1
|
Sasidharan S, Saudagar P. An anti-leishmanial compound 4',7-dihydroxyflavone elicits ROS-mediated apoptosis-like death in Leishmania parasite. FEBS J 2023. [PMID: 36871140 DOI: 10.1111/febs.16770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
2
|
Sasidharan S, Saudagar P. Knockout of Tyrosine Aminotransferase Gene by Homologous Recombination Arrests Growth and Disrupts Redox Homeostasis in Leishmania Parasite. Parasitol Res 2022; 121:3229-3241. [PMID: 36056961 DOI: 10.1007/s00436-022-07642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Tyrosine aminotransferase is a well-characterized enzyme in the Leishmania parasite, but the role of TAT in the parasite functioning remains largely unknown. In this study, we attempt to gain a better understanding of the enzyme's role in the parasite by gene knockout and overexpression of the TAT gene. The overexpression of TAT protein was well tolerated by the parasites in two independent repeats. Single knockout of TAT gene by homologous recombination, LdTAT+/- displayed distinct retardation in the proliferation rates and entered the death phase immediately. Morphology of LdTAT+/- parasites had important structural defects as they rounded up with elongated flagella. Gene regulation studies suggested the upregulation of key apoptotic and redox metabolism genes in LdTAT+/-. Moreover, LdTAT+/- cells accumulated higher ROS, thiols, intracellular Ca2+ concentrations, and mitochondrial membrane depolarization signifying the onset of apoptosis. Tocopherol levels were reduced by 50% in LdTAT+/- suggesting the involvement of TAT in tocopherol biosynthesis in the parasite. Overall, our results provide the first evidence that gene knockout of TAT results in apoptosis and that TAT is required for the survival and viability of Leishmania donovani.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
3
|
Sasidharan S, Tripathi T, Saudagar P. Critical Insight into Plausible Acquired Tocopherol Pathway in Neglected Human Trypanosomatids. ACS OMEGA 2021; 6:31396-31403. [PMID: 34869966 PMCID: PMC8637591 DOI: 10.1021/acsomega.1c05046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 06/02/2023]
Abstract
Despite global therapeutic advancements, tropical parasitic infections like trypanosomiasis and leishmaniasis continue to be a major health concern in developing countries. These two tropical infectious diseases lead to enormous economic loss, significant disability, and morbidity, accounting for over one million deaths per year worldwide. The causative parasites, which shuttle between an insect vector and a mammalian host, thrive either in the bloodstream or in the intramacrophage environments. Essentially, the parasites live in an environment of oxidative stress and therefore require metabolic pathways to counterbalance the host immune response and survive the adverse conditions. Apart from the trypanothione pathway elucidated in the parasites, there exists a tocopherol pathway that functions to scavenge the reactive chemical species. This pathway, unique to photosynthetic organisms, is essential for the parasite's survival, though the enzymes involved remain largely uncharacterized. Consequently, an understanding of the origin of the pathway and where and how the interconnected tocopherol pathway functions may result in the identification of promising and potential therapeutic interventions to combat these deadly diseases. Recent works underline the presence of the tocopherol pathway in trypanosomatids and hypothesize that trypanosomatids may be tocopherol prototrophs. This review focuses on the biosynthesis of tocopherols in Trypanosoma and Leishmania in light of the current evidence.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department
of Biotechnology, National Institute of
Technology Warangal, Warangal 506004, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Prakash Saudagar
- Department
of Biotechnology, National Institute of
Technology Warangal, Warangal 506004, India
| |
Collapse
|
4
|
Sasidharan S, Saudagar P. Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach. Int J Biol Macromol 2020; 164:2987-3004. [PMID: 32798546 DOI: 10.1016/j.ijbiomac.2020.08.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The current drugs for treating Leishmaniasis are toxic, non-economical and with the emergence of drug resistance makes the need for novel therapeutics urgent and necessary. In the current study, we report the identification of compounds TI 1-5 against tyrosine aminotransferase of L. donovani from a curated ZINC15 database containing 183,659 compounds. These flavonoid compounds had binding energies < -8 kcal/mol and interacted with the active site residues S151, K286, C290, and P291. Assessment of physicochemical descriptors and ADMET properties established the drug likeliness of these compounds. The all-atom molecular dynamic simulations of the TAT-TI complexes exhibited stable geometrical properties and further trajectory analysis revealed the high-affinity interactions of TI 1, 3, 4, and 5 with the active site residues. DFT calculations reported the high electrophilic nature of TI 2 while other TI compounds demonstrated good kinetic stability and reactivity. From in vitro studies, TI 3 and TI 4 had the highest inhibition with Ki values of 0.9 ± 0.2 μM and 0.30 ± 0.1 μM, respectively. Taken together, the results from this study indicate the potentiality of TI 1, 3, 4, and 5 as anti-leishmanial leads, and these compounds can be exploited to manage the growing Leishmaniasis crisis in the world.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India.
| |
Collapse
|
5
|
Abstract
Amino acids participate in several critical processes in the biology of trypanosomatids, such as osmoregulation, cell differentiation, and host cell invasion. Some of them provide reducing power for mitochondrial ATP synthesis. It was previously shown that alanine, which is formed mainly by the amination of pyruvate, is a metabolic end product formed when parasites are replicating in a medium rich in glucose and amino acids. It was shown as well that this amino acid can also be used for the regulation of cell volume and resistance to osmotic stress. In this work, we demonstrate that, despite it being an end product of its metabolism, Trypanosoma cruzi can take up and metabolize l-Ala through a low-specificity nonstereoselective active transport system. The uptake was dependent on the temperature in the range between 10 and 40°C, which allowed us to calculate an activation energy of 66.4 kJ/mol and estimate the number of transporters per cell at ~436,000. We show as well that, once taken up by the cells, l-Ala can be completely oxidized to CO2, supplying electrons to the electron transport chain, maintaining the electrochemical proton gradient across the mitochondrial inner membrane, and supporting ATP synthesis in T. cruzi epimastigotes. Our data demonstrate a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.IMPORTANCE It is well known that trypanosomatids such as the etiological agent of Chagas' disease, Trypanosoma cruzi, produce alanine as a main end product of their energy metabolism when they grow in a medium containing glucose and amino acids. In this work, we investigated if under starvation conditions (which happen during the parasite life cycle) the secreted alanine could be recovered from the extracellular medium and used as an energy source. Herein we show that indeed, in parasites submitted to metabolic stress, this metabolite can be taken up and used as an energy source for ATP synthesis, allowing the parasite to extend its survival under starvation conditions. The obtained results point to a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.
Collapse
|
6
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
7
|
Overexpression of cytoplasmic TcSIR2RP1 and mitochondrial TcSIR2RP3 impacts on Trypanosoma cruzi growth and cell invasion. PLoS Negl Trop Dis 2015; 9:e0003725. [PMID: 25875650 PMCID: PMC4398437 DOI: 10.1371/journal.pntd.0003725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/30/2015] [Indexed: 11/19/2022] Open
Abstract
Background Trypanosoma cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies are inadequate because of their severe host toxicity and numerous side effects. The identification of new biotargets is essential for the development of more efficient therapeutic alternatives. Inhibition of sirtuins from Trypanosoma brucei and Leishmania ssp. showed promising results, indicating that these enzymes may be considered as targets for drug discovery in parasite infection. Here, we report the first characterization of the two sirtuins present in T. cruzi. Methodology Dm28c epimastigotes that inducibly overexpress TcSIR2RP1 and TcSIR2RP3 were constructed and used to determine their localizations and functions. These transfected lines were tested regarding their acetylation levels, proliferation and metacyclogenesis rate, viability when treated with sirtuin inhibitors and in vitro infectivity. Conclusion TcSIR2RP1 and TcSIR2RP3 are cytosolic and mitochondrial proteins respectively. Our data suggest that sirtuin activity is important for the proliferation of T. cruzi replicative forms, for the host cell-parasite interplay, and for differentiation among life-cycle stages; but each one performs different roles in most of these processes. Our results increase the knowledge on the localization and function of these enzymes, and the overexpressing T. cruzi strains we obtained can be useful tools for experimental screening of trypanosomatid sirtuin inhibitors. Sirtuins are a family of deacetylases, evolutionary conserved from bacteria to mammals. They participate in the regulation of a wide range of nuclear, cytoplasmic and mitochondrial pathways, and are considered pro-life enzymes. In the last years the search for sirtuin inhibitors was a very active field of research, with potential applications in a large number of pathologies, including parasitic diseases. We are interested in the study of the two sirtuins present in the protozoan parasite Trypanosoma cruzi, being our objective to understand their function. First, we determined the localization of these enzymes in the parasite: TcSIR2RP1 is a cytoplasmic enzyme and TcSIR2RP3 localizes in the mitochondrion. When we overexpress cytoplasmic TcSIR2RP1, the transgenic parasites differentiate to metacyclic trypomastigotes and infect mammalian cells more efficiently. In contrast, the overexpression of mitochondrial TcSIR2RP3 does not affect metacyclogenesis but modifies epimastigotes growth and slightly increases the proliferation of the parasite in the intracellular stage. We also used these transgenic lines to test their sensibility to previously described sirtuin inhibitors.
Collapse
|
8
|
Trypanosoma cruzi bromodomain factor 3 binds acetylated α-tubulin and concentrates in the flagellum during metacyclogenesis. EUKARYOTIC CELL 2014; 13:822-31. [PMID: 24747213 DOI: 10.1128/ec.00341-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bromodomains are highly conserved acetyl-lysine binding domains found mainly in proteins associated with chromatin and nuclear acetyltransferases. The Trypanosoma cruzi genome encodes at least four bromodomain factors (TcBDFs). We describe here bromodomain factor 3 (TcBDF3), a bromodomain-containing protein localized in the cytoplasm. TcBDF3 cytolocalization was determined, using purified antibodies, by Western blot and immunofluorescence analyses in all life cycle stages of T. cruzi. In epimastigotes and amastigotes, it was detected in the cytoplasm, the flagellum, and the flagellar pocket, and in trypomastigotes only in the flagellum. Subcellular localization of TcBDF3 was also determined by digitonin extraction, ultrastructural immunocytochemistry, and expression of TcBDF3 fused to cyan fluorescent protein (CFP). Tubulin can acquire different posttranslational modifications, which modulate microtubule functions. Acetylated α-tubulin has been found in the axonemes of flagella and cilia, as well as in the subpellicular microtubules of trypanosomatids. TcBDF3 and acetylated α-tubulin partially colocalized in isolated cytoskeletons and flagella from T. cruzi epimastigotes and trypomastigotes. Interaction between the two proteins was confirmed by coimmunoprecipitation and far-Western blot assays with synthetic acetylated α-tubulin peptides and recombinant TcBDF3.
Collapse
|
9
|
Marciano D, Llorente C, Maugeri DA, de la Fuente C, Opperdoes F, Cazzulo JJ, Nowicki C. Biochemical characterization of stage-specific isoforms of aspartate aminotransferases from Trypanosoma cruzi and Trypanosoma brucei. Mol Biochem Parasitol 2008; 161:12-20. [DOI: 10.1016/j.molbiopara.2008.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 12/01/2022]
|
10
|
Rego JV, Murta SMF, Nirdé P, Nogueira FB, de Andrade HM, Romanha AJ. Trypanosoma cruzi: Characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations. Exp Parasitol 2008; 118:111-7. [PMID: 17678649 DOI: 10.1016/j.exppara.2007.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Various biochemical differences exist between mammalian tyrosine aminotransferase (TAT) and its analogue in Trypanosoma cruzi (TcTAT), the causative agent of Chagas disease. Moreover, TcTAT is over-expressed in strains of the parasite that are resistant to benznidazole (BZ), a drug currently used in chemotherapy. TAT has thus been indicated as a potential target for the development of new chemotherapeutic agents. In the present study, the TcTAT gene has been characterised in 14 BZ-resistant and susceptible strains and clones of T. cruzi. A unique transcript of 2.0kb and similar levels of TcTAT mRNA were observed in all parasite populations. TcTAT gene is organized in a tandem multicopy array and is located on 8 chromosomal bands that vary from 785-2500kb. No amplification of TcTAT was observed in the parasite genome. A 42kDa protein expressed by TcTAT was present in all T. cruzi samples. The results suggest that TcTAT is not directly associated with the T. cruzi drug resistance phenotype. However, it may act as a general secondary compensatory mechanism or stress response factor rather than as a key component of the specific primary resistance mechanism in T. cruzi.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Protozoan/analysis
- Drug Resistance/genetics
- Electrophoresis, Gel, Pulsed-Field
- Gene Expression Regulation, Enzymologic/genetics
- Nitroimidazoles/pharmacology
- RNA, Messenger/metabolism
- RNA, Protozoan/analysis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Trypanocidal Agents/pharmacology
- Trypanosoma cruzi/drug effects
- Trypanosoma cruzi/enzymology
- Trypanosoma cruzi/genetics
- Tyrosine Transaminase/genetics
- Tyrosine Transaminase/immunology
Collapse
Affiliation(s)
- Juciane V Rego
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou, FIOCRUZ, Av. Augusto de Lima 1715, 30190-002, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Bontempi EJ, García GA, Buschiazzo A, Henriksson J, Pravia CA, Ruiz AM, Pettersson U, Pszenny V. The tyrosine aminotransferase from Trypanosoma rangeli: sequence and genomic characterization. FEMS Microbiol Lett 2000; 189:253-7. [PMID: 10930747 DOI: 10.1111/j.1574-6968.2000.tb09239.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The complete sequence and genomic characterization of the tyrosine aminotransferase (TAT) gene from Trypanosoma rangeli is reported. The gene was found to be organized in a tandem multicopy gene array. A homologous mRNA species (2.5 kb) was identified in the epimastigote form of the parasite. From the deduced amino acid sequence, the gene encodes a protein of 420 amino acids with a predicted molecular mass of 46.4 kDa and a theoretical pI of 6.23. A high sequence identity was found with the Trypanosoma cruzi, human and rat enzymes. All the essential residues for TAT enzymatic activity are conserved, as well as a pyridoxal-phosphate attachment site typical of class-I aminotransferases. The recombinant enzyme was recognized by a monoclonal antibody against the T. cruzi enzyme. Additionally, the recombinant protein showed enzymatic activity when incubated with L-tyrosine and 2-oxoglutaric acid as substrates.
Collapse
Affiliation(s)
- E J Bontempi
- Instituto Nacional de Parasitologia Dr. M. Fatala Chaben, Buenos Aires,Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cazzulo Franke MC, Vernal J, Cazzulo JJ, Nowicki C. The NAD-linked aromatic alpha-hydroxy acid dehydrogenase from Trypanosoma cruzi. A new member of the cytosolic malate dehydrogenases group without malate dehydrogenase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:903-10. [PMID: 10583384 DOI: 10.1046/j.1432-1327.1999.00926.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi, the protozoan parasite causing Chagas disease, contains a novel aromatic alpha-hydroxy acid dehydrogenase. This enzyme is responsible, together with tyrosine aminotransferase, for the catabolism of aromatic amino acids, which leads to the excretion of aromatic lactate derivatives into the culture medium. The gene encoding the aromatic alpha-hydroxy acid dehydrogenase has been cloned through a combined approach using screening of an expression genomic library with antibodies, peptide sequencing and PCR amplification. Its sequence shows high similarity to the cytosolic malate dehydrogenases. However, the enzyme has no malate dehydrogenase activity. The gene seems to be present in a single copy per haploid genome and is differentially expressed throughout the parasite's life cycle, the highest levels being found in the insect forms of T. cruzi. The purified recombinant enzyme, expressed in Escherichia coli, was unable to reduce oxaloacetate and had kinetic constants similar to those of the natural aromatic alpha-hydroxy acid dehydrogenase. Sequence comparisons suggest that the aromatic alpha-hydroxy acid dehydrogenase derives from a cytosolic malate dehydrogenase no longer present in the parasite, made redundant by the presence of a glycosomal malate dehydrogenase as a member of a shuttle device involving the mitochondrial isoenzyme.
Collapse
Affiliation(s)
- M C Cazzulo Franke
- IQUIFIB (CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
13
|
Blankenfeldt W, Nowicki C, Montemartini-Kalisz M, Kalisz HM, Hecht HJ. Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode. Protein Sci 1999; 8:2406-17. [PMID: 10595543 PMCID: PMC2144194 DOI: 10.1110/ps.8.11.2406] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group.
Collapse
Affiliation(s)
- W Blankenfeldt
- Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
14
|
Montemartini M, Santomé JA, Cazzulo JJ, Nowicki C. Purification and partial structural and kinetic characterization of an aromatic L-alpha-hydroxy acid dehydrogenase from epimastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 1994; 68:15-23. [PMID: 7891739 DOI: 10.1016/0166-6851(94)00145-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An aromatic L-alpha-hydroxyacid dehydrogenase (AHADH) was purified to homogeneity from epimastigotes of Trypanosoma cruzi by a method involving chromatography on DEAE-cellulose, hydrophobic interaction chromatography on Phenyl-Sepharose and affinity chromatography on Affi-Gel Blue. The purified enzyme showed a single band in SDS-PAGE, with an apparent molecular mass of 36 kDa. Since the apparent molecular mass of the native enzyme, determined by gel filtration, is about 80 kDa, the native enzyme is a dimer of similar subunits. The amino acid composition was determined, as well as the sequences of 4 internal peptides obtained by CNBr cleavage at Met residues, and one peptide obtained after tryptic digestion. Three of the peptides presented considerable sequence similarity with the corresponding sequences of several malate dehydrogenases. The optimal pH for the enzyme reaction with p-hydroxyphenyl pyruvate and NADH as substrates was 7.5; that for the reverse reaction was 9.5. The apparent Km values for phenylpyruvate and p-hydroxyphenyl-pyruvate were 48 and 117 microM, respectively; that for L-phenyllactate in the reverse reaction was 420 microM. The enzyme was much less active with alpha-isocaproic acid as substrate, and other acids, including pyruvic and oxaloacetic, were not substrates at all. L-phenyllactic acid, but not the D-isomer, acted as substrate. The enzyme can therefore be considered as a general aromatic L-alpha-hydroxyacid dehydrogenase. The low apparent Km value for NADH (25 microM in the presence of phenylpyruvate) makes AHADH a candidate for the reoxidation of cytosolic NADH in T. cruzi.
Collapse
Affiliation(s)
- M Montemartini
- IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
15
|
Montemartini M, Santomé JA, Cazzulo JJ, Nowicki C. Production of aromatic alpha-hydroxyacids by epimastigotes of Trypanosoma cruzi, and its possible role in NADH reoxidation. FEMS Microbiol Lett 1994; 118:89-92. [PMID: 8013884 DOI: 10.1111/j.1574-6968.1994.tb06808.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Epimastigotes of Trypanosoma cruzi in culture produce and excrete into the medium small amounts of phenyllactic acid and p-hydroxyphenyllactic acids, presumably arising from the catabolism of the aromatic amino acids phenylalanine and tyrosine, respectively. This production might constitute a minor pathway for the reoxidation of cytosolic NADH, through the concerted action of tyrosine aminotransferase and aromatic alpha-hydroxyacid dehydrogenase.
Collapse
Affiliation(s)
- M Montemartini
- IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Abstract
Epimastigotes of Trypanosoma cruzi, the causative agent of Chagas disease, catabolize proteins and amino acids with production of MH3, and glucose with production of reduced catabolites, chiefly succinate and L-alanine, even under aerobic conditions. This "aerobic fermentation of glucose" is probably due to both the presence of low levels of some cytochromes, causing a relative inefficiency of the respiratory chain for NADH, reoxidation during active glucose catabolism, and the lack of NADH dehydrogenase and phosphorylation site I, resulting in the entry of reduction equivalents into the chain mostly as succinate. Phosphoenol pyruvate carboxykinase and pyruvate kinase may play an essential role in diverting glucose carbon to succinate or L-alanine, and L-malate seems to be the major metabolite for the transport of glucose carbon and reduction equivalents between glycosome and mitochondrion. The parasite contains proteinase and peptidase activities. The major lysosomal cysteine proteinase, cruzipain, has been characterized in considerable detail, and might be involved in the host/parasite relationship, in addition to its obvious role in parasite nutrition. Among the enzymes of amino acid catabolism, two glutamate dehydrogenases (one NADP- and the other NAD-linked), alanine aminotransferase, and the major enzymes of aromatic amino acid catabolism (tyrosine aminotransferase and aromatic alpha-hydroxy acid dehydrogenase), have been characterized and proposed to be involved in the reoxidation of glycolytic NADH.
Collapse
Affiliation(s)
- J J Cazzulo
- Instituto de Investigaciones Bioquímicas Lus F. Leloir. Fundación Campomar, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
17
|
Bontempi EJ, Búa J, Aslund L, Porcel B, Segura EL, Henriksson J, Orn A, Pettersson U, Ruiz AM. Isolation and characterization of a gene from Trypanosoma cruzi encoding a 46-kilodalton protein with homology to human and rat tyrosine aminotransferase. Mol Biochem Parasitol 1993; 59:253-62. [PMID: 8101971 DOI: 10.1016/0166-6851(93)90223-k] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The complete sequence of a gene encoding a 46-kDa protein of Trypanosoma cruzi is presented. The first ATG complies with the consensus sequence for initiation of translation. A single band of 2 kb was highlighted by hybridizing a probe from the 46-kDa protein gene to a Northern filter containing total T. cruzi RNA. The gene is present in 50-80 copies per cell and most of them are contained in 2 tandem arrays on large T. cruzi chromosomes (> 2000 kb). A strong homology with rat and human tyrosine aminotransferase was detected. Homology with a Trypanosoma brucei retrotransposon was found in the nonsense strand of the intergenic region.
Collapse
Affiliation(s)
- E J Bontempi
- Instituto Nacional de Diagnóstico e Investigación de la Enfermedad de Chagas, Ministerio de Salud y Acción Social, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|