1
|
Pop2 phosphorylation at S39 contributes to the glucose repression of stress response genes, HSP12 and HSP26. PLoS One 2019; 14:e0215064. [PMID: 30973945 PMCID: PMC6459547 DOI: 10.1371/journal.pone.0215064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
The S. cerevisiae Pop2 protein is an exonuclease in the Ccr4-Not complex that is a conserved regulator of gene expression. Pop2 regulates gene expression post-transcriptionally by shortening the poly(A) tail of mRNA. A previous study has shown that Pop2 is phosphorylated at threonine 97 (T97) by Yak1 protein kinase in response to glucose limitation. However, the physiological importance of Pop2 phosphorylation remains unknown. In this study, we found that Pop2 is phosphorylated at serine 39 (S39) under unstressed conditions. The dephosphorylation of S39 was occurred rapidly after glucose depletion, and the addition of glucose to the glucose-deprived culture recovered this phosphorylation, suggesting that Pop2 phosphorylation at S39 is regulated by glucose. This glucose-regulated phosphorylation of Pop2 at S39 is dependent on Pho85 kinase. We previously reported that Pop2 takes a part in the cell wall integrity pathway by regulating LRG1 mRNA; however, S39 phosphorylation of Pop2 is not involved in LRG1 expression. On the other hand, Pop2 phosphorylation at S39 is involved in the expression of HSP12 and HSP26, which encode a small heat shock protein. In the medium supplemented with glucose, Pop2 might be phosphorylated at S39 by Pho85 kinase, and this phosphorylation contributes to repress the expression of HSP12 and HSP26. Glucose starvation inactivated Pho85, which resulted in the derepression of HSP12 and HSP26, together with other glucose sensing mechanisms. Our results suggest that Pho85-dependent phosphorylation of Pop2 is a part of the glucose sensing system in yeast.
Collapse
|
2
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
3
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
4
|
Abstract
In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
5
|
Swinnen E, Rosseels J, Winderickx J. The minimum domain of Pho81 is not sufficient to control the Pho85-Rim15 effector branch involved in phosphate starvation-induced stress responses. Curr Genet 2005; 48:18-33. [PMID: 15926040 DOI: 10.1007/s00294-005-0583-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The phosphate regulatory mechanism in yeast, known as the PHO pathway, is regulated by inorganic phosphate to control the expression of genes involved in the acquisition of phosphate from the medium. This pathway is also reported to contribute to other nutritional responses and as such it affects several phenotypic characteristics known also to be regulated by protein kinase A, including the transcription of genes involved in the general stress response and trehalose metabolism. We now demonstrate that transcription of post-diauxic shift (PDS)-controlled stress-responsive genes is solely regulated by the Pho85-Pho80 complex, whereas regulation of trehalose metabolism apparently involves several Pho85 cyclins. Interestingly, both read-outs depend on Pho81 but, while the previously described minimum domain of Pho81 is sufficient to sustain phosphate-regulated transcription of PHO genes, full-length Pho81 is required to control trehalose metabolism and the PDS targets. Consistently, neither the expression control of stress-regulated genes nor the trehalose metabolism relies directly on Pho4. Finally, we present data supporting that the PHO pathway functions in parallel to the fermentable growth medium- or Sch9-controlled pathway and that both pathways may share the protein kinase Rim15, which was previously reported to play a central role in the integration of glucose, nitrogen and amino acid availability.
Collapse
Affiliation(s)
- Erwin Swinnen
- Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | | | | |
Collapse
|
6
|
Wu D, Dou X, Hashmi SB, Osmani SA. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J Biol Chem 2004; 279:37693-703. [PMID: 15247298 DOI: 10.1074/jbc.m403853200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, phosphate acquisition enzymes are regulated by a cyclin-dependent kinase (Pho85), a cyclin (Pho80), the cyclin-dependent kinase inhibitor Pho81, and the helix-loop-helix transcription factor Pho4 (the PHO system). Previous studies in Aspergillus nidulans indicate that a Pho85-like kinase, PHOA, does not regulate the classic PHO system but regulates development in a phosphate-dependent manner. A Pho80-like cyclin has now been isolated through its interaction with PHOA. Surprisingly, unlike PHOA, An-PHO80 does play a negative role in the PHO system. Similarly, an ortholog of Pho4 previously identified genetically as palcA also regulates the PHO system. However, An-PHO81, a putative cyclin-dependent kinase inhibitor, does not regulate the PHO system. Therefore, there are significant differences between the classic PHO system conserved between S. cerevisiae and Neurospora crassa compared with that which has evolved in A. nidulans. Most interestingly, under low phosphate conditions, the An-PHO80 cyclin also promotes sexual development while having a negative effect on asexual development. These effects are independent of the role An-PHO80 has in the classic PHO system. However, in high phosphate medium, An-PHO80 affects development because of deregulation of the PHO system as loss of palcA(Pho4) function negates the developmental defects caused by lack of An-pho80. Therefore, under low phosphate conditions the An-PHO80 cyclin regulates development independently of the PHO system, whereas in high phosphate it affects development through the PHO system. The data indicate that a single cyclin can control various aspects of growth and development in a multicellular organism.
Collapse
Affiliation(s)
- Dongliang Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Through its association with a family of ten cyclins, the Pho85 cyclin-dependent kinase is involved in several signal transduction pathways in the yeast Saccharomyces cerevisiae. The responses mediated by Pho85 include cell-cycle progression and metabolism of nutrients such as phosphate and carbon sources. Although these responses require the phosphorylation of different substrates, and have different mechanistic consequences as a result of this phosphorylation, all appear to be involved in responses to changes in environmental conditions. Few of the activating signals or regulated targets have been unambiguously identified, but the kinase activity of Pho85 appears to inform the cell that the current environment is satisfactory.
Collapse
Affiliation(s)
- Adam S Carroll
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
8
|
Türkel S. The GCR1 gene function is essential for glycogen and trehalose metabolism in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2002; 47:663-6. [PMID: 12630316 DOI: 10.1007/bf02818668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trehalose (Tre) and glycogen (Glg) are synthesized in response to unfavorable growth conditions from glycolytic intermediates in Saccharomyces cerevisiae. Transcription of the glycolytic genes is activated by the Gcr1p complex, the DNA binding transcription factor that directly associates with the CT-box sequences on the promoter region of the glycolytic genes. gcr1 mutant yeast cells cannot utilize glucose effectively. Glg and Tre levels in stationary-phase gcr1 mutant yeast cells were 20-50% of those in the wild-type strain. Likewise, stress-induced accumulation of Tre and Glg in gcr1 mutant cells was significantly lower than in the wild type. In addition, both the synthesis and the degradation of Tre and Glg are very slow in the gcr1 mutant. It seems that Gcr1p function is essential for the coordinated regulation of glycolysis, Tre and Glg metabolism in S. cerevisiae.
Collapse
Affiliation(s)
- S Türkel
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059 Bursa, Turkey.
| |
Collapse
|
9
|
Carroll AS, Bishop AC, DeRisi JL, Shokat KM, O'Shea EK. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci U S A 2001; 98:12578-83. [PMID: 11675494 PMCID: PMC60096 DOI: 10.1073/pnas.211195798] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to its well-established role in responding to phosphate starvation, the cyclin-dependent kinase Pho85 has been implicated in a number of other physiological responses of the budding yeast Saccharomyces cerevisiae, including synthesis of glycogen. To comprehensively characterize the range of Pho85-dependent gene expression, we used a chemical genetic approach that enabled us to control Pho85 kinase activity with a cell-permeable inhibitor and whole genome transcript profiling. We found significant phenotypic differences between the rapid loss of activity caused by inhibition and the deletion of the genomic copy of PHO85. We demonstrate that Pho85 controls the expression of not only previously identified glycogen synthetic genes, but also a significant regulon of genes involved in the cellular response to environmental stress. In addition, we show that the effects of this inhibitor are both rapid and reversible, making it well suited to the study of the behavior of dynamic signaling pathways.
Collapse
Affiliation(s)
- A S Carroll
- Howard Hughes Medical Institute, and Departments of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
10
|
Lenburg ME, O'Shea EK. Genetic evidence for a morphogenetic function of the Saccharomyces cerevisiae Pho85 cyclin-dependent kinase. Genetics 2001; 157:39-51. [PMID: 11139490 PMCID: PMC1283135 DOI: 10.1093/genetics/157.1.39] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Saccharomyces cerevisiae PHO85 gene encodes a nonessential cyclin-dependent kinase that associates with 10 cyclin subunits. To survey the functions provided by Pho85, we identified mutants that require PHO85 for viability. We identified mutations that define seven Pho Eighty-Five Requiring or Efr loci, six of which are previously identified genes-BEM2 (YER155C), SPT7 (YBR081C), GCR1 (YPL075W), SRB5 (YGR104C), HFI1 (YPL254W), and BCK1 (YJL095W)-with one novel gene (YMR212C). We found that mutations in the EFR genes involved in morphogenesis are specifically inviable when the Pho85-associated G1 cyclins encoded by PCL1 and PCL2 are absent. pcl1 Delta bem2, pcl1 Delta pcl2 Delta cla4 Delta, and pcl1 Delta pcl2 Delta cdc42-1 strains are inviable. pcl1 Delta pcl2 Delta mpk1 Delta, pcl1 Delta pcl2 Delta bck1, and pcl1 Delta pcl2 Delta cln1 Delta cln2 Delta strains are also inviable, but are rescued by osmotic stabilization with 1 m sorbitol. We propose that the G1 cyclins encoded by PCL1 and PCL2 positively regulate CDC42 or another morphogenesis promoting function.
Collapse
Affiliation(s)
- M E Lenburg
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
11
|
Cave JW, Kremer W, Wemmer DE. Backbone dynamics of sequence specific recognition and binding by the yeast Pho4 bHLH domain probed by NMR. Protein Sci 2000; 9:2354-65. [PMID: 11206057 PMCID: PMC2144533 DOI: 10.1110/ps.9.12.2354] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Backbone dynamics of the basic/helix-loop-helix domain of Pho4 from Saccharomyces cerevisae have been probed by NMR techniques, in the absence of DNA, nonspecifically bound to DNA and bound to cognate DNA. Alpha proton chemical shift indices and nuclear Overhauser effect patterns were used to elucidate the secondary structure in these states. These secondary structures are compared to the co-crystal complex of Pho4 bound to a cognate DNA sequence (Shimizu T. Toumoto A, Ihara K, Shimizu M, Kyogou Y, Ogawa N, Oshima Y, Hakoshima T, 1997, EMBO J 15: 4689-4697). The dynamic information provides insight into the nature of this DNA binding domain as it progresses from free in solution to a specifically bound DNA complex. Relative to the unbound form, we show that formation of either the nonspecific and cognate DNA bound complexes involves a large change in conformation and backbone dynamics of the basic region. The nonspecific and cognate complexes, however, have nearly identical secondary structure and backbone dynamics. We also present evidence for conformational flexibility at a highly conserved glutamate basic region residue. These results are discussed in relation to the mechanism of sequence specific recognition and binding.
Collapse
Affiliation(s)
- J W Cave
- Department of Chemistry, University of California at Berkeley, 94720, USA
| | | | | |
Collapse
|
12
|
Liu C, Yang Z, Yang J, Xia Z, Ao S. Regulation of the yeast transcriptional factor PHO2 activity by phosphorylation. J Biol Chem 2000; 275:31972-8. [PMID: 10884387 DOI: 10.1074/jbc.m003055200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of yeast Saccharomyces cerevisiae gene PHO5 expression is mediated by transcriptional factors PHO2 and PHO4. PHO4 protein has been reported to be phosphorylated and inactivated by a cyclin-CDK (cyclin-dependent kinase) complex, PHO80-PHO85. We report here that PHO2 can also be phosphorylated. A Ser-230 to Ala mutation in the consensus sequence (SPIK) recognized by cdc2/CDC28-related kinase in PHO2 protein led to complete loss of its ability to activate the transcription of PHO5 gene. Further investigation showed that the Pro-231 to Ser mutation inactivated PHO2 protein as well, whereas the Ser-230 to Asp mutation did not affect PHO2 activity. Since the PHO2 Asp-230 mutant mimics Ser-230-phosphorylated PHO2, we postulate that only phosphorylated PHO2 protein could activate the transcription of PHO5 gene. Two hybrid assays showed that yeast CDC28 could interact with PHO2. CDC28 immunoprecipitate derived from the YPH499 strain grown under low phosphate conditions phosphorylated GST-PHO2 in vitro. A phosphate switch regulates the transcriptional activation activity of PHO2, and mutations of the (SPIK) site affect the transcriptional activation activity of PHO2 and the interaction between PHO2 and PHO4. BIAcore(R) analysis indicated that the negative charge in residue 230 of PHO2 was sufficient to help PHO2 interact with PHO4 in vitro.
Collapse
Affiliation(s)
- C Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Bussink HJ, Osmani SA. A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. EMBO J 1998; 17:3990-4003. [PMID: 9670015 PMCID: PMC1170733 DOI: 10.1093/emboj/17.14.3990] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We addressed the question of whether Aspergillus nidulans has more than one cyclin-dependent kinase gene and identified such a gene, phoA, encoding two PSTAIRE-containing kinases (PHOAM1 and PHOAM47) that probably result from alternative pre-mRNA splicing. PHOAM47 is 66% identical to Saccharomyces cerevisiae Pho85. The function of this gene was studied using phoA null mutants. It functions in a developmental response to phosphorus-limited growth but has no effect on the regulation of enzymes involved in phosphorus acquisition. Aspergillus nidulans shows both asexual and sexual reproduction involving temporal elaboration of different specific cell types. We demonstrate that developmental decisions in confluent cultures depend upon both the initial phosphorus concentration and the inoculation density and that these factors influence development through phoA. In the most impressive cases, absence of phoA resulted in a switch from asexual to sexual development (at pH 8), or the absence of development altogether (at pH 6). The phenotype of phoA deletion strains appears to be specific for phosphorus limitation. We propose that PHOA functions to help integrate environmental signals with developmental decisions to allow ordered differentiation of specific cell types in A.nidulans under varying growth conditions. The results implicate a putative cyclin-dependent kinase in the control of development.
Collapse
Affiliation(s)
- H J Bussink
- Henry Hood Research Program, Weis Center for Research, Pennsylvania State University College of Medicine, Danville, PA 17822, USA
| | | |
Collapse
|
14
|
Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B. Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 1998; 18:3289-99. [PMID: 9584169 PMCID: PMC108910 DOI: 10.1128/mcb.18.6.3289] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Accepted: 03/18/1998] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) with multiple roles in cell cycle and metabolic controls. In association with the cyclin Pho80, Pho85 controls acid phosphatase gene expression through phosphorylation of the transcription factor Pho4. Pho85 has also been implicated as a kinase that phosphorylates and negatively regulates glycogen synthase (Gsy2), and deletion of PHO85 causes glycogen overaccumulation. We report that the Pcl8/Pcl10 subgroup of cyclins directs Pho85 to phosphorylate glycogen synthase both in vivo and in vitro. Disruption of PCL8 and PCL10 caused hyperaccumulation of glycogen, activation of glycogen synthase, and a reduction in glycogen synthase kinase activity in vivo. However, unlike pho85 mutants, pcl8 pcl10 cells had normal morphologies, grew on glycerol, and showed proper regulation of acid phosphatase gene expression. In vitro, Pho80-Pho85 complexes effectively phosphorylated Pho4 but had much lower activity toward Gsy2. In contrast, Pcl10-Pho85 complexes phosphorylated Gsy2 at Ser-654 and Thr-667, two physiologically relevant sites, but only poorly phosphorylated Pho4. Thus, both the in vitro and in vivo substrate specificity of Pho85 is determined by the cyclin partner. Mutation of PHO85 suppressed the glycogen storage deficiency of snf1 or glc7-1 mutants in which glycogen synthase is locked in an inactive state. Deletion of PCL8 and PCL10 corrected the deficit in glycogen synthase activity in both the snf1 and glc7-1 mutants, but glycogen synthesis was restored only in the glc7-1 mutant strain. This genetic result suggests an additional role for Pho85 in the negative regulation of glycogen accumulation that is independent of Pcl8 and Pcl10.
Collapse
Affiliation(s)
- D Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, Andrews B. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 1997; 17:1212-23. [PMID: 9032248 PMCID: PMC231846 DOI: 10.1128/mcb.17.3.1212] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In budding yeast, entry into the mitotic cell cycle, or Start, requires the Cdc28 cyclin-dependent kinase (Cdk) and one of its three associated G1 cyclins, Cln1, Cln2, or Cln3. In addition, two other G1 cyclins, Pcl1 and Pcl2, associate with a second Cdk, Pho85, to contribute to Start. Although Pho85 is not essential for viability, Pcl1,2-Pho85 kinase complexes become essential for Start in the absence of Cln1,2-Cdc28 kinases. In addition, Pho85 interacts with a third cyclin, Pho80, to regulate acid phosphatase gene expression. Other cellular roles for Pho85 cyclin-Cdk complexes are suggested by the multiple phenotypes associated with deletion of PHO85, in addition to Start defects and deregulated acid phosphatase gene expression. Strains with pho80, pcl1, and pcl2 deletions show only a subset of the pho85 mutant phenotypes, suggesting the existence of additional Pho85 cyclins (Pcls). We used two-hybrid screening and database searching to identify seven additional cyclin-related genes that may interact with Pho85. We found that all of the new genes encode proteins that interacted with Pho85 in an affinity chromatography assay. One of these genes, CLG1, was previously suggested to encode a cyclin, based on the protein's sequence homology to Pcl1 and Pcl2. We have named the other genes PCL5, PCL6, PCL7, PCL8, PCL9, and PCL10. On the basis of sequence similarities, the PCLs can be divided into two subfamilies: the Pcl1,2-like subfamily and the Pho80-like subfamily. We found that deletion of members of the Pcl1,2 class of genes resulted in pronounced morphological abnormalities. In addition, we found that expression of one member of the Pcl1,2 subfamily, PCL9, is cell cycle regulated and is decreased in cells arrested in G1 by pheromone treatment. Our studies suggest that Pho85 associates with multiple cyclins and that subsets of cyclins may direct Pho85 to perform distinct roles in cell growth and division.
Collapse
Affiliation(s)
- V Measday
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|