEW This review summarizes the activities of Lf, its regulation and potential applications. MAJOR CONCLUSIONS The extensive uses of Lf in the treatment of various infectious diseases in animals and humans has been the driving force in Lf research however, a lot of work is required to obtain a better understanding of its activity. GENERAL SIGNIFICANCE The large potential applications of Lf have led scientists to develop this nutraceutical protein for use in feed, food and pharmaceutical applications. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Isui Abril García-Montoya
- Laboratorio de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, CP 31125, Chihuahua, Mexico
| | | | | | | |
Collapse
|
16
|
Goldman IL, Georgieva SG, Gurskiy YG, Krasnov AN, Deykin AV, Popov AN, Ermolkevich TG, Budzevich AI, Chernousov AD, Sadchikova ER. Production of human lactoferrin in animal milk. Biochem Cell Biol 2012; 90:513-9. [PMID: 22360490 DOI: 10.1139/o11-088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic constructs containing the human lactoferrin (hLf) gene were created within a joint program of Russian and Belorussian scientists. Using these constructs, transgenic mice were bred (the maximum hLf concentration in their milk was 160 g/L), and transgenic goats were also generated (up to 10 g/L hLf in their milk). Experimental goatherds that produced hLf in their milk were also bred, and the recombinant hLf was found to be identical to the natural protein in its physical and chemical properties. These properties included electrophoretic mobility, isoelectric point, recognition by polyclonal and monoclonal antibodies, circular dichroic spectra, interaction with natural ligands (DNA, lipopolysaccharides, and heparin), the binding of iron ions, the sequence of the 7 terminal amino acids, and its biological activity. The latter was assessed by the agglutination of Micrococcus luteus protoplasts, bactericidal activity against Escherichia coli and Listeria monocytogenes , and fungicidal activity against Candida albicans . We also demonstrated a significant increase in the activity of antibiotics when used in combination with Lf.
Collapse
Affiliation(s)
- I L Goldman
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Vavilova str, 34/5, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Physiological roles of ovotransferrin. Biochim Biophys Acta Gen Subj 2011; 1820:218-25. [PMID: 21854833 DOI: 10.1016/j.bbagen.2011.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ovotransferrin is an iron-binding glycoprotein, found in avian egg white and in avian serum, belonging to the family of transferrin iron-binding glycoproteins. All transferrins show high sequence homology. In mammals are presents two different soluble glycoproteins with different functions: i) serum transferrin that is present in plasma and committed to iron transport and iron delivery to cells and ii) lactoferrin that is present in extracellular fluids and in specific granules of polymorphonuclear lymphocytes and committed to the so-called natural immunity. To the contrary, in birds, ovotransferrin remained the only soluble glycoprotein of the transferrin family present both in plasma and egg white. SCOPE OF REVIEW Substantial experimental evidences are summarized, illustrating the multiple physiological roles of ovotransferrin in an attempt to overcome the common belief that ovotransferrin is a protein dedicated only to iron transport and to iron withholding antibacterial activity. MAJOR CONCLUSIONS Similarly to the better known family member protein lactoferrin, ovotransferrin appears to be a multi-functional protein with a major role in avian natural immunity. GENERAL SIGNIFICANCE Biotechnological applications of ovotransferrin and ovotransferrin-related peptides could be considered in the near future, stimulating further research on this remarkable protein. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
18
|
Han Y. Utilization of ferroproteins byCandida albicans during candidastasis by apotransferrin. Arch Pharm Res 2005; 28:963-9. [PMID: 16178424 DOI: 10.1007/bf02973884] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many reports have stated that some of the pathogenic bacteria can obtain iron from ferroproteins, such as cytochrome C, ferritin, hemin, hemoglobin, and myoglobin. These reports prompted us to determine if an opportunistic pathogenic fungus, Candida albicans, can utilize ferroproteins to circumvent the iron-regulatory effect of transferrin. The following assays were carried out to measure in vitro growth stimulation by the ferroproteins: as an initial step, C. albicans was cultured in iron-free (pretreated with apotransferrin for 24 h) culture medium. Once Candida albicans yeast cell growth reached stasis from iron starvation, individual ferroproteins were added to the culture media. Results showed that hemin, hemoglobin, and myoglobin supported a partial growth recovery. Additional studies with haptoglobin, a serum protein that interacts with the globin moiety of certain ferroproteins, established that C. albicans could obtain iron from the haptoglobin-ferroprotein complexes. These data indicate that the heme part of the ferroproteins is the source of iron. This implies that heme oxygenase, CaHMX1 might be involved in bringing about dissociation of heme-containing protein for iron-acquisition. In addition, anticandidal activity of transferrin takes place not only by the process of iron regulation, but also by direct interaction with the yeast cells.
Collapse
Affiliation(s)
- Yongmoon Han
- College of Pharmacy, Dongduk Women's University, 23-1 Wolgok-dong, Sungbuk-gu, Seoul 136-714, Korea.
| |
Collapse
|
19
|
Viejo-Díaz M, Andrés MT, Fierro JF. Effects of human lactoferrin on the cytoplasmic membrane of Candida albicans cells related with its candidacidal activity. ACTA ACUST UNITED AC 2004; 42:181-5. [PMID: 15364102 DOI: 10.1016/j.femsim.2004.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 03/16/2004] [Accepted: 04/28/2004] [Indexed: 11/17/2022]
Abstract
Human lactoferrin is an innate host defence protein with antimicrobial activity that exerts a candidacidal effect in a cation concentration-dependent manner. We investigated the ability of this cationic protein (with an isoelectric point of 8.7) to permeabilize the cytoplasmic membrane of Candida albicans cells. Despite minor K(+)-release in lactoferrin-treated C. albicans cells, the killing effect was not related to an extensive membrane permeabilization, as indicated by: (a) the non-release of macromolecular cytosolic constituents; (b) the non-permeabilization for extracellular propidium iodide nor for intracellular accumulated calcein; and (c) the inability to disrupt the phospholipid bilayer of 8-aminonaphthalene-1,3,6, trisulfonic acid/p-xylene-bis-pyridiniumbromide-loaded liposomes. These results suggest that lactoferrin exerts its candidacidal effect through a mechanism different from membrane permeabilization described for other cationic peptides.
Collapse
Affiliation(s)
- Mónica Viejo-Díaz
- Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, C/Julian Claveria, 6, 33006 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
20
|
Abstract
Lactoferrin, an iron-binding glycoprotein synthesized by neutrophils and exocrine glands, plays an important role in human innate defense mechanisms against bacteria, fungi, and viruses. First, a bacteriostatic activity of lactoferrin, depending on iron withholding to bacteria, and successively a bactericidal iron-independent effect, related to its binding on bacterial surfaces, was recognized. Many other functions have been ascribed to this cationic protein, including the inhibiting action toward bacterial adhesion and invasion of target host cells. Recent research also reported the lactoferrin influence on bacterial aggregation and biofilm development of Pseudomonas aeruginosa and Streptococcus mutans. The different lactoferrin functions can be justified by different physicochemical properties of the molecule, which include the iron-binding capability, the binding to anionic cell surfaces and molecules, and serine protease activity.
Collapse
Affiliation(s)
- Piera Valenti
- Department of Experimental Medicine, II University of Naples, Italy.
| | | | | | | | | |
Collapse
|
21
|
Viejo-Díaz M, Andrés MT, Fierro JF. Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob Agents Chemother 2004; 48:1242-8. [PMID: 15047526 PMCID: PMC375254 DOI: 10.1128/aac.48.4.1242-1248.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anti-Candida activity of the innate defense protein human lactoferrin was investigated. Lactoferrin displayed a clear fungicidal effect against Candida albicans only under low-strength conditions. This candidacidal activity was inversely correlated with the extracellular concentration of the monovalent cations and was prevented by Na(+) and K(+) (> or 30 mM) and by divalent cations (Ca(2+) and Mg(2+) at > or 4 mM). A slight cellular release of K(+), cytosolic acidification, and a change in the membrane potential were observed in C. albicans cells treated with lactoferrin, suggesting that this protein directly or indirectly interacts with the cytoplasmic membrane. Mitochondrial inhibitors (carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, azide, and antimycin) as well as anaerobic conditions significantly reduced the killing effect of lactoferrin. These results suggest that low-strength conditions and the cellular metabolic state may modulate the candidacidal activity of human lactoferrin.
Collapse
Affiliation(s)
- Mónica Viejo-Díaz
- Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
22
|
Marvin ME, Williams PH, Cashmore AM. The Candida albicans CTR1 gene encodes a functional copper transporter. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1461-1474. [PMID: 12777486 DOI: 10.1099/mic.0.26172-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Copper and iron uptake in Saccharomyces cerevisiae are linked through a high-affinity ferric/cupric-reductive uptake system. Evidence suggests that a similar system operates in Candida albicans. The authors have identified a C. albicans gene that is able to rescue a S. cerevisiae ctr1/ctr3-null mutant defective in high-affinity copper uptake. The 756 bp ORF, designated CaCTR1, encodes a 251 amino acid protein with a molecular mass of 27.8 kDa. Comparisons between the deduced amino acid sequence of the C. albicans Ctr1p and S. cerevisiae Ctr1p indicated that they share 39.6 % similarity and 33.0 % identity over their entire length. Within the predicted protein product of CaCTR1 there are putative transmembrane regions and sequences that resemble copper-binding motifs. The promoter region of CaCTR1 contains four sequences with significant identity to S. cerevisiae copper response elements. CaCTR1 is transcriptionally regulated in S. cerevisiae in response to copper availability by the copper-sensing transactivator Mac1p. Transcription of CaCTR1 in C. albicans is also regulated in a copper-responsive manner. This raises the possibility that CaCTR1 may be regulated in C. albicans by a Mac1p-like transactivator. A C. albicans ctr1-null mutant displays phenotypes consistent with the lack of copper uptake including growth defects in low-copper and low-iron conditions, a respiratory deficiency and sensitivity to oxidative stress. Furthermore, changes in morphology were observed in the C. albicans ctr1-null mutant. It is proposed that CaCTR1 facilitates transport of copper into the cell.
Collapse
Affiliation(s)
- Marcus E Marvin
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Peter H Williams
- Department of Microbiology and Immunology, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
23
|
Abstract
Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data.
Collapse
Affiliation(s)
- Y H Samaranayake
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
24
|
Wakabayashi H, Uchida K, Yamauchi K, Teraguchi S, Hayasawa H, Yamaguchi H. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J Antimicrob Chemother 2000; 46:595-602. [PMID: 11020258 DOI: 10.1093/jac/46.4.595] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dermatophytosis is the most common skin infection caused by dermatophytic fungi, such as Trichophyton spp. We studied the in vitro and in vivo antifungal effects of lactoferrin against Trichophyton. Human and bovine lactoferrin, and a bovine lactoferrin-derived peptide, lactoferricin B, showed in vitro antifungal activity that was dependent on the test strain and medium used. In guinea pigs infected on the back with Trichophyton mentagrophytes (i.e. those with tinea corporis), consecutive daily po administration of bovine lactoferrin did not prevent development of symptoms during the early phase of infection, but facilitated clinical improvement of skin lesions after the peak of the symptoms. The fungal burden in lesions was less in guinea pigs that had been given lactoferrin than in untreated controls 21 days after infection. In guinea pigs infected on the foot with T. mentagrophytes (i.e. those with tinea pedis), the fungal burden of the skin on the heel portion of the infected foot 35 days after infection was lower in animals fed lactoferrin than in controls. These results suggest the potential usefulness of lactoferrin as a food component for promoting dermatophytosis cure.
Collapse
Affiliation(s)
- H Wakabayashi
- Nutritional Science Laboratory, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa 228-8583, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Hammacott JE, Williams PH, Cashmore AM. Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):869-876. [PMID: 10784045 DOI: 10.1099/00221287-146-4-869] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans, like other pathogens, has to compete with the host for a limited supply of available iron. Consequently, iron acquisition is likely to be an important factor for the growth, survival and virulence of this organism. It was previously demonstrated that C. albicans has a surface-associated ferric reductase similar to that of Saccharomyces cerevisiae. Therefore, functional rescue of a S. cerevisiae fre1 mutant was used to isolate a C. albicans ferric reductase gene (CFL1). This gene has been previously identified. However, the workers had not observed any functional reductase activity associated with the gene. The discrepancy with the findings in this report appears to be due to the clone previously reported carrying a non-contiguous piece of C. albicans DNA. Results shown in this paper demonstrate that CFL1 transcription is regulated in response to levels of iron and copper. This is the first demonstration of a functional ferric reductase gene from C. albicans.
Collapse
Affiliation(s)
- Jane E Hammacott
- Department of Genetics1 and Department of Microbiology and Immunology2, University of Leicester, Leicester LE1 7RH, UK
| | - Peter H Williams
- Department of Genetics1 and Department of Microbiology and Immunology2, University of Leicester, Leicester LE1 7RH, UK
| | - Annette M Cashmore
- Department of Genetics1 and Department of Microbiology and Immunology2, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
26
|
Xu Y, Samaranayake Y, Samaranayake L, Nikawa H. In vitrosusceptibility ofCandidaspecies to lactoferrin. Med Mycol 1999. [DOI: 10.1080/02681219980000051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Wakabayashi H, Okutomi T, Abe S, Hayasawa H, Tomita M, Yamaguchi H. Enhanced anti-Candida activity of neutrophils and azole antifungal agents in the presence of lactoferrin-related compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 443:229-37. [PMID: 9781363 DOI: 10.1007/978-1-4757-9068-9_27] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We investigated the effects of lactoferrin (Lf)-related compounds on growth inhibition of Candida albicans by neutrophils or antifungal agents in vitro. Human neutrophils partially inhibited the growth of C.albicans. The growth inhibition caused by human neutrophils was augmented by the addition of human Lf at concentrations which did not show any inhibitory effect in the absence of neutrophils. Similar observations were obtained also with the following combinations: human neutrophils + bovine Lf, murine neutrophils + bovine Lf, and murine neutrophils + iron saturated bovine Lf, but not in the case of murine neutrophils + human transferrin. The minimum inhibitory concentration (MIC) of azole antifungal agents, clotrimazole, ketoconazole, fluconazole, and itraconazole was reduced by 1/4 to 1/16 in the presence of a sub-MIC level of each of bovine Lf, bovine Lf pepsin hydrolysate, and the antimicrobial peptide "lactoferricin B" (Lfcin B). Other types of antifungal agents, amphotericin B, nystatin, and flucytosine did not show such combined effects with these Lf-related compounds. The anti-Candida activity of bovine Lf or Lfcin B in combination with clotrimazole was shown to be synergistic by checkerboard analysis. Clinically isolated azole-resistant C. albicans strains were more susceptible to bovine Lf or Lfcin B than azole-susceptible strains. Trailing growth of an azole-resistant strain in the presence of fluconazole was reduced by the addition of sub-MIC levels of bovine Lf or Lfcin B. These results suggest that Lf-related compounds even at relatively low concentrations may function as an antifungal effector in combination with neutrophils thereby modulating azole antifungal efficacies in vivo.
Collapse
Affiliation(s)
- H Wakabayashi
- Nutritional Science Laboratory, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Wakabayashi H, Abe S, Teraguchi S, Hayasawa H, Yamaguchi H. Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrob Agents Chemother 1998; 42:1587-91. [PMID: 9660988 PMCID: PMC105650 DOI: 10.1128/aac.42.7.1587] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of bovine lactoferrin (LF) or the LF-derived antimicrobial peptide lactoferricin B (LFcin B) on the growth of Candida albicans hyphae, including those of three azole-resistant strains, were investigated by a crystal violet staining method. The hyphae of two highly azole-resistant strains were more susceptible to inhibition by LF or LFcin B than the azole-susceptible strains tested. One moderately azole-resistant strain was defective in the formation of hyphae and showed a susceptibility to LF greater than that of the susceptible strains but a susceptibility to LFcin B similar to that of the susceptible strains. The highly azole-resistant strain TIMM3317 showed trailing growth in the presence of fluconazole or itraconazole, while the extent of growth was reduced by the addition of LF or LFcin B at a sub-MIC. Thus, the addition of LF or LFcin B at a sub-MIC resulted in a substantial decrease in the MICs of fluconazole and itraconazole for two highly azole-resistant strains; e.g., the MIC of fluconazole for TIMM3317 was shifted from > 256 to 0.25 micrograms/ml by LF, but the MICs were not decreased for the susceptible strains. The combination effects observed with triazoles and LF-related compounds in the case of the two highly azole-resistant strains were confirmed to be synergistic by the fractional inhibitory concentration index. These results demonstrate that for some azole-resistant C. albicans strains, LF-related compounds combined with triazoles can inhibit the growth of hyphae, an important form of this organism in pathogenesis.
Collapse
Affiliation(s)
- H Wakabayashi
- Nutritional Science Laboratory, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | | | | | | | | |
Collapse
|
29
|
Hawser SP, Islam K. Binding of Candida albicans to immobilized amino acids and bovine serum albumin. Infect Immun 1998; 66:140-4. [PMID: 9423850 PMCID: PMC107869 DOI: 10.1128/iai.66.1.140-144.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we examined the binding of Candida albicans synchronized yeast-phase cells to plastic, immobilized amino acids and bovine serum albumin (BSA) and quantified the binding by using an XTT tetrazolium salt assay and absorbance determination. Our results show that C. albicans binds efficiently and specifically to several nonpolar aliphatic amino acids and positively charged amino acids and to BSA immobilized on tissue culture plastic but not to polar uncharged, negatively charged, or aromatic amino acids. Adhesion of yeasts to immobilized amino acids was not affected by preincubation of cells with BSA, whereas binding to immobilized BSA was affected by preincubation of yeasts with alanine, proline, and leucine but not by arginine or lysine. The ability to distinguish the chirality of these amino acids was also examined by using both the D and L amino acid configurations, and the results show that C. albicans yeasts recognize only the L configuration of these amino acids. The observations that C. albicans specifically binds to certain amino acids indicate that these amino acids may prove useful tools for studying the binding interactions of C. albicans yeasts with host proteins such as components of the extracellular matrix.
Collapse
Affiliation(s)
- S P Hawser
- Lepetit Research Center, Gerenzano (VA), Italy
| | | |
Collapse
|
30
|
SAMARANAYAKE YH, SAMARANAYAKE LP, WU PC, SO M. The antifungal effect of lactoferrin and lysozyme onCandida kruseiandCandida albicans. APMIS 1997. [DOI: 10.1111/j.1699-0463.1997.tb05097.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Conte MP, Longhi C, Polidoro M, Petrone G, Buonfiglio V, Di Santo S, Papi E, Seganti L, Visca P, Valenti P. Iron availability affects entry of Listeria monocytogenes into the enterocytelike cell line Caco-2. Infect Immun 1996; 64:3925-9. [PMID: 8751952 PMCID: PMC174316 DOI: 10.1128/iai.64.9.3925-3929.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The influence of iron on the entry of Listeria monocytogenes into Caco-2 cells was studied. Iron availability was found to modify the surface hydrophobicity and protein profile of L. monocytogenes, with the result that cell invasion strongly increased upon bacterial growth in iron-rich medium. The enhanced invasive capability of iron-overloaded L. monocytogenes cells correlates to the higher-level expression of the inlAB virulence genes, which were positively iron regulated at the transcriptional level.
Collapse
Affiliation(s)
- M P Conte
- Institute of Microbiology, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Morrissey JA, Williams PH, Cashmore AM. Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 3):485-492. [PMID: 8868423 DOI: 10.1099/13500872-142-3-485] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For survival, pathogenic organisms such as Candida albicans must possess an efficient mechanism for acquiring iron in the iron-restricted environment of the human body. C. albicans can use iron from a variety of sources found within the host. However, it is not clear how biologically active ferrous iron is obtained from these sources. One strategy adopted by some organisms is to reduce iron extracellularly and then specifically transport the ferrous iron into the cell. We have shown that clinical isolates of C. albicans do have a cell-associated ferric-reductase activity. The determination of ferric-reductase activity of cells growing exponentially in either low- or high-iron media over a period of time indicated that C. albicans reductase activity is induced when in low-iron conditions. Moreover, we have demonstrated that C. albicans reductase activity is also regulated in response to the growth phase of the culture, with induction occurring upon exit from stationary phase and maximal levels being reached in early exponential stage irrespective of the iron content of the medium. These results suggest that C. albicans reductase activity is regulated in a very similar manner to the Saccharomyces cerevisiae ferric-reductase. Iron reduction and uptake in S. cerevisiae are closely connected to copper reduction, and possibly copper uptake. In this report we show that iron and copper reduction also appear to be linked in C. albicans. The ferric-reductase activity is negatively regulated by copper. Moreover, quantitative cupric-reductase assays indicated that C. albicans is capable of reducing copper and that this cupric-reductase activity is negatively regulated by both iron and copper. This is the first report that C. albicans has an iron- and copper-mediated ferri-reductase activity.
Collapse
Affiliation(s)
- Julie A Morrissey
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Peter H Williams
- Department of Microbiology and Immunology, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
33
|
Nikawa H, Samaranayake LP, Tenovuo J, Pang KM, Hamada T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol 1993; 38:1057-63. [PMID: 8141667 DOI: 10.1016/0003-9969(93)90167-k] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Five oral isolates each of Candida albicans and Candida krusei were studied for their sensitivity to the fungicidal effect of human lactoferrin. Significant inter- and intraspecies variations were observed and with most isolates the sensitivity of C. krusei to lactoferrin was greater than that of C. albicans. Fungicidal activity of lactoferrin was dose-dependent and observable only with the iron-free form of the molecule (apo-lactoferrin). Iron-saturated lactoferrin was ineffective against all isolates. Supernatant protein assays and scanning electron microscopy indicated cell surface alterations--leakage of proteins and formation of surface blebs--only in those Candida isolates that were sensitive to apo-lactoferrin. As lactoferrin is a common, non-immune, mucosal defence protein, its varying mode of action against C. albicans and C. krusei may be related to their different oral carriage rates.
Collapse
Affiliation(s)
- H Nikawa
- Oral Biology Unit, Prince Philip Dental Hospital, University of Hong Kong
| | | | | | | | | |
Collapse
|
34
|
JAKAB ERZSÉBET, PAULSSON MARIANNE, ASCENCIO F, LJUNGH ÅSA. Expression of vitronectin and fibronectin binding byCandida albicansyeast cells. APMIS 1993. [DOI: 10.1111/j.1699-0463.1993.tb00100.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Soukka T, Tenovuo J, Lenander-Lumikari M. Fungicidal effect of human lactoferrin againstCandida albicans. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05156.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Tronchin G, Robert R, Bouali A, Senet JM. Immunocytochemical localization of in vitro binding of human fibrinogen to Candida albicans germ tube and mycelium. ANNALES DE L'INSTITUT PASTEUR. MICROBIOLOGY 1987; 138:177-87. [PMID: 3300723 DOI: 10.1016/0769-2609(87)90194-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vitro fixation of human fibrinogen to different morphological stages of Candida albicans was examined immunocytochemically. When detected by fibrinogen latex microspheres or gold particles by scanning electron microscopy, fibrinogen-binding sites were found on the surface of germ tubes and mycelium, but not on blastospores. With transmission electron microscopy, fibrinogen-binding sites appeared associated with the flocculent surface layer, and increased during growth of germ tubes. Prefixation of C. albicans with formaldehyde decreased binding of fibrinogen, and pretreatment with mercaptoethanol and pronase abolished it. On thin sections of low temperature "Lowicryl K4M" -embedded organisms, gold particles were arranged in the form of clusters which extended from the surface through the cell wall. In contrast, the inner cell wall layers were weakly labelled. Labelling was also detected in the cytoplasm of germ tube, suggesting that fibrinogen receptors were synthesized during germ tube formation. In view of the importance of filamentous forms in host tissue adherence and colonization, the role of fibrinogen as a ligand for binding of C. albicans to epithelial cells was postulated.
Collapse
|