1
|
Nunziata L, Brasca M, Morandi S, Silvetti T. Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Food Microbiol 2022; 104:103999. [DOI: 10.1016/j.fm.2022.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
|
2
|
Shareck J, Choi Y, Lee B, Miguez CB. Cloning Vectors Based on Cryptic Plasmids Isolated from Lactic Acid Bacteria:Their Characteristics and Potential Applications in Biotechnology. Crit Rev Biotechnol 2010; 24:155-208. [PMID: 15707158 DOI: 10.1080/07388550490904288] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria, widely distributed in nature, and industrially important as they are used in a variety of industrial food fermentations. The use of genetic engineering techniques is an effective means of enhancing the industrial applicability of LAB. However, when using genetic engineering technology, safety becomes an essential factor for the application of improved LAB to the food industry. Cloning and expression systems should be derived preferably from LAB cryptic plasmids that generally encode genes for which functions can be proposed, but no phenotypes can be observed. However, some plasmid-encoded functions have been discovered in cryptic plasmids originating from Lactobacillus, Streptococcus thermophilus, and Pediococcus spp. and can be used as selective marker systems in vector construction. This article presents information concerning LAB cryptic plasmids, and their structures, functions, and applications. A total of 134 cryptic plasmids collated are discussed.
Collapse
Affiliation(s)
- Julie Shareck
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | | | | |
Collapse
|
3
|
Molecular organization of plasmid pER13 in Streptococcus thermophilus. Biotechnol Lett 2007; 29:1991-9. [PMID: 17932625 DOI: 10.1007/s10529-007-9542-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 09/13/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
Abstract
Molecular features of the 4139-bp plasmid pER13 found in the dairy fermentation bacterium Streptococcus thermophilus ST113 include five open reading frames (ORFs). ORF1, ORF2 and ORF3 encode proteins for transcriptional repression (CopG), replication (RepB) and mobilization (Mob) that share homology with corresponding proteins of the pMV158 plasmid family, while ORF4 and ORF5 encode putative proteins with unspecified functions. Sequence homologies shared with plasmids found in group B and group D streptococci imply the possibility for genetic exchange with the food-grade S. thermophilus. The structural features of pER13 may be useful in designing strategies for gene transfer in lactic fermentation bacteria.
Collapse
|
4
|
Girard SL, Moineau S. Analysis of two theta-replicating plasmids of Streptococcus thermophilus. Plasmid 2007; 58:174-81. [PMID: 17507093 DOI: 10.1016/j.plasmid.2007.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
We report the characterization of two new theta-replicating plasmids of Streptococcus thermophilus (pSMQ-312b and pSMQ-316) as well as the further analysis of pSMQ-308. The nucleotide sequences of pSMQ-312b and pSMQ-316 were determined and both contained 6710 bp. In fact, the two sequences were identical, despite that the plasmids were isolated from two different S. thermophilus strains as demonstrated by pulsed-field gel electrophoresis. Comparative analyses indicated that the two plasmids were highly related to the previously characterized S. thermophilus plasmid pSMQ-308 (8144 bp). Plasmid stability tests showed that pSMQ-312b/316 was more stable in LM17 medium while pSMQ-308 was the most stable in milk. The presence of the plasmids did not modify the acidification profile of the S. thermophilus strains during growth in milk and under time-temperature conditions mimicking an industrial process. These theta-replicating plasmids are unique genetic material for the construction of stable cloning vectors for industrially relevant strains of S. thermophilus.
Collapse
Affiliation(s)
- Stéphanie L Girard
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Université Laval, Quebec City, Que., Canada G1K 7P4
| | | |
Collapse
|
5
|
El Demerdash HA, Oxmann J, Heller KJ, Geis A. Yoghurt fermentation at elevated temperatures by strains of Streptococcus thermophilus expressing a small heat-shock protein: application of a two-plasmid system for constructing food-grade strains of Streptococcus thermophilus. Biotechnol J 2006; 1:398-404. [PMID: 16892266 DOI: 10.1002/biot.200600018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Streptococcus thermophilus S4 expressing a small heat-shock protein from the plasmid pSt04-encoded copy of shsp, is able to carry out fermentation at elevated temperature, i.e., at 50 degrees C. In yoghurt culture together with Lactobacillus delbrueckii subsp. bulgaricus, fermentation at elevated temperature results in a mild yoghurt with low post-acidification and improved stability of the starter bacteria during storage at 4 degrees C. To transfer pSt04 into commercial S. thermophilus yoghurt starter strains, a two-plasmid system was constructed. A helper plasmid providing a selectable antibiotic marker, but relying on the repA gene of pSt04, was transformed together with pSt04. After isolation of transformants, the helper plasmid was readily lost upon incubation of transformants in antibiotic-free medium, thus yielding food-grade strains carrying pSt04 only. Successful application of the system was demonstrated.
Collapse
Affiliation(s)
- Hassan A El Demerdash
- Institute for Microbiology, Federal Research Center for Nutrition and Food, Kiel, Germany
| | | | | | | |
Collapse
|
6
|
Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria--a review. Int J Food Microbiol 2005; 105:281-95. [PMID: 16289406 DOI: 10.1016/j.ijfoodmicro.2005.03.008] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 12/18/2004] [Accepted: 03/20/2005] [Indexed: 10/25/2022]
Abstract
Antibiotics are a major tool utilized by the health care industry to fight bacterial infections; however, bacteria are highly adaptable creatures and are capable of developing resistance to antibiotics. Consequently, decades of antibiotic use, or rather misuse, have resulted in bacterial resistance to many modern antibiotics. This antibiotic resistance can cause significant danger and suffering for many people with common bacterial infections, those once easily treated with antibiotics. For several decades studies on selection and dissemination of antibiotic resistance have focused mainly on clinically relevant species. However, recently many investigators have speculated that commensal bacteria including lactic acid bacteria (LAB) may act as reservoirs of antibiotic resistance genes similar to those found in human pathogens. The main threat associated with these bacteria is that they can transfer resistance genes to pathogenic bacteria. Genes conferring resistance to tetracycline, erythromycin and vancomycin have been detected and characterized in Lactococcus lactis, Enterococci and, recently, in Lactobacillus species isolated from fermented meat and milk products. A number of initiatives have been recently launched by various organizations across the globe to address the biosafety concerns of starter cultures and probiotic microorganisms. The studies can lead to better understanding of the role played by the dairy starter microorganisms in horizontal transfer of antibiotic resistance genes to intestinal microorganisms and food-associated pathogenic bacteria.
Collapse
Affiliation(s)
- Shalini Mathur
- National Collection of Dairy Cultures, Dairy Microbiology Division, National Dairy Research Institute, Karnal, PIN 243 122, India
| | | |
Collapse
|
7
|
Turgeon N, Frenette M, Moineau S. Characterization of a theta-replicating plasmid from Streptococcus thermophilus. Plasmid 2004; 51:24-36. [PMID: 14711526 DOI: 10.1016/j.plasmid.2003.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmids of Streptococcus thermophilus were previously classified, based on DNA homology, into at least four groups (A-D). Here, we report the characterization of plasmids of group B and D. The sequence analysis of pSMQ173b (group D) indicates that this plasmid contains 4449 bp, five open reading frames (ORFs) and replicates via the rolling-circle mechanism of the pGI3 family. The plasmid pSMQ308 (group B) contains 8144 bp and six ORFs. Two ORFs likely encode a primase/helicase and an integrase. Northern blot experiments demonstrate that these two orfs are transcribed within the three strains containing plasmids of group B. Two-dimensional agarose gel electrophoresis shows that pSMQ308 replicates via a theta mechanism. To our knowledge, this is the first report of a plasmid replicating via a theta mode in S. thermophilus. Finally, a classification of 20 sequenced S. thermophilus plasmids into six groups based on their mode of replication is proposed.
Collapse
Affiliation(s)
- Nathalie Turgeon
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
8
|
Petrova P, Miteva V, Ruiz-Masó JA, del Solar G. Structural and functional analysis of pt38, a 2.9kb plasmid of Streptococcus thermophilus yogurt strain. Plasmid 2003; 50:176-89. [PMID: 14597007 DOI: 10.1016/s0147-619x(03)00064-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cryptic plasmid pt38 (2911 bp) of Streptococcus thermophilus ST2783, a strain isolated from Bulgarian yogurt, was subcloned and sequenced. Five ORFs (ORF1 to ORF5) were identified, although putative transcription initiation and termination signals, and Shine-Dalgarno sequence could only be localized for three of them (ORF1, ORF2, and ORF5). ORF2 would specify a 142-amino acid protein sharing a high degree of homology with plasmid-born low-molecular-weight heat stress proteins described in a variety of S. thermophilus strains. On the other hand, ORF1 would encode a 311-residue protein, which was found to be almost identical to the putative Rep proteins of previously sequenced S. thermophilus rolling circle-replicating plasmids. Intracellular single-stranded pt38 DNA was detected, showing that, in fact, the plasmid replicates via a rolling circle mechanism. A putative double-strand origin with significant homology to that of pC194, and a ssoA-type single-strand origin were also identified on the nucleotide sequence of pt38. A DNA region that can be transcribed into a small RNA (ctRNA) complementary to the leader segment of the rep (ORF1) mRNA is proposed to be involved in the control of plasmid replication. In vitro synthesis of this ctRNA was observed, and this constitutes the first report on the existence of such antisense RNAs, likely acting as regulatory elements, in S. thermophilus plasmids.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad G Bonchev Str, bl26, Sofia 1113, Bulgaria
| | | | | | | |
Collapse
|
9
|
El Demerdash HAM, Heller KJ, Geis A. Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria. Appl Environ Microbiol 2003; 69:4408-12. [PMID: 12902223 PMCID: PMC169115 DOI: 10.1128/aem.69.8.4408-4412.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 05/17/2003] [Indexed: 11/20/2022] Open
Abstract
Plasmid pSt04 of Streptococcus thermophilus contains a gene encoding a protein with homology to small heat shock proteins (A. Geis, H. A. M. El Demerdash, and K. J. Heller, Plasmid 50:53-69, 2003). Strains cured from the shsp plasmids showed significantly reduced heat and acid resistance and a lower maximal growth temperature. Transformation of the cloned shsp gene into S. thermophilus St11 lacking a plasmid encoding shsp resulted in increased resistance to incubation at 60 degrees C or pH 3.5 and in the ability to grow at 52 degrees C. A food-grade cloning system for S. thermophilus, based on the plasmid-encoded shsp gene as a selection marker, was developed. This approach allowed selection after transfer of native and recombinant shsp plasmids into different S. thermophilus and Lactococcus lactis strains. Using a recombinant plasmid carrying an erythromycin resistance (Em(r)) gene in addition to shsp, we demonstrated that both markers are equally efficient in selecting for plasmid-bearing cells. The average transformation rates in S. thermophilus (when we were selecting for heat resistance) were determined to be 2.4 x 10(4) and 1.0 x 10(4) CFU/0.5 micro g of DNA, with standard deviations of 0.54 x 10(4) and 0.32 x 10(4), for shsp and Em(r) selection, respectively. When we selected for pH resistance, the average transformation rates were determined to be 2.25 x 10(4) and 3.8 x 10(3) CFU/0.5 micro g of DNA, with standard deviations of 0.63 x 10(4) and 3.48 x 10(3), for shsp and Em(r) selection, respectively. The applicability of shsp as a selection marker was further demonstrated by constructing S. thermophilus plasmid pHRM1 carrying the shsp gene as a selection marker and the restriction-modification genes of another S. thermophilus plasmid as a functional trait.
Collapse
|
10
|
Geis A, El Demerdash HAM, Heller KJ. Sequence analysis and characterization of plasmids from Streptococcus thermophilus. Plasmid 2003; 50:53-69. [PMID: 12826058 DOI: 10.1016/s0147-619x(03)00029-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleotide sequences of eight plasmids isolated from seven Streptococcus thermophilus strains have been determined. Plasmids pSt04, pER1-1, and pJ34 are related and replicate via a rolling circle mechanism. Plasmid pJ34 encodes for a replication initiation protein (RepA) and a small polypeptide with unknown function. Plasmids pSt04 and pER1-1 carry in addition to repA genes coding for small heat shock proteins (sHsp). Expression of these proteins is induced at elevated temperatures or low pH and increases the thermo- and acid resistance. Plasmids pER1-2 and pSt22-2 show identical sequences with five putative open reading frames (ORFs). The gene products of ORF1 and ORF4 reveal some similarities to transposon encoded proteins of Bacillus subtilis and Tn916. ORF1 of plasmid pSt106 encodes a protein similar to resolvases of different Gram-positive bacteria. Integrity of ORF2 and 3, encoding a putative DNA primase and a replication protein, is essential for replication. ORF1 to 3 of plasmid pSt08, which are organized in a tricistronic operon, encode a RepA protein, an adenosine-specific methyltransferase, and a type II restriction endonuclease. Another type II restriction-modification (R/M) system is encoded on plasmid pSt0 which is highly similar to those encoded on lactococcal plasmid pHW393 and B. subtilis plasmid pXH13. Plasmid-free derivatives of strains St0 and St08 show increased phage sensitivity, indicating that in the wild-type strains the R/M systems are functionally expressed. Recombinant plasmids based on the replicons of plasmids pSt04, pJ34, pSt106, pSt08, and pSt0, are able to replicate in Lactococcus lactis and B. subtilis, respectively, whereas constructs carrying pER1-2 only replicate in S. thermophilus.
Collapse
Affiliation(s)
- Arnold Geis
- Federal Dairy Research Centre, Institute for Microbiology, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany.
| | | | | |
Collapse
|
11
|
Petrova P, Danova S, Stoyancheva G, Miteva V. Isolation and Characterization of Plasmids from Strains of Streptococcus ThermophilusBulgarian Yogurt Starters. BIOTECHNOL BIOTEC EQ 2003. [DOI: 10.1080/13102818.2003.10819203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Proux C, van Sinderen D, Suarez J, Garcia P, Ladero V, Fitzgerald GF, Desiere F, Brüssow H. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J Bacteriol 2002; 184:6026-36. [PMID: 12374837 PMCID: PMC135392 DOI: 10.1128/jb.184.21.6026-6036.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.
Collapse
Affiliation(s)
- Caroline Proux
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Su P, Jury K, Allison GE, Wong WY, Kim WS, Liu CQ, Vancov T, Dunn NW. Cloning vectors for Streptococcus thermophilus derived from a native plasmid. FEMS Microbiol Lett 2002; 216:43-7. [PMID: 12423750 DOI: 10.1111/j.1574-6968.2002.tb11412.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A 3.5-kb native plasmid (pND103) was identified in Streptococcus thermophilus ST2-1. Preliminary sequence analysis indicated that pND103 belongs to group I S. thermophilus plasmids. A region of approximately 2 kb appears to contain three components: a plus origin of replication (ori) typical of plasmids that replicate via rolling circle replication; a gene encoding a replication protein (rep); and a gene encoding a small heat shock protein (hsp). pND103 was then used to construct S. thermophilus/Escherichia coli hybrid cloning vectors by ligating different portions of pND103 to an origin-probe vector (pND330) composed of pUC19 and a Gram-positive erythromycin resistance gene. The shuttle vectors (pND913, pND914 and pND915) were successfully introduced back into plasmid-free S. thermophilus ST3-1 as well as to Lactococcus lactis LM0230 and E. coli JM109. Segregational and structural stability study indicated that these vectors can be maintained in these hosts. The results indicated that pND913, pND914 and pND915 are potential shuttle cloning vectors for S. thermophilus.
Collapse
Affiliation(s)
- Ping Su
- Department of Biotechnology, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Turgeon N, Moineau S. Isolation and characterization of a Streptococcus thermophilus plasmid closely related to the pMV158 family. Plasmid 2001; 45:171-83. [PMID: 11407913 DOI: 10.1006/plas.2001.1517] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twenty-two Streptococcus thermophilus strains used for milk fermentations were analyzed for their plasmid content and 13 of them (59%) were found to contain one or two plasmids. Fifteen S. thermophilus plasmids were divided into four groups using DNA homology. Ten plasmids were classified within group A and they shared homologies with all the previously sequenced S. thermophilus plasmids. Three plasmids (group B) hybridized with each other and two plasmids only hybridized with themselves (groups C and D). Single-stranded DNA was detected within strains containing plasmids of groups A, C, and D, indicating that they replicate via a rolling-circle mode. The only plasmid of group C, named pSMQ172, was further characterized. This 4230-bp plasmid replicates in Escherichia coli, Lactococcus lactis, and Streptococcus salivarius and does not confer phage resistance. Comparisons with databases showed that pSMQ172 was related to pMV158 of Streptococcus agalactiae and to pSSU1 of Streptococcus suis. These results suggest that genetic exchanges may have occurred between pathogenic and nonpathogenic streptococci.
Collapse
Affiliation(s)
- N Turgeon
- Department of Biochemistry and Microbiology, Université Laval, Québec, G1K 7P4, Canada
| | | |
Collapse
|
15
|
Pridmore RD, Crouzillat D, Walker C, Foley S, Zink R, Zwahlen MC, Brüssow H, Pétiard V, Mollet B. Genomics, molecular genetics and the food industry. J Biotechnol 2000; 78:251-8. [PMID: 10751686 DOI: 10.1016/s0168-1656(00)00202-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The production of foods for an increasingly informed and selective consumer requires the coordinated activities of the various branches of the food chain in order to provide convenient, wholesome, tasty, safe and affordable foods. Also, the size and complexity of the food sector ensures that no single player can control a single process from seed production, through farming and processing to a final product marketed in a retail outlet. Furthermore, the scientific advances in genome research and their exploitation via biotechnology is leading to a technology driven revolution that will have advantages for the consumer and food industry alike. The segment of food processing aids, namely industrial enzymes which have been enhanced by the use of biotechnology, has proven invaluable in the production of enzymes with greater purity and flexibility while ensuring a sustainable and cheap supply. Such enzymes produced in safe GRAS microorganisms are available today and are being used in the production of foods. A second rapidly evolving segment that is already having an impact on our foods may be found in the new genetically modified crops. While the most notorious examples today were developed by the seed companies for the agro-industry directed at the farming sector for cost saving production of the main agronomical products like soya and maize, its benefits are also being seen in the reduced use of herbicides and pesticides which will have long term benefits for the environment. Technology-driven advances for the food processing industry and the consumer are being developed and may be divided into two separate sectors that will be presented in greater detail: 1. The application of genome research and biotechnology to the breeding and development of improved plants. This may be as an aid for the cataloging of industrially important plant varieties, the rapid identification of key quality traits for enhanced classical breeding programs, or the genetic modification of important plants for improved processing properties or health characteristics. 2. The development of advanced microorganisms for food fermentations with improved flavor production, health or technological characteristics. Both yeasts and bacteria have been developed that fulfill these requirements, but are as yet not used in the production of foods.
Collapse
Affiliation(s)
- R D Pridmore
- Nestec Ltd., Nestlé Research Center, Vers-chez-les-Blanc, 1000, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stanley E, Walsh L, van der Zwet A, Fitzgerald GF, van Sinderen D. Identification of four loci isolated from two Streptococcus thermophilus phage genomes responsible for mediating bacteriophage resistance. FEMS Microbiol Lett 2000; 182:271-7. [PMID: 10620678 DOI: 10.1111/j.1574-6968.2000.tb08907.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sequence data derived from the Streptococcus thermophilus phages phiO1205 and phi7201 indicated that each of these phages contains a distinct DNA region dedicated to replication. Southern blotting experiments showed that phages infecting S. thermophilus may be divided into at least two groups, each containing the presumptive replication functions of either φO1205 (group I) or φ7201 (group II). Specific regions from the putative replication module of each of the two phages were examined for their ability to provide phage resistance.
Collapse
Affiliation(s)
- E Stanley
- National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
17
|
Desiere F, Lucchini S, Brüssow H. Comparative sequence analysis of the DNA packaging, head, and tail morphogenesis modules in the temperate cos-site Streptococcus thermophilus bacteriophage Sfi21. Virology 1999; 260:244-53. [PMID: 10417259 DOI: 10.1006/viro.1999.9830] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The temperate Streptococcus thermophilus bacteriophage Sfi21 possesses 15-nucleotide-long cohesive ends with a 3' overhang that reconstitutes a cos-site with twofold hyphenated rotational symmetry. Over the DNA packaging, head and tail morphogenesis modules, the Sfi21 sequence predicts a gene map that is strikingly similar to that of lambdoid coliphages in the absence of any sequence similarity. A nearly one to one gene correlation was found with the phage lambda genes Nu1 to H, except for gene B-to-E complex, where the Sfi21 map resembled that of coliphage HK97. The similarity between Sfi21 and HK97 was striking: both major head proteins showed an N-terminal coiled-coil structure, the mature major head proteins started at amino acid positions 105 and 104, respectively, and both major head genes were preceded by genes encoding a possible protease and portal protein. The purported Sfi21 protease is the first viral member of the ClpP protease family. The prediction of Sfi21 gene functions by reference to the gene map of intensively investigated coliphages was experimentally confirmed for the major head and tail gene. Phage Sfi21 shows nucleotide sequence similarity with Lactococcus phage BK5-T and a lactococcal prophage and amino acid sequence similarity with the Lactobacillus phage A2 and the Staphylococcus phage PVL. PVL is a missing link that connects the portal proteins from Sfi21 and HK97 with respect to sequence similarity. These observations and database searches, which demonstrate sequence similarity between proteins of phage from gram-positive bacteria, proteobacteria, and Archaea, constrain models of phage evolution.
Collapse
Affiliation(s)
- F Desiere
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|
18
|
Lucchini S, Desiere F, Brüssow H. The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21. Virology 1999; 260:232-43. [PMID: 10417258 DOI: 10.1006/viro.1999.9814] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The virulent cos-site Streptococcus thermophilus bacteriophage Sfi19 has a 37,392-bp-long genome consisting of 44 open reading frames all encoded on the same DNA strand. The genome of the temperate cos-site S. thermophilus phage Sfi21 is 3.3 kb longer (40,740 bp, 53 orfs). Both genomes are very similarly organized and differed mainly by gene deletion and DNA rearrangement events in the lysogeny module; gene replacement, duplication, and deletion events in the DNA replication module, and numerous point mutations. The level of point mutations varied from <1% (lysis and DNA replication modules) to >15% (DNA packaging and head morphogenesis modules). A dotplot analysis showed nearly a straight line over the left 25 kb of their genomes. Over the right genome half, a more variable dotplot pattern was observed. The entire lysogeny module from Sfi21 comprising 12 genes was replaced by 7 orfs in Sfi19, six showed similarity with genes from temperate pac-site S. thermophilus phages. None of the genes implicated in the establishment of the lysogenic state (integrase, superinfection immunity, repressor) or remnants of it were conserved in Sfi19, while a Cro-like repressor was detected. Downstream of the highly conserved DNA replication module 11 and 13 orfs were found in Sfi19 and phiSfi21, respectively: Two orfs from Sfi21 were replaced by a different gene and a duplication of the phage origin of replication in Sfi19; a further orf was only found in Sfi21. All other orfs from this region, which included a second putative phage repressor, were closely related between both phages. Two noncoding regions of Sfi19 showed sequence similarity to pST1, a small cryptic plasmid of S. thermophilus.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | | | | |
Collapse
|
19
|
O'Sullivan TF, Fitzgerald GF. Electrotransformation of industrial strains of Streptococcus thermophilus. J Appl Microbiol 1999; 86:275-83. [PMID: 10063627 DOI: 10.1046/j.1365-2672.1999.00657.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A standard electroporation procedure was utilized to introduce a range of Gram-positive plasmid vectors into nine industrial strains of Streptococcus thermophilus. All the strains were transformable with at least two of the plasmids assessed, but electrotransformation frequencies depended on both the strain and the nature of transforming DNA. In general, small rolling circle (RC) plasmids could be electroporated at high frequency into a wide range of strains with efficiencies of 10(2)-10(5) transformants microgram-1 of transforming DNA. The presence of these plasmids did not influence doubling times during growth in broth, and they were generally extremely stable in slow milk acidifying strains, with 85-100% of transformants retaining the selective markers over 105 generations. Vectors were less stable in fast-growing cultures. Of the three theta-type plasmids assessed, only one, pIL253, could be electroporated at low frequency into some slow growing strains. The presence of this plasmid caused a 40% increase in doubling time and it was lost from cells at a rate of 3% per generation. Attempts to alter the proteolytic status of slow acidifying strains of Strep. thermophilus by the introduction of heterologous proteinase genes are also described.
Collapse
Affiliation(s)
- T F O'Sullivan
- Department of Microbiology, University College, Cork, Ireland
| | | |
Collapse
|
20
|
Oggioni MR, Iannelli F, Pozzi G. Characterization of cryptic plasmids pDP1 and pSMB1 of Streptococcus pneumoniae. Plasmid 1999; 41:70-2. [PMID: 9887308 DOI: 10.1006/plas.1998.1364] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryptic plasmids pDP1 and pSMB1 from clinical strains of Streptococcus pneumoniae isolated 74 years apart were found to be essentially identical in their nucleotide sequence. pDP1, 3161 bp, contains five codirectional ORFs and presents all the general features of plasmids replicating by the rolling circle mechanism. The rep gene, 963 bp, is highly homologous to the rep gene of other streptococcal plasmids of the pC194 family.
Collapse
Affiliation(s)
- M R Oggioni
- Dipartimento di Biologia Molecolare, Università di Siena, Siena,
| | | | | |
Collapse
|
21
|
Foley S, Lucchini S, Zwahlen MC, Brüssow H. A short noncoding viral DNA element showing characteristics of a replication origin confers bacteriophage resistance to Streptococcus thermophilus. Virology 1998; 250:377-87. [PMID: 9792848 DOI: 10.1006/viro.1998.9387] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 302-bp noncoding DNA fragment from the DNA replication module of phage phiSfi21 was shown to protect the Streptococcus thermophilus strain Sfi1 from infection by 17 of 25 phages. The phage-inhibitory DNA possesses two determinants, each of which individually mediated phage resistance. The phage-inhibitory activity was copy number dependent and operates by blocking the accumulation of phage DNA. Furthermore, when cloned on a plasmid, the phiSfi21 DNA acts as an origin of replication driven by phage infection. Protein or proteins in the phiSfi21-infected cells were shown to interact with this phage-inhibitory DNA fragment, forming a retarded protein-DNA complex in gel retardation assays. A model in which phage proteins interact with the inhibitory DNA such that they are no longer available for phage propagation can be used to explain the observed bacteriophage resistance. Genome analysis of phiSfi19, a phage that is insensitive to the inhibitory activity of the phiSfi21-derived DNA, led to the characterisation of a variant putative phage replication origin that differed in 14 of 302 nucleotides from that of phiSfi21. The variant origin was cloned and exhibited an inhibitory activity toward phages that were insensitive to the phiSfi21-derived DNA.
Collapse
Affiliation(s)
- S Foley
- Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000, Lausanne, 26, Switzerland
| | | | | | | |
Collapse
|
22
|
Schuster C, van der Linden M, Hakenbeck R. Small cryptic plasmids of Streptococcus pneumoniae belong to the pC194/pUB110 family of rolling circle plasmids. FEMS Microbiol Lett 1998; 164:427-31. [PMID: 9682492 DOI: 10.1111/j.1574-6968.1998.tb13119.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The DNA sequences of two related plasmids pPR1 and pPR3 described previously in Streptococcus pneumoniae isolates from Germany and Spain were now determined. Both plasmids belong to a family of rolling circle (RC) plasmids found in a variety of bacteria. Their GC content with 32% is lower than that of the S. pneumoniae chromosomal DNA. The plasmid pPR3 has a molecular size of 3160 bp with four putative open reading frames, whereas pPR1 contained a deletion of 313 bp that included the 5'-part of ORF2 and upstream regions and differed by three bp from pPR3. The predicted protein of ORF1 showed high similarity to replication proteins of RC plasmids with 74% identical amino acids to RepA of Streptococcus thermophilus plasmids. Sequences similar to the plus origin of replication of ssDNA plasmids were present in both plasmids. They also contained a 152-bp region with over 83% identity to the minus origin of replication of the Streptococcus agalacticae plasmid pMV158.
Collapse
Affiliation(s)
- C Schuster
- University of Kaiserslautern, Department of Microbiology, Germany
| | | | | |
Collapse
|
23
|
Somkuti GA, Solaiman DK, Steinberg DH. Structural and functional properties of the hsp16.4-bearing plasmid pER341 in Streptococcus thermophilus. Plasmid 1998; 40:61-72. [PMID: 9657935 DOI: 10.1006/plas.1998.1352] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasmid pER341 (2798 bp) of Streptococcus thermophilus ST134 was sequenced and its open reading frame (ORF) regions were characterized. Analysis of nucleotide sequences showed the putative translation product of ORF1 (rep) sharing a high level of homology with replication proteins of several small plasmids present in lactic acid bacteria and staphylococci. This and homology of regions of plus-strand (ORI) and minus-strand (ssoA) origin of replication with pC194-class plasmids indicated that pER341 replicates by the rolling-circle mechanism. ORF2 corresponded to a putative hsp gene that apparently encodes Hsp16.4, a 142-amino-acid heat stress protein. Hsp16.4 shared significant identity with other small, 18-kDa-class heat stress proteins from prokaryotic and eukaryotic sources. Hsp16.4 is apparently the first plasmidborne low-molecular-weight heat stress protein reported in dairy fermentation bacteria with a potential role in temperature-regulated functions in S. thermophilus.
Collapse
Affiliation(s)
- G A Somkuti
- Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania, 19038, USA.
| | | | | |
Collapse
|
24
|
Poch MT, Somkuti GA, Solaiman DK. Sth132I, a novel class-IIS restriction endonuclease of Streptococcus thermophilus ST132. Gene 1997; 195:201-6. [PMID: 9305765 DOI: 10.1016/s0378-1119(97)00153-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Sth132I restriction endonuclease (R.Sth132I) was detected in Streptococcus thermophilus ST132 and purified to near homogeneity by heparin Sepharose CL-6B affinity chromatography. Fragments from Sth132I digestion of plasmid DNA were subcloned into pUC19 in Escherichia coli DH5alpha and sequenced. Sequence analysis of inserts and their ligation junction sites revealed that Sth132I is a novel class-IIS restriction endonuclease, which recognizes the non-palindromic sequence 5'-CCCG(N)4-3', 3'-GGGC(N) 8-5'.
Collapse
Affiliation(s)
- M T Poch
- U.S. Department of Agriculture, ARS, Eastern Regional Research Center, Wyndmoor, PA 19038, USA
| | | | | |
Collapse
|
25
|
Desiere F, Lucchini S, Bruttin A, Zwahlen MC, Brüssow H. A highly conserved DNA replication module from Streptococcus thermophilus phages is similar in sequence and topology to a module from Lactococcus lactis phages. Virology 1997; 234:372-82. [PMID: 9268169 DOI: 10.1006/viro.1997.8643] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly conserved DNA region extending over 5 kb was observed in Streptococcus thermophilus bacteriophages. Comparative sequencing of one temperate and 26 virulent phages demonstrated in the most extreme case an 18% aa difference for a predicted protein, while the majority of the phages showed fewer, if any aa changes. The relative degree of aa conservation was not homogeneous over the DNA segment investigated. Sequence analysis of the conserved segment revealed genes possibly involved in DNA transactions. Three predicted proteins (orf 233, 443, and 382 gene product (gp)) showed nucleoside triphosphate binding motifs. Orf 443 gp showed in addition a DEAH box motif, characteristically found in a subgroup of helicases, and a variant zinc finger motif known from a phage T7 helicase/primase. Tree analysis classified orf 443 gp as a distant member of the helicase superfamily. Orf 382 gp showed similarity to putative plasmid DNA primases. Downstream of orf 382 a noncoding repeat region was identified that showed similarity to a putative minus origin from a cryptic S. thermophilus plasmid. Four predicted proteins showed not only high degrees of aa identity (34 to 63%) with proteins from Lactococcus lactis phages, but their genes showed a similar topological organization. We interpret this as evidence for a horizontal gene transfer event between phages of the two bacterial genera in the distant past.
Collapse
Affiliation(s)
- F Desiere
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Heir E, Sundheim G, Holck AL. Resistance to quaternary ammonium compounds in Staphylococcus spp. isolated from the food industry and nucleotide sequence of the resistance plasmid pST827. THE JOURNAL OF APPLIED BACTERIOLOGY 1995; 79:149-56. [PMID: 7592110 DOI: 10.1111/j.1365-2672.1995.tb00928.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complete nucleotide sequence of the 2.8 kb plasmid pST827 involved in resistance to the quaternary ammonium compound (QAC) benzalkonium chloride in meat-associated staphylococci was determined. An open reading frame (ORF) similar to the QAC resistance genes qacC, ebr and smr previously reported from clinical staphylococcal strains was identified (qacC'). In addition an ORF coding for a protein (Rep827) showing extensive homology to reported replication proteins of Gram-positive organisms was found. The occurrence of known QAC resistance gene (qacA-C) among staphylococcal strains isolated from food processing plants was studied by hybridization analysis. Of 191 isolates, 25 were resistant to benzalkonium chloride. Five of these gave no hybridization signals to probes specific for qacA-C. Further hybridization analysis indicated that pST827 or closely related plasmids are widespread among QAC-resistant staphylococcal strains. The finding of resistant staphylococci in different areas of the food processing industry indicates that QAC resistance is a potential problem in the food processing industry.
Collapse
Affiliation(s)
- E Heir
- MATFORSK, Norwegian Food Research Institute, As
| | | | | |
Collapse
|
27
|
Moineau S, Walker SA, Holler BJ, Vedamuthu ER, Vandenbergh PA. Expression of a Lactococcus lactis Phage Resistance Mechanism by Streptococcus thermophilus. Appl Environ Microbiol 1995; 61:2461-6. [PMID: 16535064 PMCID: PMC1388482 DOI: 10.1128/aem.61.7.2461-2466.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 7.8-kb lactococcal plasmid pSRQ700 encodes the LlaII restriction/modification system which recognizes and cleaves the sequence 3(prm1)-GATC-5(prm1). When the plasmid pSRQ700 is introduced into a phage-sensitive Lactococcus lactis strain, strong phage resistance is conferred by the LlaII system. In this report, we show that pSRQ700 cannot replicate in Streptococcus thermophilus. However, if cloned into the vector pNZ123, the native LlaII system is expressed and strong phage resistance is conferred to various industrial S. thermophilus strains. Resistance against phages isolated from yogurt and mozzarella wheys was observed. To our knowledge, this is the first report of increased phage resistance in S. thermophilus.
Collapse
|
28
|
Kleinschmidt J, Soeding B, Teuber M, Neve H. Evaluation of Horizontal and Vertical Gene Transfer and Stability of Heterologous DNA in Streptococcus thermophilus Isolated from Yogurt and Yogurt Starter Cultures. Syst Appl Microbiol 1993. [DOI: 10.1016/s0723-2020(11)80482-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|