1
|
Cruz PD, Wargowsky R, Gonzalez-Almada A, Sifontes EP, Shaykhinurov E, Jaatinen K, Jepson T, Lafleur JE, Yamane D, Perkins J, Pasquale M, Giang B, McHarg M, Falk Z, McCaffrey TA. Blood RNA Biomarkers Identify Bacterial and Biofilm Coinfections in COVID-19 Intensive Care Patients. J Intensive Care Med 2024; 39:1071-1082. [PMID: 38711289 DOI: 10.1177/08850666241251743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Purpose: Secondary opportunistic coinfections are a significant contributor to morbidity and mortality in intensive care unit (ICU) patients, but can be difficult to identify. Presently, new blood RNA biomarkers were tested in ICU patients to diagnose viral, bacterial, and biofilm coinfections. Methods: COVID-19 ICU patients had whole blood drawn in RNA preservative and stored at -80°C. Controls and subclinical infections were also studied. Droplet digital polymerase chain reaction (ddPCR) quantified 6 RNA biomarkers of host neutrophil activation to bacterial (DEFA1), biofilm (alkaline phosphatase [ALPL], IL8RB/CXCR2), and viral infections (IFI27, RSAD2). Viral titer in blood was measured by ddPCR for SARS-CoV2 (SCV2). Results: RNA biomarkers were elevated in ICU patients relative to controls. DEFA1 and ALPL RNA were significantly higher in severe versus incidental/moderate cases. SOFA score was correlated with white blood cell count (0.42), platelet count (-0.41), creatinine (0.38), and lactate dehydrogenase (0.31). ALPL RNA (0.59) showed the best correlation with SOFA score. IFI27 (0.52) and RSAD2 (0.38) were positively correlated with SCV2 viral titer. Overall, 57.8% of COVID-19 patients had a positive RNA biomarker for bacterial or biofilm infection. Conclusions: RNA biomarkers of host neutrophil activation indicate the presence of bacterial and biofilm coinfections in most COVID-19 patients. Recognizing coinfections may help to guide the treatment of ICU patients.
Collapse
Affiliation(s)
- Philip Dela Cruz
- Department of Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Alberto Gonzalez-Almada
- Department of Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Erick Perez Sifontes
- Department of Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Eduard Shaykhinurov
- Department of Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
- True Bearing Diagnostics, Washington, DC, USA
| | - John E Lafleur
- Department of Emergency Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - David Yamane
- Department of Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - John Perkins
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Mary Pasquale
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Brian Giang
- Department of Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Matthew McHarg
- Department of Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Zach Falk
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Timothy A McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
- True Bearing Diagnostics, Washington, DC, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA
| |
Collapse
|
2
|
Zabłotni A, Matusiak D, Arbatsky NP, Moryl M, Maciejewska A, Kondakova AN, Shashkov AS, Ługowski C, Knirel YA, Różalski A. Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth. Med Microbiol Immunol 2018; 207:129-139. [PMID: 29330591 PMCID: PMC5878192 DOI: 10.1007/s00430-018-0534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022]
Abstract
The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofilm formation. Lipopolysaccharide was isolated from planktonic and biofilm cells of the investigated strain and analyzed by SDS–PAGE with silver staining, Western blotting and ELISA, as well as NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry techniques. Chemical and NMR spectroscopic analyses revealed that the structure of the O-polysaccharide of P. mirabilis 9B-m strain did not depend on the form of cell growth, but the full-length chains of the O-antigen were reduced when bacteria grew in biofilm. The study also revealed structural modifications of the core region in the lipopolysaccharide of biofilm-associated cells—peaks assigned to compounds absent in cells from the planktonic culture and not previously detected in any of the known Proteus core oligosaccharides. No differences in the lipid A structure were observed. In summary, our study demonstrated for the first time that changes in the lifestyle of P. mirabilis bacteria leads to the modifications of their important virulence factor—lipopolysaccharide.
Collapse
Affiliation(s)
- Agnieszka Zabłotni
- Laboratory of General Microbiology, Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| | - Dominik Matusiak
- Laboratory of General Microbiology, Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Magdalena Moryl
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Anna Maciejewska
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wrocław, Poland
| | - Anna N Kondakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Czesław Ługowski
- Department of Immunochemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wrocław, Poland
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, Russia
| | - Antoni Różalski
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| |
Collapse
|
3
|
Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity. PLoS One 2015; 10:e0137553. [PMID: 26379125 PMCID: PMC4574860 DOI: 10.1371/journal.pone.0137553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/19/2015] [Indexed: 01/26/2023] Open
Abstract
The GacS/GacA two-component system plays a central role in the regulation of a broad range of biological functions in many bacteria. In the biocontrol organism Pseudomonas chlororaphis, the Gac system has been shown to positively control quorum sensing, biofilm formation, and phenazine production, but has an overall negative impact on motility. These studies have been performed with strains originated from the rhizosphere predominantly. To investigate the level of conservation between the GacA regulation of biocontrol-related traits in P. chlororaphis isolates from different habitats, the studies presented here focused on the endophytic isolate G5 of P. chlororaphis subsp. aurantiaca. A gacA mutant deficient in the production of N-acylhomoserine lactones (AHLs) and phenazine was isolated through transposon mutagenesis. Further phenotypic characterization revealed that in strain G5, similar to other P. chlororaphis strains, a gacA mutation caused inability to produce biocontrol factors such as phenazine, HCN and proteases responsible for antifungal activity, but overproduced siderophores. LC-MS/MS analysis revealed that AHL production was also practically abolished in this mutant. However, the wild type exhibited an extremely diverse AHL pattern which has never been identified in P. chlororaphis. In contrast to other isolates of this organism, GacA in strain G5 was shown to negatively regulate biofilm formation and oxidative stress response whilst positively regulating cell motility and biosynthesis of indole-3-acetic acid (IAA). To gain a better understanding of the overall impact of GacA in G5, a comparative proteomic analysis was performed revealing that, in addition to some of the traits like phenazine mentioned above, GacA also negatively regulated lipopolysaccharide (LPS) and trehalose biosynthesis whilst having a positive impact on energy metabolism, an effect not previously described in P. chlororaphis. Consequently, GacA regulation shows a differential strain dependency which is likely to be in line with their niche of origin.
Collapse
|
4
|
A new biofilm-associated colicin with increased efficiency against biofilm bacteria. ISME JOURNAL 2014; 8:1275-88. [PMID: 24451204 DOI: 10.1038/ismej.2013.238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 11/08/2022]
Abstract
Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments.
Collapse
|
5
|
Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, Ghigo JM, Cavaillon JM, Adib-Conquy M. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun 2009; 16:288-301. [PMID: 19710099 DOI: 10.1177/1753425909341807] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To determine whether growth of bacteria in biofilms triggers a specific immune response, we compared cytokine induction in human monocytes and mouse macrophages by planktonic and biofilm bacteria. We compared Pseudomonas aeruginosa and Staphylococcus aureus, two bacteria often colonizing the airways of cystic fibrosis patients. Planktonic and biofilm S. aureus induced equivalent amounts of cytokine in human monocytes. In contrast, biofilm-forming P. aeruginosa induced a higher production of tumor necrosis factor and interleukin-6 than their planktonic counterpart, both for clinical isolates and laboratory strains. This increased cytokine production was partly dependent on phagocytosis. In contrast, no difference in cytokine induction was observed with mouse macrophages. We investigated the structures of the lipopolysaccharides (LPSs) of these Gram-negative bacteria in biofilm and planktonic cultures of P. aeruginosa. Switch between the two life-styles was shown to cause several reversible LPS structure modifications affecting the lipid A and polysaccharide moieties of both clinical isolates and laboratory strains. In addition, LPS isolated from biofilm-grown bacteria induced slightly more inflammatory cytokines than that extracted from its planktonic counterpart. Our results, therefore, show that P. aeruginosa biofilm LPS undergoes structural modifications that only partially contribute to an increased inflammatory response from human monocytes.
Collapse
|
6
|
Influence of selected antimicrobials on the viability, endotoxicity and lipopolysaccharide composition of Pseudomonas aeruginosa in vitro. Int J Antimicrob Agents 2009; 34:419-23. [PMID: 19656661 DOI: 10.1016/j.ijantimicag.2009.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 11/21/2022]
Abstract
This research focused on the influence of selected antimicrobial agents (AMAs) on the lipopolysaccharide (LPS) composition of Pseudomonas aeruginosa, a common causative agent of nosocomial infections. As LPS has been shown to play a role in attachment and virulence, the research is primarily aimed at shedding light on the response of these organisms to cleaning regimens in healthcare settings using various disinfectants. The endotoxicity and viability of the organisms following disinfection were further investigated via propagation in sublethal concentrations of the selected AMAs. The AMAs included a CIP chlorinated disinfectant, a heavy-duty alkaline detergent and a phenolic handwash solution. The effects of the antimicrobials on LPS both from intact cells and from debris were assessed by gas chromatography-mass spectrometry (GC-MS) analysis and a chromogenic Limulus amoebocyte lysate assay. Results indicated significant changes in the supramolecular structure of the O-polysaccharide when exposed to the AMAs. Adaptations occurred in both the total assessed saccharide and the lipid fractions, especially in the case of the heavy-duty alkaline detergent. Endotoxicity was found to be influenced by changes in the O-chain rather than the lipid fraction. The phenolic handwash and chlorine-based AMA treatments resulted in a slight decrease in the total amount of fatty acids in the LPS compared with saccharides, whereas the heavy-duty alkaline detergent resulted in a notable reduction in total saccharides. Microbial adaptation of the supramolecular structure of LPS may cause a reduction in membrane solubility of these organisms in an aqueous environment, thus affecting the organism's susceptibility to water-soluble AMAs as well as its ability to adhere to charged surfaces.
Collapse
|
7
|
Affiliation(s)
- D. J. Bradshaw
- Microbial Pathogenicity Department, CAMR, Salisbury, Wiltshire, SP4 OJG, UK
| |
Collapse
|
8
|
Spiers AJ, Rainey PB. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. MICROBIOLOGY-SGM 2005; 151:2829-2839. [PMID: 16151196 DOI: 10.1099/mic.0.27984-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The wrinkly spreader (WS) isolate of Pseudomonas fluorescens SBW25 forms a substantial biofilm at the air-liquid interface. The biofilm is composed of an extracellular partially acetylated cellulose-fibre matrix, and previous mutagenesis of WS with mini-Tn5 had identified both the regulatory and cellulose-biosynthetic operons. One uncharacterized WS mutant, WS-5, still expressed cellulose but produced very weak biofilms. In this work, the mini-Tn5 insertion site in WS-5 has been identified as being immediately upstream of the tol-pal operon. Like Tol-Pal mutants of other Gram-negative bacteria, WS-5 showed a "leaky-membrane" phenotype, including the serendipitous ability to utilize sucrose, increased uptake of the hydrophilic dye propidium iodide, and the loss of lipopolysaccharide (LPS) expression. WS-5 cells were altered in relative hydrophobicity, and showed poorer recruitment and maintenance in the biofilm than WS. The WS-5 biofilm was also less sensitive to chemical interference during development. However, growth rate, cellulose expression and attachment were not significantly different between WS and WS-5. Finally, WS-5 biofilms could be partially complemented with WS-4, a biofilm- and attachment-deficient mutant that expressed LPS, resulting in a mixed biofilm with significantly increased strength. These findings show that a major component of the WS air-liquid biofilm strength results from the interactions between LPS and the cellulose matrix of the biofilm--and that in the WS biofilm, cellulose fibres, attachment factor and LPS are required for biofilm development, strength and integrity.
Collapse
Affiliation(s)
- Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Paul B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
9
|
Murphy TF, Kirkham C. Biofilm formation by nontypeable Haemophilus influenzae: strain variability, outer membrane antigen expression and role of pili. BMC Microbiol 2002; 2:7. [PMID: 11960553 PMCID: PMC113772 DOI: 10.1186/1471-2180-2-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2002] [Accepted: 04/15/2002] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nontypeable Haemophilus influenzae is an important cause of otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Several lines of evidence suggest that the bacterium grows as a biofilm in the human respiratory tract. RESULTS Fifteen clinical isolates from middle ear fluid of children with otitis media and 15 isolates from sputum of adults with COPD were studied in an in vitro assay of biofilm formation. Striking variability among isolates was observed in their ability to form biofilms. Analysis of cell envelopes revealed minimal differences in banding patterns in polyacrylamide gels, alteration of expression of an epitope on lipooligosaccharide, and preservation of expression of selected epitopes on outer membrane proteins P2, P5 and P6 in biofilms compared to planktonically grown cells. A pilus-deficient variant showed a marked impairment in biofilm formation compared to its isogenic parent. CONCLUSIONS Nontypeable H. influenzae forms biofilms in vitro. Clinical isolates show substantial variability in their ability to grow as biofilms. Three major outer membrane proteins (P2, P5 and P6) are expressed during growth as a biofilm. Expression of lipooligosaccharide is altered during growth as a biofilm compared to planktonic growth. Pili are important in biofilm formation. As the role of biofilms in human infection becomes better defined, characterization of biofilms may be important in understanding the pathogenesis of infection and immune response to nontypeable H. influenzae in children with otitis media and adults with COPD.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, and Department of Microbiology, University at Buffalo, State University of New York
- Department of Veterans Affairs Western New York Healthcare System (151) 3495 Bailey Avenue, Buffalo, NY 14215, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, and Department of Microbiology, University at Buffalo, State University of New York
- Department of Veterans Affairs Western New York Healthcare System (151) 3495 Bailey Avenue, Buffalo, NY 14215, USA
| |
Collapse
|
10
|
Høiby N, Krogh Johansen H, Moser C, Song Z, Ciofu O, Kharazmi A. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 2001; 3:23-35. [PMID: 11226851 DOI: 10.1016/s1286-4579(00)01349-6] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The biofilm mode of growth is the survival strategy of environmental bacteria like Pseudomonas aeruginosa. Such P. aeruginosa biofilms also occur in the lungs of chronically infected cystic fibrosis patients, where they protect the bacteria against antibiotics and the immune response. The lung tissue damage is due to immune complex mediated chronic inflammation dominated by polymorphonuclear leukocytes releasing proteases and oxygen radicals.
Collapse
Affiliation(s)
- N Høiby
- Department of Clinical Microbiology 9301, Rigshospitalet and Institute of Medical Microbiology and Immunology, Juliane Maries Vej 22, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- A Kharazmi
- Department of Clinical Microbiology, University Hospital (Rigshospitalet), University of Copenhagen, Denmark
| | | | | |
Collapse
|
12
|
Høiby N, Giwercman B, Jensen ET, Pedersen SS, Koch C, Kharazmi A. Mechanism of action of antibiotics in chronic pulmonary pseudomonas infection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 30:53-84. [PMID: 7833297 DOI: 10.1016/s1054-3589(08)60172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- N Høiby
- Department of Clinical Microbiology Danish Cystic Fibrosis Centre, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|