1
|
Kuda T, Yazaki T, Takahashi H, Kimura B. Effect of dried and vinegar flavored squid products on acid resistance of Salmonella Typhimurium and Staphylococcus aureus. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
Underwood SA, Buszko ML, Shanmugam KT, Ingram LO. Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 2004; 70:2734-40. [PMID: 15128526 PMCID: PMC404403 DOI: 10.1128/aem.70.5.2734-2740.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Limited cell growth and the resulting low volumetric productivity of ethanologenic Escherichia coli KO11 in mineral salts medium containing xylose have been attributed to inadequate partitioning of carbon skeletons into the synthesis of glutamate and other products derived from the citrate arm of the anaerobic tricarboxylic acid pathway. The results of nuclear magnetic resonance investigations of intracellular osmolytes under different growth conditions coupled with those of studies using genetically modified strains have confirmed and extended this hypothesis. During anaerobic growth in mineral salts medium containing 9% xylose (600 mM) and 1% corn steep liquor, proline was the only abundant osmolyte (71.9 nmol x ml(-1) optical density at 550 nm [OD(550)] unit(-1)), and growth was limited. Under aerobic conditions in the same medium, twice the cell mass was produced, and cells contained a mixture of osmolytes: glutamate (17.0 nmol x ml(-1) OD(550) unit(-1)), trehalose (9.9 nmol x ml(-1) OD(550) unit(-1)), and betaine (19.8 nmol x ml(-1) OD(550) unit(-1)). Two independent genetic modifications of E. coli KO11 (functional expression of Bacillus subtilis citZ encoding NADH-insensitive citrate synthase; deletion of ackA encoding acetate kinase) and the addition of a metabolite, such as glutamate (11 mM) or acetate (24 mM), as a supplement each increased the intracellular glutamate pool during fermentation, doubled cell growth, and increased volumetric productivity. This apparent requirement for a larger glutamate pool for increased growth and volumetric productivity was completely eliminated by the addition of a protective osmolyte (2 mM betaine or 0.25 mM dimethylsulfoniopropionate), consistent with adaptation to osmotic stress rather than relief of a specific biosynthetic requirement.
Collapse
Affiliation(s)
- S A Underwood
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
3
|
Fate of acid-adapted and non-adapted Escherichia coli O157:H7 inoculated post-drying on beef jerky treated with marinades before drying. Food Microbiol 2003. [DOI: 10.1016/s0740-0020(02)00122-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Abstract
The control of water activity has been used as a means of preserving foods for thousands of years. This preservation strategy presents food-borne microorganisms with serious problems, many of which relate to the management of water flow. Although the specific details of how each organism deals with these problems are different, several common themes have emerged. Bacteria induce specific responses. both physiological and genetic, to respond to either the loss or the gain of water, triggered by changes in the osmolarity of the environment. Many of the key systems have now been identified and the mechanisms of their regulation are beginning to be understood. Here we review recent developments in the field of bacterial osmoregulation with emphasis on key food-borne genera.
Collapse
Affiliation(s)
- Conor P O'Byrne
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Scotland, UK
| | | |
Collapse
|
5
|
Cayley DS, Guttman HJ, Record MT. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys J 2000; 78:1748-64. [PMID: 10733957 PMCID: PMC1300771 DOI: 10.1016/s0006-3495(00)76726-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To obtain turgor pressure, intracellular osmolalities, and cytoplasmic water activity of Escherichia coli as a function of osmolality of growth, we have quantified and analyzed amounts of cell, cytoplasmic, and periplasmic water as functions of osmolality of growth and osmolality of plasmolysis of nongrowing cells with NaCl. The effects are large; NaCl (plasmolysis) titrations of cells grown in minimal medium at 0.03 Osm reduce cytoplasmic and cell water to approximately 20% and approximately 50% of their original values, and increase periplasmic water by approximately 300%. Independent analysis of amounts of cytoplasmic and cell water demonstrate that turgor pressure decreases with increasing osmolality of growth, from approximately 3.1 atm at 0.03 Osm to approximately 1.5 at 0.1 Osm and to less than 0.5 atm above 0.5 Osm. Analysis of periplasmic membrane-derived oligosaccharide (MDO) concentrations as a function of osmolality, calculated from literature analytical data and measured periplasmic volumes, provides independent evidence that turgor pressure decreases with increasing osmolality, and verifies that cytoplasmic and periplasmic osmolalities are equal. We propose that MDO play a key role in periplasmic volume regulation at low-to-moderate osmolality. At high growth osmolalities, where only a small amount of cytoplasmic water is observed, the small turgor pressure of E. coli demonstrates that cytoplasmic water activity is only slightly less than extracellular water activity. From these findings, we deduce that the activity of cytoplasmic water exceeds its mole fraction at high osmolality, and, therefore, conclude that the activity coefficient of cytoplasmic water increases with increasing growth osmolality and exceeds unity at high osmolality, presumably as a consequence of macromolecular crowding. These novel findings are significant for thermodynamic analyses of effects of changes in growth osmolality on biopolymer processes in general and osmoregulatory processes in particular in the E. coli cytoplasm.
Collapse
Affiliation(s)
- D S Cayley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
6
|
MacMillan SV, Alexander DA, Culham DE, Kunte HJ, Marshall EV, Rochon D, Wood JM. The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:30-44. [PMID: 10446288 DOI: 10.1016/s0005-2736(99)00085-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transporter ProP of Escherichia coli, a member of the major facilitator superfamily, mediates osmoprotective proline or glycine betaine accumulation by bacteria exposed to high osmolality environments. Morpholinopropane sulfonic acid, a common constituent of microbiological media, accumulates in osmoadapting E. coli cells but it is not osmoprotective and it did not influence proP transcription or ProP activity. The apparent K(m) for proline uptake via ProP increased with decreasing pH in the range 7.5-4. ProP-dependent proline uptake by de-energized bacteria was associated with alkalinization of the external medium. Thus ProP mediates cotransport of H(+) and zwitterionic proline and a transporter functional group with a pK(a) of 5-6 is implicated in catalysis. Exogenous proline or glycine betaine elicits K(+) release from osmoadapting E. coli cells and ProP activity is stimulated by exogenous K(+). However, uptake of proline or glycine betaine stimulated K(+) efflux from K(+)-loaded bacteria which expressed either ProP or alternative, osmoregulatory transporter ProU. This indicated that ProP was unlikely to mediate K(+) efflux. Zwitterions ectoine, pipecolate, proline betaine, N,N-dimethylglycine, carnitine and 1-carboxymethylpyridinium were identified as alternative ProP substrates. Choline, a cation and a structural analogue of glycine betaine, was a low affinity inhibitor but not a substrate of ProP.
Collapse
Affiliation(s)
- S V MacMillan
- Department of Microbiology, University of Guelph, Guelph, Ont. N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Kunte HJ, Crane RA, Culham DE, Richmond D, Wood JM. Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J Bacteriol 1999; 181:1537-43. [PMID: 10049386 PMCID: PMC93544 DOI: 10.1128/jb.181.5.1537-1543.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1998] [Accepted: 12/09/1998] [Indexed: 11/20/2022] Open
Abstract
ProP is an osmoregulatory compatible solute transporter in Escherichia coli K-12. Mutation proQ220::Tn5 decreased the rate constant for and the extent of ProP activation by an osmotic upshift but did not alter proP transcription or the ProP protein level. Allele proQ220::Tn5 was isolated, and the proQ sequence was determined. Locus proQ is upstream from prc (tsp) at 41.2 centisomes on the genetic map. The proQ220::Tn5 and prc phenotypes were different, however. Gene proQ is predicted to encode a 232-amino-acid, basic, hydrophilic protein (molecular mass, 25,876 Da; calculated isoelectric point, 9.66; 32% D, E, R, or K; 54.5% polar amino acids). The insertion of PCR-amplified proQ into vector pBAD24 produced a plasmid containing the wild-type proQ open reading frame, the expression of which yielded a soluble protein with an apparent molecular mass of 30 kDa. Antibodies raised against the overexpressed ProQ protein detected cross-reactive material in proQ+ bacteria but not in proQ220::Tn5 bacteria. ProQ may be a structural element that influences the osmotic activation of ProP at a posttranslational level.
Collapse
Affiliation(s)
- H J Kunte
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
8
|
Abstract
Bacteria can survive dramatic osmotic shifts. Osmoregulatory responses mitigate the passive adjustments in cell structure and the growth inhibition that may ensue. The levels of certain cytoplasmic solutes rise and fall in response to increases and decreases, respectively, in extracellular osmolality. Certain organic compounds are favored over ions as osmoregulatory solutes, although K+ fluxes are intrinsic to the osmoregulatory response for at least some organisms. Osmosensors must undergo transitions between "off" and "on" conformations in response to changes in extracellular water activity (direct osmosensing) or resulting changes in cell structure (indirect osmosensing). Those located in the cytoplasmic membranes and nucleoids of bacteria are positioned for indirect osmosensing. Cytoplasmic membrane-based osmosensors may detect changes in the periplasmic and/or cytoplasmic solvent by experiencing changes in preferential interactions with particular solvent constituents, cosolvent-induced hydration changes, and/or macromolecular crowding. Alternatively, the membrane may act as an antenna and osmosensors may detect changes in membrane structure. Cosolvents may modulate intrinsic biomembrane strain and/or topologically closed membrane systems may experience changes in mechanical strain in response to imposed osmotic shifts. The osmosensory mechanisms controlling membrane-based K+ transporters, transcriptional regulators, osmoprotectant transporters, and mechanosensitive channels intrinsic to the cytoplasmic membrane of Escherichia coli are under intensive investigation. The osmoprotectant transporter ProP and channel MscL act as osmosensors after purification and reconstitution in proteoliposomes. Evidence that sensor kinase KdpD receives multiple sensory inputs is consistent with the effects of K+ fluxes on nucleoid structure, cellular energetics, cytoplasmic ionic strength, and ion composition as well as on cytoplasmic osmolality. Thus, osmoregulatory responses accommodate and exploit the effects of individual cosolvents on cell structure and function as well as the collective contribution of cosolvents to intracellular osmolality.
Collapse
Affiliation(s)
- J M Wood
- Department of Microbiology and Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph, Guelph, Ontario, Canada N1G
| |
Collapse
|
9
|
Verheul A, Wouters JA, Rombouts FM, Abee T. A possible role of ProP, ProU and CaiT in osmoprotection of Escherichia coli by carnitine. J Appl Microbiol 1998; 85:1036-46. [PMID: 9871325 DOI: 10.1111/j.1365-2672.1998.tb05269.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exogenously provided carnitine (beta-hydroxy-L-tau-N-trimethyl aminobutyrate) was found to stimulate aerobic growth of enterohaemorrhagic Escherichia coli O157:H7 in a medium of inhibitory osmotic strength. Its osmoprotective ability is comparable with that of betaine. As carnitine is an important compound in mammalian tissues, it is suggested that it might play a role in the growth of the pathogen on low water activity (aw) meat products. Using specific uptake mutants of E. coli K-12, it was established that, under osmotic stress, carnitine accumulates in the cytoplasm following import through the ProP and ProU transport systems. Betaine and carnitine also protect E. coli cells while growing anaerobically at inhibitory osmolarity. Under these conditions, an E. coli K-12 strain with lesions in both proP and proU accumulates low levels of L-carnitine but fails to accumulate betaine when these compounds are supplied in the external medium. This is probably a result of uptake of L-carnitine by the secondary transporter CaiT. The caiT gene forms part of the caiTABCDE operon which encodes the carnitine pathway, and is transcribed during anaerobic growth in the presence of carnitine. However, further experiments revealed that the carnitine pathway, including CaiT, does not play a significant role in osmoregulation of E. coli during anaerobiosis. Together, the results indicate that ProP and ProU are the sole transport systems involved in carnitine influx, both in aerobically and anaerobically osmotically stressed E. coli cells.
Collapse
Affiliation(s)
- A Verheul
- Department of Food Technology and Nutritional Sciences, Wageningen University and Research Centre, The Netherlands
| | | | | | | |
Collapse
|
10
|
Wood NJ, Sørensen J. Osmotic stimulation of microcolony development by Nitrosomonas europaea. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00535.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 1996; 178:5438-46. [PMID: 8808933 PMCID: PMC178364 DOI: 10.1128/jb.178.18.5438-5446.1996] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Genes whose expression is regulated by sulfate starvation in Escherichia coli were identified by generating random translational lacZ fusions in the chromosome with the lambda placMu9 system. Nine lacZ fusion strains which expressed beta-galactosidase after growth under sulfate starvation conditions but not after growth in the presence of sulfate were found. These included two strains with insertions in the dmsA and rhsD genes, respectively, and seven strains in which the insertions were located within a 1.8-kb region downstream of hemB at 8.5 minutes on the E. coli chromosome. Analysis of the nucleotide sequence of this region indicated the presence of four open reading frames designated tauABCD. Disruption of these genes resulted in the loss of the ability to utilize taurine (2-aminoethanesulfonate) as a source of sulfur but did not affect the utilization of a range of other aliphatic sulfonates as sulfur sources. The TauA protein contained a putative signal peptide for transport into the periplasm; the TauB and TauC proteins showed sequence similarity to ATP-binding proteins and membrane proteins, respectively, of ABC-type transport systems; and the TauD protein was related in sequence to a dichlorophenoxyacetic acid dioxygenase. We therefore suggest that the proteins encoded by tauABC constitute an uptake system for taurine and that the product of tauD is involved in the oxygenolytic release of sulfite from taurine. The transcription initiation site was detected 26 to 27 bp upstream of the translational start site of tauA. Expression of the tauD gene was dependent on CysB, the transcriptional activator of the cysteine regulon.
Collapse
Affiliation(s)
- J R van der Ploeg
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Gowrishankar J, Manna D. How is osmotic regulation of transcription of the Escherichia coli proU operon achieved? A review and a model. Genetica 1996; 97:363-78. [PMID: 9081863 DOI: 10.1007/bf00055322] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proU operon in enterobacteria encodes a binding-protein-dependent transporter for the active uptake of glycine betaine and L-proline, and serves an adaptive role during growth of cells in hyperosmolar environments. Transcription of proU is induced 400-fold under these conditions, but the underlying signal transduction mechanisms are incompletely understood. Increased DNA supercoiling and activation by potassium glutamate have each been proposed in alternative models as mediators of proU osmoresponsivity. We review here the available experimental data on proU regulation, and in particular the roles for DNA supercoiling, potassium glutamate, histone-like proteins of the bacterial nucleoid, and alternative sigma factors of RNA polymerase in such regulation. We also propose a new unifying model, in which the pronounced osmotic regulation of proU expression is achieved through the additive effects of at least three separate mechanisms, each comprised of a cis element [two promoters P1 and P2, and negative-regulatory-element (NRE) downstream of both promoters] and distinct trans-acting factors that interact with it: stationary-phase sigma factor RpoS with P1, nucleoid proteins HU and IHF with P2, and nucleoid protein H-NS with the NRE. In this model, potassium glutamate may activate proU expression through each of the three mechanisms whereas DNA supercoiling has a very limited role, if any, in the osmotic induction of proU transcription. We also suggest that proU may be a virulence gene in the pathogenic enterobacteria.
Collapse
Affiliation(s)
- J Gowrishankar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
13
|
Gouesbet G, Trautwetter A, Bonnassie S, Wu LF, Blanco C. Characterization of the Erwinia chrysanthemi osmoprotectant transporter gene ousA. J Bacteriol 1996; 178:447-55. [PMID: 8550465 PMCID: PMC177677 DOI: 10.1128/jb.178.2.447-455.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Growth of Erwinia chrysanthemi in media of elevated osmolarity can be achieved by the uptake and accumulation of various osmoprotectants. This study deals with the cloning and sequencing of the ousA gene-encoded osmoprotectant uptake system A from E. chrysanthemi 3937. OusA belongs to the superfamily of solute ion cotransporters. This osmotically inducible system allows the uptake of glycine betaine, proline, ectoine, and pipecolic acid and presents strong similarities in nucleotide sequence and protein function with the proline/betaine porter of Escherichia coli encoded by proP. The control of ousA expression is clearly different from that of proP. It is induced by osmotic strength and repressed by osmoprotectants. Its expression in E. coli is controlled by H-NS and is rpoS dependent in the exponential phase but unaffected by the stationary phase.
Collapse
Affiliation(s)
- G Gouesbet
- Centre National de la Recherche Scientifique (CNRS) URA 256, Département Membranes et Osmorégulation, Université de Rennes I, France
| | | | | | | | | |
Collapse
|
14
|
Ogahara T, Ohno M, Takayama M, Igarashi K, Kobayashi H. Accumulation of glutamate by osmotically stressed Escherichia coli is dependent on pH. J Bacteriol 1995; 177:5987-90. [PMID: 7592353 PMCID: PMC177428 DOI: 10.1128/jb.177.20.5987-5990.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the present study, we measured the accumulation of glutamate after hyperosmotic shock in Escherichia coli growing in synthetic medium. The accumulation was high in the medium containing sucrose at a pH above 8 and decreased with decreases in the medium pH. The same results were obtained when the hyperosmotic shock was carried out with sodium chloride. The internal level of potassium ions in cells growing at a high pH was higher than that in cells growing in a neutral medium. A mutant deficient in transport systems for potassium ions accumulated glutamate upon hyperosmotic stress at a high pH without a significant increase in the internal level of potassium ions. When the medium osmolarity was moderate at a pH below 8, E. coli accumulated gamma-aminobutyrate and the accumulation of glutamate was low. These data suggest that E. coli uses different osmolytes for hyperosmotic adaptation at different environmental pHs.
Collapse
Affiliation(s)
- T Ogahara
- Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|
15
|
Randall K, Lever M, Peddie BA, Chambers ST. Competitive accumulation of betaines by Escherichia coli K-12 and derivative strains lacking betaine porters. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1245:116-20. [PMID: 7654759 DOI: 10.1016/0304-4165(95)00071-i] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli was grown in hyperosmotic media containing both glycine betaine and one other betaine. E. coli K-12 derivative WG439 (putP- proP- proU-) did not accumulate any of 15 betaines. Strains WG445 (putP- proP- proU+), WG443 (putP- proP+ proU-) and the control strains all accumulated less betaine, (CH3)3N(+)-(CH2)n-COO-, when n was greater than 1. Accumulation was not detectable when n = 5. Both L- and D-isomers of alpha-substituted betaines were accumulated by both strains WG443 and WG445, the D-isomers more slowly. Hydroxylated alpha-substituted betaines were accumulated relatively more through the osmoregulated transport protein ProU than through ProP. In actively growing cultures glycine betaine appeared to be the preferred substrate for accumulation, but the proportion of the second accumulated betaine increased as cultures approached stationary phase.
Collapse
Affiliation(s)
- K Randall
- Department of Clinical Biochemistry, Christchurch Hospital, New Zealand
| | | | | | | |
Collapse
|
16
|
Farwick M, Siewe RM, Krämer R. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J Bacteriol 1995; 177:4690-5. [PMID: 7642496 PMCID: PMC177234 DOI: 10.1128/jb.177.16.4690-4695.1995] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system.
Collapse
Affiliation(s)
- M Farwick
- Institut für Biotechnologie 1, Forschungszentrum Jülich, GmbH, Federal Republic of Germany
| | | | | |
Collapse
|
17
|
Haardt M, Kempf B, Faatz E, Bremer E. The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:783-6. [PMID: 7898450 DOI: 10.1007/bf00290728] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 microM for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 microM). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.
Collapse
Affiliation(s)
- M Haardt
- University of Konstanz, Department of Biology, Federal Republic of Germany
| | | | | | | |
Collapse
|
18
|
Lucht JM, Bremer E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev 1994; 14:3-20. [PMID: 8011357 DOI: 10.1111/j.1574-6976.1994.tb00067.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A sudden increase in the osmolarity of the environment is highly detrimental to the growth and survival of Escherichia coli and Salmonella typhimurium since it triggers a rapid efflux of water from the cell, resulting in a decreased turgor. Changes in the external osmolarity must therefore be sensed by the microorganisms and this information must be converted into an adaptation process that aims at the restoration of turgor. The physiological reaction of the cell to the changing environmental condition is a highly coordinated process. Loss of turgor triggers a rapid influx of K+ ions into the cell via specific transporters and the concomitant synthesis of counterions, such as glutamate. The increased intracellular concentration of K(+)-glutamate allows the adaptation of the cell to environments of moderately high osmolarities. At high osmolarity, K(+)-glutamate is insufficient to ensure cell growth, and the bacteria therefore replace the accumulated K+ ions with compounds that are less deleterious for the cell's physiology. These compatible solutes include polyoles such as trehalose, amino acids such as proline, and methyl-amines such as glycine betaine. One of the most important compatible solutes for bacteria is glycine betaine. This potent osmoprotectant is widespread in nature, and its intracellular accumulation is achieved through uptake from the environment or synthesis from its precursor choline. In this overview, we discuss the properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes.
Collapse
Affiliation(s)
- J M Lucht
- University of Konstanz, Department of Biology, FRG
| | | |
Collapse
|
19
|
Uria-Nickelsen MR, Leadbetter ER, Godchaux W. Comparative aspects of utilization of sulfonate and other sulfur sources by Escherichia coli K12. Arch Microbiol 1994; 161:434-8. [PMID: 8042907 DOI: 10.1007/bf00288955] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selected biochemical features of sulfonate assimilation in Escherichia coli K-12 were studied in detail. Competition between sulfonate-sulfur and sulfur sources with different oxidation states, such as cysteine, sulfite and sulfate, was examined. The ability of the enzyme sulfite reductase to attack the C-S linkage of sulfonates was directly examined. Intact cells formed sulfite from sulfonate-sulfur. In cysteine-grown cells, when cysteine was present with either cysteate or sulfate, assimilation of both of the more oxidized sulfur sources was substantially inhibited. In contrast, none of three sulfonates had a competitive effect on sulfate assimilation. In studies of competition between different sulfonates, the presence of taurine resulted in a decrease in cysteate uptake by one-half, while in the presence of isethionate, cysteate uptake was almost completely inhibited. In sulfite-grown cells, sulfonates had no competitive effect on sulfite utilization. An E. coli mutant lacking sulfite reductase and unable to utilize isethionate as the sole source of sulfur formed significant amounts of sulfite from isethionate. In cell extracts, sulfite reductase itself did not utilize sulfonate-sulfur as an electron acceptor. These findings indicate that sulfonate utilization may share some intermediates (e.g., sulfite) and regulatory features (repression by cysteine) of the assimilatory sulfate reductive pathway, but sulfonates do not exert regulatory effects on sulfate utilization. Other results suggest that unrecognized aspects of sulfonate metabolism, such as specific transport mechanisms for sulfonates and different regulatory features, may exist.
Collapse
Affiliation(s)
- M R Uria-Nickelsen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-2131
| | | | | |
Collapse
|
20
|
Schleyer M, Schmid R, Bakker EP. Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol 1993; 160:424-31. [PMID: 8297208 DOI: 10.1007/bf00245302] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The influence of hypoosmotic shock on the solute content of growing Escherichia coli K-12 cells was investigated at 37 degrees C. Within 20 s after the shock the cells had released most of their osmolytes K+, glutamate and trehalose. This release was specific and not due to rupture of the cell membrane, since under these conditions i) the cells neither lost protein nor ATP, ii) [14C]-labeled sucrose did not enter the cytoplasm from the periplasm, and iii) except for their glutamate and aspartate level, which decreased, the amino acid pool of alanine, lysine and arginine of the cells remained approximately constant. Within a minute after the shock the cells started to reaccumulate parts of their previously released glutamate, aspartate and K+, but not trehalose and resumed growth within 10 min after the shock. Experiments with K(+)-transport mutants showed that none of the genetically-identified K+ transport systems is involved in the K(+)-release process. Reaccumulation of K+ took place via the uptake systems TrkG and TrkH. The possibility is discussed that the exit of solutes after hypoosmotic shock occurs via several stretch-activated channels, which each allow the release of a specific osmolyte.
Collapse
Affiliation(s)
- M Schleyer
- Fachbereich Mikrobiologie, Universität Osnabrück, Germany
| | | | | |
Collapse
|
21
|
Lamark T, Styrvold OB, Strøm AR. Efflux of choline and glycine betaine from osmoregulating cells ofEscherichia coli. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05408.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Jebbar M, Talibart R, Gloux K, Bernard T, Blanco C. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J Bacteriol 1992; 174:5027-35. [PMID: 1629159 PMCID: PMC206317 DOI: 10.1128/jb.174.15.5027-5035.1992] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a cyclic amino acid, identified as a compatible solute in moderately halophilic bacteria. Exogenously provided ectoine was found to stimulate growth of Escherichia coli in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte or nonelectrolyte. It is accumulated in E. coli cells proportionally to the osmotic strength of the medium, and it is not metabolized. Its osmoprotective ability was as potent as that of glycine betaine. The ProP and ProU systems are both involved in ectoine uptake and accumulation in E. coli. ProP being the main system for ectoine transport. The intracellular ectoine pool is regulated by both influx and efflux systems.
Collapse
Affiliation(s)
- M Jebbar
- Centre National de la Recherche Scientifique URA 256, Laboratoire de Génétique et Physiologie Microbiennes, Rennes, France
| | | | | | | | | |
Collapse
|
23
|
Yim HH, Villarejo M. osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in Escherichia coli. J Bacteriol 1992; 174:3637-44. [PMID: 1317380 PMCID: PMC206052 DOI: 10.1128/jb.174.11.3637-3644.1992] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A new osmotically inducible gene in Escherichia coli, osmY, was induced 8- to 10-fold by hyperosmotic stress and 2- to 3-fold by growth in complex medium. The osmY gene product is a periplasmic protein which migrates with an apparent molecular mass of 22 kDa on sodium dodecyl sulfate-polyacrylamide gels. A genetic fusion to osmY was mapped to 99.3 min on the E. coli chromosome. The gene was cloned and sequenced, and an open reading frame was identified. The open reading frame encoded a precursor protein with a calculated molecular weight of 21,090 and a mature protein of 18,150 following signal peptide cleavage. Sequencing of the periplasmic OsmY protein confirmed the open reading frame and defined the signal peptide cleavage site as Ala-Glu. A mutation caused by the osmY::TnphoA genetic fusion resulted in slightly increased sensitivity to hyperosmotic stress.
Collapse
Affiliation(s)
- H H Yim
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | |
Collapse
|
24
|
Graham JE, Wilkinson BJ. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol 1992; 174:2711-6. [PMID: 1556089 PMCID: PMC205912 DOI: 10.1128/jb.174.8.2711-2716.1992] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Choline, glycine betaine, and L-proline enhanced the growth of Staphylococcus aureus at high osmolarity (i.e., they acted as osmoprotectants) on various liquid and solid defined media, while an osmoprotective effect of taurine was shown only for cells growing on high-NaCl solid medium that lacked other osmoprotectants. Potassium pool levels were high, and there was little difference in levels in cells grown at different osmolarities. Glycine betaine accumulated to high levels in osmotically stressed cells, and choline was converted to glycine betaine. Proline and taurine also accumulated in response to osmotic stress but to lower levels than glycine betaine.
Collapse
Affiliation(s)
- J E Graham
- Department of Biological Sciences, Illinois State University, Normal 61761
| | | |
Collapse
|
25
|
Cayley S, Lewis BA, Record MT. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 1992; 174:1586-95. [PMID: 1537801 PMCID: PMC206554 DOI: 10.1128/jb.174.5.1586-1595.1992] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amounts of cytoplasmic water and of all osmotically significant cytoplasmic solutes were determined for Escherichia coli K-12 grown in 3-(N-morpholino)propane sulfonate (MOPS)-buffered glucose-minimal medium containing 0.5 M NaCl in the presence and absence of the osmoprotectants betaine and proline. The goal of this work is to correlate the effects of osmoprotectants on the composition of the cytoplasm with their ability to increase the growth rate of osmotically stressed cells. At a concentration of 1 mM in the growth medium, betaine increases the growth rate more than does proline; choline, which is converted to betaine by E. coli, appears to have an intermediate effect on growth rate. The accumulation of either betaine or proline reduces the cytoplasmic amounts of K+, glutamate, trehalose, and MOPS (the major cytoplasmic osmolytes accumulated in the absence of osmoprotectants), so that at this external osmolarity the total amount of cytoplasmic solutes is essentially the same in the presence or absence of either osmoprotectant. More betaine than proline is accumulated, so the extent of replacement of cytoplasmic solutes is greater for betaine than for proline. Accumulation of these osmoprotectants is accompanied by a large (20 to 50%) increase in the volume of cytoplasmic water per unit of cell dry weight (Vcyto). This effect, which appears to result from an increase in the volume of free water, Vf (as opposed to water of hydration, or bound water), is greater for betaine than for proline. Taken together, these results indicate that the molar effects of betaine and proline on water activity and on the osmotic pressure of the cytoplasm must be significantly larger than those of the solutes they replace. Cayley et al. (S. Cayley, B. A. Lewis, H. J. Guttman, and M. T. Record, Jr., J. Mol. Biol. 222:281-300, 1991) observed that, in cells grown in the absence of osmoprotectants, both growth rate and Vcyto decreased, whereas the amount of cytoplasmic K+ (nK+) increased, with increasing external osmolarity. We predicted that the observed changes in nK+ and Vcyto would have large and approximately compensating effects on key protein-nucleic acid interactions of gene expression, and we proposed that Vf was the fundamental determinant of growth rate in osmotically stressed cells. The properties of cells cultured in the presence of betaine and proline appear completely consistent with our previous work and proposals. Accumulation of betaine and, to a lesser extent, proline shifts the set of linked physiological parameters (nK+, Vcyto, growth rate) to those characteristic of growth at lower osmolarity in the absence of osmoprotectants. Models for the thermodynamic basis and physiological consequences of the effect of osmoprotectants on Vcyto and Vf are discussed.
Collapse
Affiliation(s)
- S Cayley
- Program in Molecular Biology, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|