1
|
Lan H, Suzuki H, Nagatake T, Hosomi K, Ikegami K, Setou M, Kunisawa J. Impaired mucociliary motility enhances antigen-specific nasal IgA immune responses to a cholera toxin-based nasal vaccine. Int Immunol 2020; 32:559-568. [PMID: 32347929 PMCID: PMC9262165 DOI: 10.1093/intimm/dxaa029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
Nasal mucosal tissues are equipped with physical barriers, mucus and cilia, on their surface. The mucus layer captures inhaled materials, and the cilia remove the inhaled materials from the epithelial layer by asymmetrical beating. The effect of nasal physical barriers on the vaccine efficacy remains to be investigated. Tubulin tyrosine ligase-like family, member 1 (Ttll1) is an essential enzyme for appropriate movement of the cilia on respiratory epithelium, and its deficiency (Ttll1-KO) leads to mucus accumulation in the nasal cavity. Here, when mice were intra-nasally immunized with pneumococcal surface protein A (PspA, as vaccine antigen) together with cholera toxin (CT, as mucosal adjuvant), Ttll1-KO mice showed higher levels of PspA-specific IgA in the nasal wash and increased numbers of PspA-specific IgA-producing plasma cells in the nasal passages when compared with Ttll1 hetero (He) mice. Mucus removal by N-acetylcysteine did not affect the enhanced immune responses in Ttll1-KO mice versus Ttll1-He mice. Immunohistological and flow cytometry analyses revealed that retention time of PspA in the nasal cavity in Ttll1-KO mice was longer than that in Ttll1-He mice. Consistently, uptake of PspA by dendritic cells was higher in the nasopharynx-associated lymphoid tissue (NALT) of Ttll1-KO mice than that of Ttll1-He mice. These results indicate that the ciliary function of removing vaccine antigen from the NALT epithelial layer is a critical determinant of the efficacy of nasal vaccine.
Collapse
Affiliation(s)
- Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Ikegami
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Kobe University, Hyogo, Japan
- Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Saha P, Das B, Chaudhuri K. Role of 6-gingerol in reduction of cholera toxin activity in vitro and in vivo. Antimicrob Agents Chemother 2013; 57:4373-80. [PMID: 23817372 PMCID: PMC3754356 DOI: 10.1128/aac.00122-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/23/2013] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is one of the major bacterial pathogens responsible for the devastating diarrheal disease called cholera. Chemotherapy is often used against V. cholerae infections; however, the emergence of V. cholerae with multidrug resistance (MDR) toward the chemotherapeutic agents is a serious clinical problem. This scenario has provided us with the impetus to look into herbal remediation, especially toward blocking the action of cholera toxin (CT). Our studies were undertaken to determine the antidiarrheal potential of 6-gingerol (6G) on the basis of its effect on CT, the virulence factor secreted by V. cholerae. We report here that 6G binds to CT, hindering its interaction with the GM1 receptor present on the intestinal epithelial cells. The 50% inhibitory concentration (IC50) was determined to be 10 μg/ml. The detailed mechanistic study was conducted by enzyme-linked immunosorbent assay (ELISA), fluorescence spectroscopy, and isoelectric focusing. These results were validated with in vitro studies performed with the CHO, HeLa, and HT-29 cell lines, whereas a rabbit ileal loop assay was done to estimate the in vivo action, which confirms the efficacy of 6G in remediation of the choleragenic effects of CT. Thus, 6G can be an effective adjunctive therapy with oral rehydration solution for severe CT-mediated diarrhea.
Collapse
Affiliation(s)
- Pallashri Saha
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
3
|
Leitch JJ, Brosseau CL, Roscoe SG, Bessonov K, Dutcher JR, Lipkowski J. Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:965-76. [PMID: 23256886 DOI: 10.1021/la304939k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A mixed phospholipid-cholestrol bilayer, with cholera toxin B (CTB) units attached to the monosialotetrahexosylganglioside (GM1) binding sites in the distal leaflet, was deposited on a Au(111) electrode surface. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane upon binding CTB and the application of the electrode potential. The data presented in this article show that binding cholera toxin to the membrane leads to an overall increase in the tilt angle of the fatty acid chains; however, the conformation of the bilayer remains relatively constant as indicated by the small decrease in the total number of gauche conformers of acyl tails. In addition, the bound toxin caused a significant decrease in the hydration of the ester group contained within the lipid bilayer. Furthermore, changes in the applied potential had a minimal effect on the overall structure of the membrane. In contrast, our results showed significant voltage-dependent changes in the average orientation of the protein α-helices that may correspond to the voltage-gated opening and closing of the central pore that resides within the B subunit of cholera toxin.
Collapse
Affiliation(s)
- J Jay Leitch
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Chatterjee A, Chowdhury R. Bile and unsaturated fatty acids inhibit the binding of cholera toxin and Escherichia coli heat-labile enterotoxin to GM1 receptor. Antimicrob Agents Chemother 2008; 52:220-4. [PMID: 17954701 PMCID: PMC2223916 DOI: 10.1128/aac.01009-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/28/2007] [Accepted: 10/09/2007] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) is an archetypal bacterial toxin that binds with a high affinity to the receptor ganglioside GM1 on the intestinal epithelial surface and that causes the severe watery diarrhea characteristic of the disease cholera. Blockage of the interaction of CT with the GM1 receptor is an attractive approach for therapeutic intervention. We report here that crude bile prevents the interaction of CT with GM1 and reduces CT-mediated fluid accumulation in the rabbit intestine. The unsaturated fatty acids detected in crude bile, arachidonic, linoleic, and oleic acids, were found to be the most effective. Crude bile and the unsaturated fatty acids interacted with CT but not GM1 to prevent CT-GM1 binding. Neither crude bile nor the unsaturated fatty acids had any effect on the subunit structure of CT. The binding of CT to unsaturated fatty acids resulted in a shift of the apparent pI of CT from 6.8 to 8.2 and a marked decrease in intrinsic fluorescence. The Kd was calculated from fluorescence quenching assays. It was demonstrated by the rabbit ileal loop model that practically no fluid accumulated in the intestinal loops when CT was administered together with inhibitory concentrations of linoleic acid. The bile present in the intestine was sufficient to inhibit the activity of up to 300 ng CT. Bile and unsaturated fatty acids also inhibited the binding of Escherichia coli heat-labile enterotoxin (LT) to GM1, and no fluid accumulation was observed in rabbit ileal loops when LT was administered together with linoleic acid.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Biophysics Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Calcutta 700 032, India
| | | |
Collapse
|
5
|
Kabir S. The isolation and characterisation of jacalin [Artocarpus heterophyllus (jackfruit) lectin] based on its charge properties. Int J Biochem Cell Biol 1995; 27:147-56. [PMID: 7767783 DOI: 10.1016/1357-2725(94)00071-i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Jackfruit extracts contain a protein termed jacalin which possesses diverse biological properties. A detailed analysis of its charge properties has been lacking. The present investigation was initiated to study isoelectric properties of jacalin in detail and to isolate a single isoform of jacalin. Jacalin was isolated from jackfruit extracts by affinity chromatography on immunoglobulin-A immobilised to Sepharose 4B. Various techniques such as ion-exchange chromatography, isoelectric focusing (IEF) on polyacrylamide gels and preparative liquid IEF with the Rotofor cell were used. When analysed by IEF on thin layer polyacrylamide gels, jacalin was resolved into 35 bands over a pH range of 5.0-8.5. Upon SDS-PAGE in the second dimension all these charge species gave rise to only two-bands at 12 and 15.4 kDa. The lectin was mostly eluted with 50 and 100 mM sodium chloride when jackfruit extracts were fractionated on an anion-exchange column of DEAE-cellulose. In a single 6 hour run by preparative IEF with the Rotofor cell in the pH range of 3-9.5, it has been possible to isolate pure jacalin fractions containing fewer number of charged isomers. A single jacalin isoform was isolated by subjecting a Rotofor fraction containing fewer charged species to preparative IEF on thin layer polyacrylamide gel and eluting the band of interest from the gel. The isolated jacalin isoform was biologically active as it agglutinated erythrocytes. The study reveals the complexity of jacalin as it exists as multiple charge isomers over a broad pH range. By performing preparative IEF in solution as well as in thin layer polyacrylamide gels, it was possible to isolate a single jacalin isoform with the retention of biological activity.
Collapse
Affiliation(s)
- S Kabir
- Department of Immunology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
|
7
|
Kabir S. Simultaneous isolation of intestinal IgA and IgG from rabbits infected intraduodenally with Vibrio cholerae 01 by combined lectin affinity chromatography involving jacalin and protein A. Comp Immunol Microbiol Infect Dis 1993; 16:153-61. [PMID: 8319437 DOI: 10.1016/0147-9571(93)90008-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunoglobulins of IgA and IgG isotypes are formed in host intestines after enteric infections with bacteria such as Vibrio cholerae. A method has been developed for the separation of intestinal immunoglobulins from rabbits immunized intraduodenally with live V. cholerae cells by sequential affinity chromatography on immobilized jacalin and immobilized protein A. The jacalin-Sepharose 4B bound IgA was desorbed with 0.5 M galactose. The protein A-Sepharose 4B bound IgG was desorbed with 0.1 M citrate buffer. The quality of the isolated IgA and IgG was checked by immunodiffusion in agarose gels, enzyme-linked immunosorbent assay and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The procedure described here is rapid and convenient. It can be used to isolate intestinal IgA and IgG in pure form.
Collapse
Affiliation(s)
- S Kabir
- Department of Immunology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Laan-Pütsep K, Wigzell H, Cotran P, Gidlund M. Human alpha-fetoprotein (AFP) causes a selective down regulation of monocyte MHC class II molecules without altering other induced or noninduced monocyte markers or functions in monocytoid cell lines. Cell Immunol 1991; 133:506-18. [PMID: 1707766 DOI: 10.1016/0008-8749(91)90122-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human alpha-fetoprotein (AFP) purified from human amniotic fluid was investigated for its effect on human monocytoid cell lines, including U 937 cells with established subclones. The impact of AFP on the expression of surface markers (MHC class I and II, CD4, CD18, CD45, Fc receptors for IgG) was analyzed using known inducers of monocyte-macrophage differentiation such as phorbol esters and IFN-gamma. Furthermore we investigated the effect of AFP on the induction of macrophage antibody-dependent cell-mediated cytolytic activity (ADCC). AFP did selectively induce a rapid down regulation of surface MHC class II expression. No evidence of alterations was found in the endogenous or differentiation-induced expression of other markers on the surface on monocytes, nor did AFP affect the functional maturation of surface Fc receptors or the ability to express ADCC.
Collapse
Affiliation(s)
- K Laan-Pütsep
- Department of Immunology, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Tsuji T, Honda T, Miwatani T, Miyama A. Detection and purification of the free A subunit of heat-labile enterotoxin produced by enterotoxigenicEscherichia coli. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04361.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Tsuji T, Yao S, Encarnacion Joya J, Honda T, Miwatani T. Charge heterogeneity of heat-labile enterotoxins from human enterotoxigenicEscherichia coli. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03541.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|