1
|
Bahun M, Hartman K, Poklar Ulrih N. Periplasmic production of pernisine in Escherichia coli and determinants for its high thermostability. Appl Microbiol Biotechnol 2020; 104:7867-7878. [PMID: 32734388 DOI: 10.1007/s00253-020-10791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
Abstract
Pernisine is a subtilisin-like serine proteinase secreted by the hyperthermophilic archaeon Aeropyrum pernix. The significant properties of this proteinase are remarkable stability and ability to degrade the infectious prion proteins. Here we show the production of pernisine in the periplasm of Escherichia coli. This strategy prevented the aggregation of pernisine in the cytoplasm and increased the purity of the isolated pernisine. The thermostability of this recombinant pernisine was significantly increased compared with previous studies. In addition, several truncated pernisine variants were constructed and expressed in E. coli to identify the minimally active domain. The catalytic domain of pernisine consists of the αẞα structurally similar core flanked by the N-terminal and C-terminal outer regions. The deletion of the C-terminal α helix did not affect the pernisine activity at 90 °C. However, the complete deletion of the C-terminal outer region resulted in loss of proteolytic activity. The pernisine variant, in which the N-terminal outer region was deleted, had a reduced activity at 90 °C. These results underline the importance of the Ca2+ binding sites predicted in these outer regions for stability and activity of pernisine. KEY POINTS: • Aggregation of produced pernisine was prevented by translocation into periplasm. • Thermostability of mature pernisine was increased. • The outer regions of the catalytic core are required for pernisine thermostability.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kevin Hartman
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia. .,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia.
| |
Collapse
|
2
|
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerg Top Life Sci 2018; 2:561-580. [PMID: 32953999 DOI: 10.1042/etls20180025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Archaea are phylogenetically distinct from bacteria, and some of their proteolytic systems reflect this distinction. Here, the current knowledge of archaeal proteolysis is reviewed as it relates to protein metabolism, protein homeostasis, and cellular regulation including targeted proteolysis by proteasomes associated with AAA-ATPase networks and ubiquitin-like modification. Proteases and peptidases that facilitate the recycling of peptides to amino acids as well as membrane-associated and integral membrane proteases are also reviewed.
Collapse
|
3
|
Gao X, Zeng J, Yi H, Zhang F, Tang B, Tang XF. Four Inserts within the Catalytic Domain Confer Extra Stability and Activity to Hyperthermostable Pyrolysin from Pyrococcus furiosus. Appl Environ Microbiol 2017; 83:e03228-16. [PMID: 28003199 PMCID: PMC5311392 DOI: 10.1128/aem.03228-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/17/2016] [Indexed: 11/20/2022] Open
Abstract
Pyrolysin from the hyperthermophilic archaeon Pyrococcus furiosus is the prototype of the pyrolysin family of the subtilisin-like serine protease superfamily (subtilases). It contains four inserts (IS147, IS29, IS27, and IS8) of unknown function in the catalytic domain. We performed domain deletions and showed that three inserts are either essential (IS147 and IS27) or important (IS8) for efficient maturation of pyrolysin at high temperatures, whereas IS29 is dispensable. The large insert IS147 contains Ca3 and Ca4, two calcium-binding Dx[DN]xDG motifs that are conserved in many pyrolysin-like proteases. Mutagenesis revealed that the Ca3 site contributes to enzyme thermostability and the Ca4 site is necessary for pyrolysin to fold into a maturation-competent conformation. Mature insert-deletion variants were characterized and showed that IS29 and IS8 contribute to enzyme activity and stability, respectively. In the presence of NaCl, pyrolysin undergoes autocleavage at two sites: one within IS29 and the other in IS27 Disrupting the ion pairs in IS27 and IS8 induces autocleavage in the absence of salts. Interestingly, autocleavage products combine noncovalently to form an active, nicked enzyme that is resistant to SDS and urea denaturation. Additionally, a single mutation in IS29 increases resistance to salt-induced autocleavage and further increases enzyme thermostability. Our results suggest that these extra structural elements play a crucial role in adapting pyrolysin to hyperthermal environments.IMPORTANCE Pyrolysin-like proteases belong to the subtilase superfamily and are characterized by large inserts and long C-terminal extensions; however, the role of the inserts in enzyme function is unclear. Our results demonstrate that four inserts in the catalytic domain of hyperthermostable pyrolysin contribute to the folding, maturation, stability, and activity of the enzyme at high temperatures. The modification of extra structural elements in pyrolysin-like proteases is a promising strategy for modulating global structure stability and enzymatic activity of this class of protease.
Collapse
Affiliation(s)
- Xiaowei Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huawei Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
4
|
Extremophilic Proteases: Developments of Their Special Functions, Potential Resources and Biotechnological Applications. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Zeng J, Gao X, Dai Z, Tang B, Tang XF. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site. Appl Environ Microbiol 2014; 80:2763-72. [PMID: 24561589 PMCID: PMC3993279 DOI: 10.1128/aem.00006-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/16/2014] [Indexed: 11/20/2022] Open
Abstract
Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na(+), Ca(2+), or Mg(2+) salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca(2+)-binding sites (Ca1 and Ca2) revealed that the binding of Ca(2+) is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca(2+)-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin.
Collapse
Affiliation(s)
- Jing Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaowei Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zheng Dai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
| |
Collapse
|
6
|
Leuschner C, Antranikian G. Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol 2014; 11:95-114. [PMID: 24414414 DOI: 10.1007/bf00339139] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Only in the last decade have microorganisms been discovered which grow near or above 100°C. The enzymes that are formed by these extremely thermophilic (growth temperature 65 to 85°C) and hyperthermophilic (growth temperature 85 to 110°C) microorganisms are of great interest. This review covers the extracellular and intracellular enzymes of these exotic microorganisms that have recently been described. Polymer-hydrolysing enzymes, such as amylolytic, cellulolytic, hemicellulolytic and proteolytic enzymes, will be discussed. In addition, the properties of the intracellular enzymes involved in carbohydrate and amino-acid metabolism and DNA-binding and chaperones and chaperone-like proteins from hyperthermophiles are described. Due to the unusual properties of these heat-stable enzymes, they are expected to fill the gap between biological and chemical processes.
Collapse
|
7
|
Schmid G, Mathiesen G, Arntzen MO, Eijsink VGH, Thomm M. Experimental and computational analysis of the secretome of the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 2013; 17:921-30. [PMID: 23979514 PMCID: PMC3824201 DOI: 10.1007/s00792-013-0574-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/30/2013] [Indexed: 11/24/2022]
Abstract
Although Pyrococcus furiosus is one of the best studied hyperthermophilic archaea, to date no experimental investigation of the extent of protein secretion has been performed. We describe experimental verification of the extracellular proteome of P. furiosus grown on starch. LC-MS/MS-based analysis of culture supernatants led to the identification of 58 proteins. Fifteen of these proteins had a putative N-terminal signal peptide (SP), tagging the proteins for translocation across the membrane. The detected proteins with predicted SPs and known function were almost exclusively involved in important extracellular functions, like substrate degradation or transport. Most of the 43 proteins without predicted N-terminal signal sequences are known to have intracellular functions, mainly (70 %) related to intracellular metabolism. In silico analyses indicated that the genome of P. furiosus encodes 145 proteins with N-terminal SPs, including 21 putative lipoproteins and 17 with a class III peptide. From these we identified 15 (10 %; 7 SPI, 3 SPIII and 5 lipoproteins) under the specific growth conditions of this study. The putative lipoprotein signal peptides have a unique sequence motif, distinct from the motifs in bacteria and other archaeal orders.
Collapse
Affiliation(s)
- G. Schmid
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| | - G. Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. O. Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
- Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway
| | - V. G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Insights into the maturation of hyperthermophilic pyrolysin and the roles of its N-terminal propeptide and long C-terminal extension. Appl Environ Microbiol 2012; 78:4233-41. [PMID: 22504813 DOI: 10.1128/aem.00548-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrolysin-like proteases from hyperthermophiles are characterized by large insertions and long C-terminal extensions (CTEs). However, little is known about the roles of these extra structural elements or the maturation of these enzymes. Here, the recombinant proform of Pyrococcus furiosus pyrolysin (Pls) and several N- and C-terminal deletion mutants were successfully expressed in Escherichia coli. Pls was converted to mature enzyme (mPls) at high temperatures via autoprocessing of both the N-terminal propeptide and the C-terminal portion of the long CTE, indicating that the long CTE actually consists of the C-terminal propeptide and the C-terminal extension (CTEm), which remains attached to the catalytic domain in the mature enzyme. Although the N-terminal propeptide deletion mutant PlsΔN displayed weak activity, this mutant was highly susceptible to autoproteolysis and/or thermogenic hydrolysis. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of pyrolysin into its thermostable conformation. In contrast, the C-terminal propeptide deletion mutant PlsΔC199 was converted to a mature form (mPlsΔC199), which is the same size as but less stable than mPls, suggesting that the C-terminal propeptide is not essential for folding but is important for pyrolysin hyperthermostability. Characterization of the full-length (mPls) and CTEm deletion (mPlsΔC740) mature forms demonstrated that CTEm not only confers additional stability to the enzyme but also improves its catalytic efficiency for both proteineous and small synthetic peptide substrates. Our results may provide important clues about the roles of propeptides and CTEs in the adaptation of hyperthermophilic proteases to hyperthermal environments.
Collapse
|
9
|
de Carvalho CCCR. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 2010; 29:75-83. [PMID: 20837129 DOI: 10.1016/j.biotechadv.2010.09.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
The use of enzymes and whole bacterial cells has allowed the production of a plethora of compounds that have been used for centuries in foods and beverages. However, only recently we have been able to master techniques that allow the design and development of new biocatalysts with high stability and productivity. Rational redesign and directed evolution have lead to engineered enzymes with new characteristics whilst the understanding of adaptation mechanisms in bacterial cells has allowed their use under new operational conditions. Bacteria able to thrive under the most extreme conditions have also provided new and extraordinary catalytic processes. In this review, the new tools available for the improvement of biocatalysts are presented and discussed.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
10
|
Kengen SWM, Stams AJM. An Extremely Thermostable β-Glucosidase from the Hyperthermophilic ArchaeonPyrococcus Furiosus; A Comparison with Other Glycosidases. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409034379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- ServÉ W. M. Kengen
- Department of Microbiology, Wageningen Agricultural University, P.O. Box 8033 NL-6700 EJ, The Netherlands
| | - Alfons J. M. Stams
- Department of Microbiology, Wageningen Agricultural University, P.O. Box 8033 NL-6700 EJ, The Netherlands
| |
Collapse
|
11
|
Eggen RIL, Geerling ACM, Voorhorst WGB, Kort R, de Vos WM. Molecular and Comparative Analysis of the HyperthermostablePyrococcus FuriosusGlutamate Dehydrogenase and its Gene. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409034383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rik I. L. Eggen
- Department of Microbiology, Wageningen Agricultural University, Hesselink van Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600, Dubendorf, Switzerland
| | - Ans C. M. Geerling
- Department of Microbiology, Wageningen Agricultural University, Hesselink van Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600, Dubendorf, Switzerland
| | - Wilfried G. B. Voorhorst
- Department of Microbiology, Wageningen Agricultural University, Hesselink van Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600, Dubendorf, Switzerland
| | - Remco Kort
- Department of Microbiology, Wageningen Agricultural University, Hesselink van Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600, Dubendorf, Switzerland
| | - Willem M. de Vos
- Department of Microbiology, Wageningen Agricultural University, Hesselink van Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600, Dubendorf, Switzerland
| |
Collapse
|
12
|
Kublanov IV, Bidjieva SK, Mardanov AV, Bonch-Osmolovskaya EA. Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. Int J Syst Evol Microbiol 2009; 59:1743-7. [PMID: 19542129 DOI: 10.1099/ijs.0.006726-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- I V Kublanov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia.
| | | | | | | |
Collapse
|
13
|
Kumar AG, Venkatesan R, Prasad Rao B, Swarnalatha S, Sekaran G. Utilization of tannery solid waste for protease production bySynergistessp. in solid-state fermentation and partial protease characterization. Eng Life Sci 2009. [DOI: 10.1002/elsc.200700040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
KELLY ROBERTM, PEEPLES TONYAL, HALIO SHERYLB, RINKER KRISTINAD, DUFFAUD GUYD. Extremely Thermophilic Microorganisms. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1994.tb44393.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Cloning, expression, partial characterization and structural modeling of a novel esterase from Pyrococcus furiosus. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Coolbear T, Daniel RM, Morgan HW. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 45:57-98. [PMID: 1605092 DOI: 10.1007/bfb0008756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review on enzymes from extreme thermophiles (optimum growth temperature greater than 65 degrees C) concentrates on their characteristics, especially thermostabilities, and their commercial applicability. The enzymes are considered in general terms first, with comments on denaturation, stabilization and industrial processes. Discussion of the enzymes subsequently proceeds in order of their E.C. classification: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. The ramifications of cloned enzymes from extreme thermophiles are also discussed.
Collapse
Affiliation(s)
- T Coolbear
- University of Waikato, Hamilton, New Zealand
| | | | | |
Collapse
|
17
|
Chen XG, Stabnikova O, Tay JH, Wang JY, Tay STL. Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 2004; 8:489-98. [PMID: 15322950 DOI: 10.1007/s00792-004-0412-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
A proteolytic thermophilic bacterial strain, designated as strain SF03, was isolated from sewage sludge in Singapore. Strain SF03 is a strictly aerobic, Gram stain-positive, catalase-positive, oxidase-positive, and endospore-forming rod. It grows at temperatures ranging from 35 to 65 degrees C, pH ranging from 6.0 to 9.0, and salinities ranging from 0 to 2.5%. Phylogenetic analyses revealed that strain SF03 was most similar to Saccharococcus thermophilus, Geobacillus caldoxylosilyticus, and G. thermoglucosidasius, with 16S rRNA gene sequence identities of 97.6, 97.5 and 97.2%, respectively. Based on taxonomic and 16S rRNA analyses, strain SF03 was named G. caldoproteolyticus sp. nov. Production of extracellular protease from strain SF03 was observed on a basal peptone medium supplemented with different carbon and nitrogen sources. Protease production was repressed by glucose, lactose, and casamino acids but was enhanced by sucrose and NH4Cl. The cell growth and protease production were significantly improved when strain SF03 was cultivated on a 10% skim-milk culture medium, suggesting that the presence of protein induced the synthesis of protease. The protease produced by strain SF03 remained active over a pH range of 6.0-11.0 and a temperature range of 40-90 degrees C, with an optimal pH of 8.0-9.0 and an optimal temperature of 70-80 degrees C, respectively. The protease was stable over the temperature range of 40-70 degrees C and retained 57 and 38% of its activity at 80 and 90 degrees C, respectively, after 1 h.
Collapse
Affiliation(s)
- Xiao-Ge Chen
- Environmental Engineering Research Center, School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | | | | | | | | |
Collapse
|
18
|
Abstract
Archaea have developed a variety of molecular strategies to survive the often harsh environments in which they exist. Although the rules that allow archaeal enzymes to fulfill their catalytic functions under extremes of salinity, temperature or pressure are not completely understood, the stability of these extremophilic enzymes, or extremozymes, in the face of adverse conditions has led to their use in a variety of biotechnological applications in which such tolerances are advantageous. In the following, examples of commercially important archaeal extremozymes are presented, potentially useful archaeal extremozyme sources are identified and solutions to obstacles currently hindering wider use of archaeal extremozymes are discussed.
Collapse
Affiliation(s)
- J Eichler
- Department of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| |
Collapse
|
19
|
Kannan Y, Koga Y, Inoue Y, Haruki M, Takagi M, Imanaka T, Morikawa M, Kanaya S. Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Appl Environ Microbiol 2001; 67:2445-52. [PMID: 11375149 PMCID: PMC92893 DOI: 10.1128/aem.67.6.2445-2452.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding subtilisin-like protease T. kodakaraensis subtilisin was cloned from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. T. kodakaraensis subtilisin is a member of the subtilisin family and composed of 422 amino acid residues with a molecular weight of 43,783. It consists of a putative presequence, prosequence, and catalytic domain. Like bacterial subtilisins, T. kodakaraensis subtilisin was overproduced in Escherichia coli in a form with a putative prosequence in inclusion bodies, solubilized in the presence of 8 M urea, and refolded and converted to an active molecule. However, unlike bacterial subtilisins, in which the prosequence was removed from the catalytic domain by autoprocessing upon refolding, T. kodakaraensis subtilisin was refolded in a form with a putative prosequence. This refolded protein of recombinant T. kodakaraensis subtilisin which is composed of 398 amino acid residues (Gly(-82) to Gly(316)), was purified to give a single band on a sodium dodecyl sulfate (SDS)-polyacrylamide gel and characterized for biochemical and enzymatic properties. The good agreement of the molecular weights estimated by SDS-polyacrylamide gel electrophoresis (44,000) and gel filtration (40,000) suggests that T. kodakaraensis subtilisin exists in a monomeric form. T. kodakaraensis subtilisin hydrolyzed the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide only in the presence of the Ca(2+) ion with an optimal pH and temperature of pH 9.5 and 80 degrees C. Like bacterial subtilisins, it showed a broad substrate specificity, with a preference for aromatic or large nonpolar P1 substrate residues. However, it was much more stable than bacterial subtilisins against heat inactivation and lost activity with half-lives of >60 min at 80 degrees C, 20 min at 90 degrees C, and 7 min at 100 degrees C.
Collapse
Affiliation(s)
- Y Kannan
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
de Vos WM, Voorhorst WG, Dijkgraaf M, Kluskens LD, Van der Oost J, Siezen RJ. Purification, characterization, and molecular modeling of pyrolysin and other extracellular thermostable serine proteases from hyperthermophilic microorganisms. Methods Enzymol 2001; 330:383-93. [PMID: 11210516 DOI: 10.1016/s0076-6879(01)30390-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- W M de Vos
- Laboratory of Microbiology, Wageningen Agricultural University, Wageningen, NL-6703 CT, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- L S Chang
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | | | | |
Collapse
|
22
|
Affiliation(s)
- M Morikawa
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | | |
Collapse
|
23
|
Andrade CM, Pereira Jr. N, Antranikian G. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes. ACTA ACUST UNITED AC 1999. [DOI: 10.1590/s0001-37141999000400001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those microorganisms growing from 70oC to 100°C and to indicate potential opportunities for useful applications derived from these features.
Collapse
Affiliation(s)
| | - Nei Pereira Jr.
- Escola de Química, Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
24
|
Choi IG, Bang WG, Kim SH, Yu YG. Extremely thermostable serine-type protease from Aquifex pyrophilus. Molecular cloning, expression, and characterization. J Biol Chem 1999; 274:881-8. [PMID: 9873027 DOI: 10.1074/jbc.274.2.881] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene encoding a serine-type protease has been cloned from Aquifex pyrophilus using a sequence tag containing the consensus sequence of proteases as a probe. Sequence analysis of the cloned gene reveals an open reading frame of 619 residues that has three canonical residues (Asp-140, His-184, and Ser-502) that form the catalytic site of serine-type proteases. The size of the mature form (43 kDa) and its localization in the cell wall fraction indicate that both the NH2- and COOH-terminal sequences of the protein are processed during maturation. When the cloned gene is expressed in Escherichia coli, it is weakly expressed as active and processed forms. The pH optimum of this protease is very broad, and its activity is completely inactivated by phenylmethylsulfonyl fluoride. The half-life of the protein is 6 h at 105 degreesC, suggesting that it is one of the most heat-stable proteases. The cysteine residues in the mature form may form disulfide bonds that are responsible for the strong stability of this protease, because the thermostability of the protein is significantly reduced in the presence of reducing reagent.
Collapse
Affiliation(s)
- I G Choi
- Structural Biology Center, Korea Institute of Science and Technology, Seoul, 136-791 Korea
| | | | | | | |
Collapse
|
25
|
Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW. Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1998; 180:4781-9. [PMID: 9733678 PMCID: PMC107500 DOI: 10.1128/jb.180.18.4781-4789.1998] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion binding site. Co2+ could be replaced by Mn2+ (resulting in a 25% decrease in activity) but not by Mg2+, Ca2+, Fe2+, Zn2+, Cu2+, or Ni2+. The prolidase exhibited a narrow substrate specificity and hydrolyzed only dipeptides with proline at the C terminus and a nonpolar amino acid (Met, Leu, Val, Phe, or Ala) at the N terminus. Optimal prolidase activity with Met-Pro as the substrate occurred at a pH of 7.0 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified prolidase was used to identify in the P. furiosus genome database a putative prolidase-encoding gene with a product corresponding to 349 amino acids. This gene was expressed in Escherichia coli and the recombinant protein was purified. Its properties, including molecular mass, metal ion dependence, pH and temperature optima, substrate specificity, and thermostability, were indistinguishable from those of the native prolidase from P. furiosus. Furthermore, the Km values for the substrate Met-Pro were comparable for the native and recombinant forms, although the recombinant enzyme exhibited a twofold greater Vmax value than the native protein. The amino acid sequence of P. furiosus prolidase has significant similarity with those of prolidases from mesophilic organisms, but the enzyme differs from them in its substrate specificity, thermostability, metal dependency, and response to inhibitors. The P. furiosus enzyme appears to be the second Co-containing member (after methionine aminopeptidase) of the binuclear N-terminal exopeptidase family.
Collapse
Affiliation(s)
- M Ghosh
- Department of Biochemistry and Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Enzymes synthesized by thermophiles (organisms with optimal growth temperatures > 60 degrees C) and hyperthermophiles (optimal growth temperatures > 80 degrees C) are typically thermostable (resistant to irreversible inactivation at high temperatures) and thermophilic (optimally active at high temperatures, i.e., > 60 degrees C). These enzymes, called thermozymes, share catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, thermozymes usually retain their thermal properties, suggesting that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, and crystal structure comparisons indicate that thermozymes are, indeed, very similar to mesophilic enzymes. No obvious sequence or structural features account for enzyme thermostability and thermophilicity. Thermostability and thermophilicity molecular mechanisms are varied, differing from enzyme to enzyme. Thermostability and thermophilicity are usually caused by the accumulation of numerous subtle sequence differences. This review concentrates on the mechanisms involved in enzyme thermostability and thermophilicity. Their relationships with protein rigidity and flexibility and with protein folding and unfolding are discussed. Intrinsic stabilizing forces (e.g., salt bridges, hydrogen bonds, hydrophobic interactions) and extrinsic stabilizing factors are examined. Finally, thermozymes' potential as catalysts for industrial processes and specialty uses are discussed, and lines of development (through new applications, and protein engineering) are also proposed.
Collapse
Affiliation(s)
- C Vieille
- Department of Biochemistry, Michigan State University, East Lansing 48909, USA
| | | | | |
Collapse
|
27
|
Ikeda M, Clark DS. Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 1998; 57:624-9. [PMID: 10099242 DOI: 10.1002/(sici)1097-0290(19980305)57:5<624::aid-bit15>3.0.co;2-b] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A genomic library of the hyperthermophilic archaeon Pyrococcus furiosus was constructed in Escherichia coli using pBluescript II SK(+) as a cloning vector. One positive clone exhibiting thermophilic ester-hydrolyzing activity was directly detected by an in situ plate assay using the chromogenic substrate 5-bromo-4-chloro-3-indolyl-acetate. The plasmid isolated from the clone contained a 3.8 kb HindIII fragment from P. furiosus. Expression of active thermostable esterase in E. coli was independent of isopropyl-beta-D-thiogalactopyranoside, suggesting that the archaeal esterase gene was heterologously controlled by its own promoter sequence, not by the vector-located lac promoter. Assays of esterase activity in heat-treated extract of the recombinant E. coli showed the highest temperature optimum (100 degrees C) and thermostability (a half-life of 50 min at 126 degrees C) among esterases reported to date.
Collapse
Affiliation(s)
- M Ikeda
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
28
|
Sako Y, Croocker PC, Ishida Y. An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1. FEBS Lett 1997; 415:329-34. [PMID: 9357994 DOI: 10.1016/s0014-5793(97)01153-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An extracellular metalloproteinase, which we had designated aeropyrolysin, from the aerobic marine hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820), was purified by ammonium sulfate precipitation, anionic exchange chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 52 kDa as determined by SDS-PAGE. The proteinase had a broad pH optimum (pH 5-9) with a maximal activity at pH 6-8 for azocasein hydrolysis. The optimum temperature for enzyme activity was 100 degrees C in the absence of 1 mM CaCl2 and 110 degrees C in the presence of 1 mM CaCl2. The enzyme activity was completely inhibited by EDTA and EGTA, indicating that it was a metalloproteinase. The enzyme was highly resistant to the denaturing reagents urea, guanidine-HCl, dithiothreitol, 2-mercaptoethanol and SDS. The enzyme also showed a high activity with the metalloproteinase specific substrate MOCAc-Pro-Leu-Gly-Leu-A2pr(Dnp)-Ala-Arg-NH2. The enzyme was extremely thermostable showing half-lives of 2.5 h at 120 degrees C and 1.2 h at 125 degrees C in the presence of 1 mM CaCl2. These results indicate that this enzyme is one of the most thermostable extracellular proteinases reported to date.
Collapse
Affiliation(s)
- Y Sako
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
29
|
Harwood VJ, Denson JD, Robinson-Bidle KA, Schreier HJ. Overexpression and characterization of a prolyl endopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1997; 179:3613-8. [PMID: 9171407 PMCID: PMC179155 DOI: 10.1128/jb.179.11.3613-3618.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The maltose-regulated mlr-2 gene from the hyperthermophilic archaeon Pyrococcus furiosus having homology to bacterial and eukaryal prolyl endopeptidase (PEPase) was cloned and overexpressed in Escherichia coli. Extracts from recombinant cells were capable of hydrolyzing the PEPase substrate benzyloxycarbonyl-Gly-Pro-p-nitroanilide (ZGPpNA) with a temperature optimum between 85 and 90 degrees C. Denaturing gel electrophoresis of purified PEPase showed that enzyme activity was associated with a 70-kDa protein, which is consistent with that predicted from the mlr-2 sequence. However, an apparent molecular mass of 59 kDa was obtained from gel permeation studies. In addition to ZGPpNA (K(Mapp) of 53 microM), PEPase was capable of hydrolyzing azocasein, although at a low rate. No activity was detected when ZGPpNA was replaced by substrates for carboxypeptidase A and B, chymotrypsin, subtilisin, and neutral endopeptidase. N-[N-(L-3-trans-Carboxirane-2-carbonyl)-L-Leu]-agmatine (E-64) and tosyl-L-Lys chloromethyl ketone did not inhibit PEPase activity. Both phenylmethylsulfonyl fluoride and diprotin A inhibited ZGPpNA cleavage, the latter doing so competitively (K(lapp) of 343 microM). At 100 degrees C, the enzyme displayed some tolerance to sodium dodecyl sulfate treatment. Stability of PEPase over time was dependent on protein concentration; at temperatures above 65 degrees C, dilute samples retained most of their activity after 24 h while the activity of concentrated preparations diminished significantly. This decrease was found to be due, in part, to autoproteolysis. Partially purified PEPase from P. furiosus exhibited the same temperature optimum, molecular weight, and kinetic characteristics as the enzyme overexpressed in E. coli. Extracts from P. furiosus cultures grown in the presence of maltose were approximately sevenfold greater in PEPase activity than those grown without maltose. Activity could not be detected in clarified medium obtained from maltose-grown cultures. We conclude that mlr-2, now called prpA, encodes PEPase; the physiological role of this protease is presently unknown.
Collapse
Affiliation(s)
- V J Harwood
- Center of Marine Biotechnology, The University of Maryland, Baltimore 21202, USA
| | | | | | | |
Collapse
|
30
|
Halio SB, Bauer MW, Mukund S, Adams M, Kelly RM. Purification and Characterization of Two Functional Forms of Intracellular Protease PfpI from the Hyperthermophilic Archaeon Pyrococcus furiosus. Appl Environ Microbiol 1997; 63:289-95. [PMID: 16535492 PMCID: PMC1389106 DOI: 10.1128/aem.63.1.289-295.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100(deg)C by the fermentation of peptides and carbohydrates. From this organism, we have purified to homogeneity an intracellular protease, previously designated PfpI (P. furiosus protease I) (S. B. Halio, I. I. Blumentals, S. A. Short, B. M. Merrill, and R. M. Kelly, J. Bacteriol. 178:2605-2612, 1996). The protease contains a single subunit with a molecular mass of approximately 19 kDa and exists in at least two functional conformations, which were purified separately. The predominant form from the purification (designated PfpI-C1) is a hexamer with a molecular mass of 124 (plusmn) 6 kDa (by gel filtration) and comprises about 90% of the total activity. The minor form (designated PfpI-C2) is trimeric with a molecular mass of 59 (plusmn) 3 kDa. PfpI-C1 hydrolyzed both basic and hydrophobic residues in the P1 position, indicating trypsin- and chymotrypsin-like specificities, respectively. The temperature optimum for Ala-Ala-Phe-7-amido-4-methylcoumarin (AAF-MCA) hydrolysis was (symbl)85(deg)C both for purified PfpI-C1 and for proteolytic activity in P. furiosus cell extract. In contrast, the temperature optimum for PfpI prepared by incubating a cell extract of P. furiosus at 98(deg)C in 1% sodium dodecyl sulfate for 24 h at 95 to 100(deg)C (I. I. Blumentals, A. S. Robinson, and R. M. Kelly, Appl. Environ. Microbiol. 56:1255-1262, 1990), designated PfpI-H, was (symbl)100(deg)C. Moreover, the half-life of activity of PfpI-C1 at 98(deg)C was less than 30 min, in contrast to a value of more than 33 h measured for PfpI-H. PfpI-C1 appears to be a predominant serine-type protease in cell extracts but is converted in vitro, probably in part by deamidation of Asn and Gln residues, to a more thermally stable form (PfpI-H) by prolonged heat treatment. The deamination hypothesis is supported by the differences in the measured pI values of PfpI-C1 (6.1) and PfpI-H (3.8). High levels of potassium phosphate (>0.5 mM) were found to extend the half-life of PfpI-C1 activity towards AAF-MCA by up to 2.5-fold at 90(deg)C, suggesting that compatible solutes play an important role in the in vivo function of this protease.
Collapse
|
31
|
Voorhorst WG, Eggen RI, Geerling AC, Platteeuw C, Siezen RJ, Vos WM. Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 1996; 271:20426-31. [PMID: 8702780 DOI: 10.1074/jbc.271.34.20426] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hyperthermostable serine protease pyrolysin from the hyperthermophilic archaeon Pyrococcus furiosus was purified from membrane fractions. Two proteolytically active fractions were obtained, designated high (HMW) and low (LMW) molecular weight pyrolysin, that showed immunological cross-reaction and identical NH2-terminal sequences in which the third residue could be glycosylated. The HMW pyrolysin showed a subunit mass of 150 kDa after acid denaturation. Incubation of HMW pyrolysin at 95 degrees C resulted in the formation of LMW pyrolysin, probably as a consequence of COOH-terminal autoproteolysis. The 4194-base pair pls gene encoding pyrolysin was isolated and characterized, and its transcription initiation site was identified. The deduced pyrolysin sequence indicated a prepro-enzyme organization, with a 1249-residue mature protein composed of an NH2-terminal catalytic domain with considerable homology to subtilisin-like serine proteases and a COOH-terminal domain that contained most of the 32 possible N-glycosylation sites. The archaeal pyrolysin showed highest homology with eucaryal tripeptidyl peptidases II on the amino acid level but a different cleavage specificity as shown by its endopeptidase activity toward caseins, casein fragments including alphaS1-casein and synthetic peptides.
Collapse
Affiliation(s)
- W G Voorhorst
- Department of Microbiology, Wageningen Agricultural University, 6703 CT Wageningen
| | | | | | | | | | | |
Collapse
|
32
|
Halio SB, Blumentals II, Short SA, Merrill BM, Kelly RM. Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1996; 178:2605-12. [PMID: 8626329 PMCID: PMC177986 DOI: 10.1128/jb.178.9.2605-2612.1996] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A previously identified intracellular proteolytic activity in the hyperthermophilic archaeon Pyrococcus furiosus (I. I. Blumentals, A. S. Robinson, and R. M. Kelly, Appl. Environ. Microbiol. 56:1992-1998, 1990) was found to be a homomultimer consisting of 18.8-kDa subunits. Dissociation of this native P. furiosus protease I (PfpI) into a single subunit was seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) but only after trichloroacetic acid precipitation; heating to 95 degrees C in the presence of 2% SDS and 80 mM dithiothreitol did not dissociate the protein. The gene (pfpI) coding for this protease was located in genomic digests by Southern blotting with probes derived from the N-terminal amino acid sequence. pfpI was cloned, sequenced, and expressed in active form in Escherichia coli as a fusion protein with a histidine tag. The recombinant protease from E. coli showed maximum proteolytic activity at 95 degrees C, and its half-life was 19 min at this temperature. This level of stability was significantly below that previously reported for the enzyme purified by electroelution of a 66-kDa band from SDS-PAGE after extended incubation of cell extracts at 98 degrees C in 1% SDS (>30 h). The pfpI gene codes for a polypeptide of 166 amino acid residues lacking any conserved protease motifs; no protease activity was detected for the 18.8-kDa PfpI subunit (native or recombinant) by substrate gel assay. Although an immunological relationship of this protease to the eukaryotic proteasome has been seen previously, searches of the available databases identified only two similar amino acid sequences: an open reading frame of unknown function from Staphylococcus aureus NCTC 8325 (171 amino acid residues, 18.6 kDa, 41% identity) and an open reading frame also of unknown function in E. coli (172 amino acid residues, 18.8 kDa, 47% identity). Primer extension experiments with P. furiosus total RNA defined the 5' end of the transcript. There are only 10 nucleotides upstream of the start of translation; therefore, it is unlikely that there are any pre- or pro-regions associated with PfpI which could have been used for targeting or assembly of this protease. Although PfpI activity appears to be the dominant proteolytic activity in P. furiosus cell extracts, the physiological function of PfpI is unclear.
Collapse
Affiliation(s)
- S B Halio
- Department of Chemical Engineering, North Carolina State University, Raleigh, 27695-7905, USA
| | | | | | | | | |
Collapse
|
33
|
Heider J, Mai X, Adams MW. Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea. J Bacteriol 1996; 178:780-7. [PMID: 8550513 PMCID: PMC177725 DOI: 10.1128/jb.178.3.780-787.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cell extracts of the proteolytic and hyperthermophilic archaea Thermococcus litoralis, Thermococcus sp. strain ES-1, Pyrococcus furiosus, and Pyrococcus sp. strain ES-4 contain an enzyme which catalyzes the coenzyme A-dependent oxidation of branched-chain 2-ketoacids coupled to the reduction of viologen dyes or ferredoxin. This enzyme, termed VOR (for keto-valine-ferredoxin oxidoreductase), has been purified from all four organisms. All four VORs comprise four different subunits and show amino-terminal sequence homology. T. litoralis VOR has an M(r) of ca. 230,000, with subunit M(r) values of 47,000 (alpha), 34,000 (beta), 23,000 (gamma), and 13,000 (delta). It contains about 11 iron and 12 acid-labile sulfide atoms and 13 cysteine residues per heterotetramer (alpha beta gamma delta), but thiamine pyrophosphate, which is required for catalytic activity, was lost during purification. The most efficient substrates (kcat/Km > 1.0 microM-1 s-1; Km < 100 microM) for the enzyme were the 2-ketoacid derivatives of valine, leucine, isoleucine, and methionine, while pyruvate and aryl pyruvates were very poor substrates (kcat/Km < 0.2 microM-1 s-1) and 2-ketoglutarate was not utilized. T. litoralis VOR also functioned as a 2-ketoisovalerate synthase at 85 degrees C, producing 2-ketoisovalerate and coenzyme A from isobutyryl-coenzyme A (apparent Km, 250 microM) and CO2 (apparent Km, 48 mM) with reduced viologen as the electron donor. The rate of 2-ketoisovalerate synthesis was about 5% of the rate of 2-ketoisovalerate oxidation. The optimum pH for both reactions was 7.0. A mechanism for 2-ketoisovalerate oxidation based on data from substrate-induced electron paramagnetic resonance spectra is proposed, and the physiological role of VOR is discussed.
Collapse
Affiliation(s)
- J Heider
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
34
|
Bauer MW, Halio SB, Kelly RM. Proteases and glycosyl hydrolases from hyperthermophilic microorganisms. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:271-310. [PMID: 8791627 DOI: 10.1016/s0065-3233(08)60364-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Bauer
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695-7905, USA
| | | | | |
Collapse
|
35
|
Adams MW, Kletzin A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic Archaea. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:101-80. [PMID: 8791625 DOI: 10.1016/s0065-3233(08)60362-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
36
|
Cavagnero S, Zhou ZH, Adams MW, Chan SI. Response of rubredoxin from Pyrococcus furiosus to environmental changes: implications for the origin of hyperthermostability. Biochemistry 1995; 34:9865-73. [PMID: 7632687 DOI: 10.1021/bi00031a007] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The bases of the hyperthermostability of rubredoxin from Pyrococcus furiosus (RdPf) have been probed by structural perturbations induced by solution pH and ionic strength changes. Comparison of the solution behavior at pH 7 and pH 2, as probed by far- and near-UV circular dichroism, Trp fluorescence emission, 1-anilinonaphthalene-8-sulfonate (ANS) binding, and NMR spectroscopy, reveals the presence of only minimal structural variations at room temperature. At pH 2, the protein displays a surprising nearly native-like behavior at high ionic strength while, at low ionic strength, it is capable of strongly binding the hydrophobic probe ANS. All the secondary and tertiary structural features, including the environment of the hydrophobic core, appear to be intact regardless of pH and ionic strength. The apparent "melting" or denaturation temperature at pH 2, however, is 42 degrees C lower than at pH 7. This is attributed to the perturbation of many electrostatic interactions, including the disruption of all the ion pairs, which is complete at pH 2, as indicated by electrometric pH titrations. The implications of these findings for the origins of the hyperthermostability of rubredoxin are discussed.
Collapse
Affiliation(s)
- S Cavagnero
- Arthur Amos Noyes Laboratories of Chemical Physics, California Institute of Technology Pasadena, 91125, USA
| | | | | | | |
Collapse
|
37
|
Antranikian G, Rüdiger A, Canganella F, Klingeberg M, Sunna A. Biodegradation of Polymers at Temperatures up to 130°C. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 1995. [DOI: 10.1080/10601329508010279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Rüdiger A, Jorgensen PL, Antranikian G. Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl Environ Microbiol 1995; 61:567-75. [PMID: 7574598 PMCID: PMC167320 DOI: 10.1128/aem.61.2.567-575.1995] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene encoding an extremely heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei was cloned and expressed in Escherichia coli. Purification of the enzyme to homogeneity was achieved after heat treatment of the recombinant E. coli cells, affinity chromatography on a maltotriose-coupled Sepharose 6B column, and anion-exchange chromatography on Mono Q. The pullulanase, which was purified 90-fold with a final yield of 15%, is composed of a single polypeptide chain with a molecular mass of 90 kDa. The enzyme is optimally active at 100 degrees C and pH 6.0 and shows 40% activity at 120 degrees C. Enzyme activation up to 370% is achieved in the presence of calcium ions and reducing agents such as beta-mercaptoethanol and dithiothreitol, whereas N-bromosuccinimide and alpha-cyclodextrin are inhibitory. The high rigidity of the heat-stable enzyme is demonstrated by fluorescence spectroscopic studies in the presence of denaturing agents such as sodium dodecyl sulfate. At temperatures above 80 degrees C, the enzyme seems to switch from the compact to the unfolded form, which is accompanied by an apparent shift in the molecular mass from 45 to 90 kDa.
Collapse
Affiliation(s)
- A Rüdiger
- Department of Technical Microbiology, Technical University Hamburg-Harburg, Germany
| | | | | |
Collapse
|
39
|
Robinson KA, Bartley DA, Robb FT, Schreier HJ. A gene from the hyperthermophile Pyrococcus furiosus whose deduced product is homologous to members of the prolyl oligopeptidase family of proteases. Gene 1995; 152:103-6. [PMID: 7828913 DOI: 10.1016/0378-1119(94)00688-o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mlr-2 gene from the hyperthermophilic archaeum Pyrococcus furiosus was identified from a family of clones whose expression was influenced by the presence of maltose in the medium. The sequence of 2100 bp of DNA containing mlr-2 and its flanking regions revealed a 616-amino-acid (71 kDa) open reading frame (ORF). The ORF's initiation codon appeared 10 nt into the mlr-2 message and was not preceded by any apparent ribosome-binding site. The deduced product shared homology with prolyl endopeptidases from both eukaryotic and eubacterial sources (52-57% similarity, 30-37% identity) and signature domains containing the Ser-Asp-His triad, which is characteristic of this family of proteases, were present. Northern blot experiments revealed the presence of an approx. 2.0-kb transcript in P. furiosus extracts, corresponding in length to that expected from mlr-2 expression. Initiation of transcription occurred 23 bp downstream from a putative BoxA promoter element.
Collapse
Affiliation(s)
- K A Robinson
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202
| | | | | | | |
Collapse
|
40
|
Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T. Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 1994; 60:4559-66. [PMID: 7811092 PMCID: PMC202019 DOI: 10.1128/aem.60.12.4559-4566.1994] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A hyperthermophilic archaeon strain, KOD1, was isolated from a solfatara at a wharf on Kodakara Island, Kagoshima, Japan. The growth temperature of the strain ranged from 65 to 100 degrees C, and the optimal temperature was 95 degrees C. The anaerobic strain was an S0-dependent heterotroph. Cells were irregular cocci and were highly motile with several polar flagella. The membrane lipid was of the ether type, and the GC content of the DNA was estimated to be 38 mol%. The 16S rRNA sequence was 95% homologous to that of Pyrococcus abyssi. The optimum growth pH and NaCl concentration of the strain KOD1 were 7.0 and 3%, respectively. Therefore, strain KOD1 was identified as a Pyrococcus sp. Strain KOD1 produced at least three extracellular proteases. One of the most thermostable proteases was purified 21-fold, and the molecular size was determined to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45 kDa by gel filtration chromatography. The specific activity of the purified protease was 2,160 U/mg of protein. The enzyme exhibited its maximum activity at approximately pH 7.0 and at a temperature of 110 degrees with azocasein as a substrate. The enzyme activity was completely retained after heat treatment at 90 degrees C for 2 h, and the half-life of enzymatic activity at 100 degrees C was 60 min. The proteolytic activity was significantly inhibited by p-chloromercuribenzoic acid or E-64 but not by EDTA or phenylmethylsulfonyl fluoride. Proteolytic activity was enhanced threefold in the presence of 8 mM cysteine. These experimental results indicated that the enzyme was a thermostable thiol protease.
Collapse
Affiliation(s)
- M Morikawa
- Department of Biotechnology, Faculty of Engineering, Osaka University, Japan
| | | | | | | | | |
Collapse
|
41
|
Abstract
Hyperthermophiles are a recently discovered group of microorganisms that grow at and above 90 degrees C. They currently comprise over 20 different genera, and except for two novel bacteria, all are classified as Archaea. The majority of these organisms are obligately anaerobic heterotrophs that reduce elemental sulfur (S degree) to H2S. The best studied from a biochemical perspective are the archaeon, Pyrococcus furiosus, and the bacterium, Thermotoga maritima, both of which are saccharolytic. P. furiosus is thought to contain a new type of Entner-Doudoroff pathway for the conversion of carbohydrates ultimately to acetate, H2 and CO2. The pathway is independent of nicotinamide nucleotides and involves novel types of ferredoxin-linked oxidoreductases, one of which has tungsten, a rarely used element, as a prosthetic group. The only site of energy conservation is at the level of acetyl CoA, which is the presence of ADP and phosphate is converted to acetate and ATP in a single step. In contrast, T. maritima utilizes a conventional Embden-Meyerhof pathway for sugar oxidation. P. furiosus also utilizes peptides as a sole carbon and energy source. Amino acid oxidation is thought to involve glutamate dehydrogenase together with at least three types of novel ferredoxin-linked oxidoreductases which catalyze the oxidation of 2-ketoglutarate, aryl pyruvates and formaldehyde. One of these enzymes also utilizes tungsten. In P. furiosus, virtually all of the reductant that is generated during the catabolism of both carbohydrates and peptides is channeled to a cytoplasmic hydrogenase. This enzyme is now termed sulhydrogenase, as it reduces both protons to H2 and S degrees (or polysulfide) to H2S. S degrees reduction appears to lead to the conservation of energy in P. furiosus but not in T. maritima, although the mechanism by which this occurs is not known.
Collapse
Affiliation(s)
- M W Adams
- Department of Biochemistry, University of Georgia, Athens 30602
| |
Collapse
|
42
|
Mai X, Adams M. Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89451-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Abstract
Hyperthermophilic microorganisms grow at temperatures of 90 degrees C and above and are a recent discovery in the microbial world. They are considered to be the most ancient of all extant life forms, and have been isolated mainly from near shallow and deep sea hydrothermal vents. All but two of the nearly twenty known genera are classified as Archaea (formerly archaebacteria). Virtually all of them are strict anaerobes. The majority are obligate heterotrophs that utilize proteinaceous materials as carbon and energy sources, although a few species are also saccharolytic. Most also depend on the reduction of elemental sulfur to hydrogen sulfide (H2S) for significant growth. Peptide fermentation involves transaminases and glutamate dehydrogenase, together with several unusual ferredoxin-linked oxidoreductases not found in mesophilic organisms. Similarly, a novel pathway based on a partially non-phosphorylated Entner-Doudoroff scheme has been postulated to convert carbohydrates to acetate, H2 and CO2, although a more conventional Embden-Meyerhof pathway has also been identified in one saccharolytic species. The few hypethermophiles known that can assimilate CO2 do so via a reductive citric acid cycle. Two S(o)-reducing enzymes termed sulfhydrogenase and sulfide dehydrogenase have been purified from the cytoplasm of a hyperthermophile that is able to grow either with or without S(o). A scheme for electron flow during the oxidation of carbohydrates and peptides and the reduction of S(o) has been proposed. However, the mechanisms by which S(o) reduction is coupled to energy conservation in this organism and in obligate S(o)-reducing hyperthermophiles is not known.
Collapse
Affiliation(s)
- R M Kelly
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695
| | | |
Collapse
|
44
|
Eggen RI, Geerling AC, Waldkötter K, Antranikian G, de Vos WM. The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence. Gene 1993; 132:143-8. [PMID: 8406037 DOI: 10.1016/0378-1119(93)90527-a] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon, Pyrococcus woesei, has been isolated, characterized and found to be very similar if not identical to the recently purified GDH from P. furiosus. Using a polymerase chain reaction, based on the N-terminal amino acid sequences of GDH, the P. furiosus gdh gene was identified, cloned into Escherichia coli and sequenced. The transcription start point of gdh has been mapped 1 nucleotide upstream from the ribosome-binding site. Using antiserum raised against purified GDH, expression of gdh was observed in E. coli. The deduced primary sequence of the P. furiosus GDH has been compared to various bacterial, archaeal and eukaryal GDHs and showed a high degree of similarity (32-52%).
Collapse
Affiliation(s)
- R I Eggen
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
DiRuggiero J, Robb F, Jagus R, Klump H, Borges K, Kessel M, Mai X, Adams M. Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic Archaeon, ES4. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46771-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Deming JW, Baross JA. Deep-sea smokers: windows to a subsurface biosphere? GEOCHIMICA ET COSMOCHIMICA ACTA 1993; 57:3219-3230. [PMID: 11538298 DOI: 10.1016/0016-7037(93)90535-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Since the discovery of hyperthermophilic microbial activity in hydrothermal fluids recovered from "smoker" vents on the East Pacific Rise, the widely accepted upper temperature limit for life (based on pure culture data) has risen from below the boiling point of water at atmospheric pressure to approximately 115 degrees C. Many microbiologists seem willing to speculate that the maximum may be closer to 150 degrees C. We have postulated not only higher temperatures than these (under deep-sea hydrostatic pressures), but also the existence of a biosphere subsurface to accessible seafloor vents. New geochemical information from the Endeavour Segment of the Juan de Fuca Ridge indicative of subsurface organic material caused us to re-examine both the literature on hyperthermophilic microorganisms cultured from deep-sea smoker environments and recent results of microbial sampling efforts at actively discharging smokers on the Endeavour Segment. Here we offer the case for a subsurface biosphere based on an interdisciplinary view of microbial and geochemical analyses of Endeavour smoker fluids, a case in keeping with rapidly evolving geophysical understanding of organic stability under deep-sea hydrothermal conditions.
Collapse
Affiliation(s)
- J W Deming
- School of Oceanography, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
47
|
Mukund S, Adams M. Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38690-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Influence of tungsten on metabolic patterns in Pyrococcus furiosus, a hyperthermophilic archaeon. Arch Microbiol 1993. [DOI: 10.1007/bf00290921] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Abstract
Enzymes derived from microorganisms growing at extreme temperatures are of biotechnological use as highly thermostable biocatalysts and should provide insight into the intrinsic basis of protein stability. So far, only DNA polymerases from these organisms have been put to commercial use, although the application of other classes of highly thermostable enzymes is being considered. Problems in the cultivation of high-temperature microorganisms and in the production of their enzymes still hampers progress in this field.
Collapse
Affiliation(s)
- R M Kelly
- Department of Chemical Engineering, North Carolina State University, Raleigh 27695-7905
| | | |
Collapse
|
50
|
Schicho RN, Ma K, Adams MW, Kelly RM. Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1993; 175:1823-30. [PMID: 8449888 PMCID: PMC203983 DOI: 10.1128/jb.175.6.1823-1830.1993] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The bioenergetic role of the reduction of elemental sulfur (S0) in the hyperthermophilic archaeon (formerly archaebacterium) Pyrococcus furiosus was investigated with chemostat cultures with maltose as the limiting carbon source. The maximal yield coefficient was 99.8 g (dry weight) of cells (cdw) per mol of maltose in the presence of S0 but only 51.3 g (cdw) per mol of maltose if S0 was omitted. However, the corresponding maintenance coefficients were not found to be significantly different. The primary fermentation products detected were H2, CO2, and acetate, together with H2S, when S0 was also added to the growth medium. If H2S was summed with H2 to represent total reducing equivalents released during fermentation, the presence of S0 had no significant effect on the pattern of fermentation products. In addition, the presence of S0 did not significantly affect the specific activities in cell extracts of hydrogenase, sulfur reductase, alpha-glucosidase, or protease. These results suggest either that S0 reduction is an energy-conserving reaction, i.e., S0 respiration, or that S0 has a stimulatory effect on or helps overcome a process that is yield limiting. A modification of the Entner-Doudoroff glycolytic pathway has been proposed as the primary route of glucose catabolism in P. furiosus (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). Operation of this pathway should yield 4 mol of ATP per mol of maltose oxidized, from which one can calculate a value of 12.9 g (cdw) per mol of ATP for non-S0 growth. Comparison of this value to the yield data for growth in the presence of S0 reduction is equivalent to an ATP yield of 0.5 mol of ATP per mol of S0 reduced. Possible mechanism to account for this apparent energy conservation are discussed.
Collapse
Affiliation(s)
- R N Schicho
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|