1
|
Eicher C, Coulon J, Favier M, Alexandre H, Reguant C, Grandvalet C. Citrate metabolism in lactic acid bacteria: is there a beneficial effect for Oenococcus oeni in wine? Front Microbiol 2024; 14:1283220. [PMID: 38249489 PMCID: PMC10798043 DOI: 10.3389/fmicb.2023.1283220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria frequently used in the food industry for fermentation, mainly transformation of carbohydrates into lactic acid. In addition, these bacteria also have the capacity to metabolize citrate, an organic acid commonly found in food products. Its fermentation leads to the production of 4-carbon compounds such as diacetyl, resulting in a buttery flavor desired in dairy products. Citrate metabolism is known to have several beneficial effects on LAB physiology. Nevertheless, a controversial effect of citrate has been described on the acid tolerance of the wine bacterium Oenococcus oeni. This observation raises questions about the effect of citrate on the capacity of O. oeni to conduct malolactic fermentation in highly acidic wines. This review aims to summarize the current understanding of citrate metabolism in LAB, with a focus on the wine bacterium O. oeni. Metabolism with the related enzymes is detailed, as are the involved genes organized in cit loci. The known systems of cit locus expression regulation are also described. Finally, the beneficial effects of citrate catabolism on LAB physiology are reported and the negative impact observed in O. oeni is discussed.
Collapse
Affiliation(s)
- Camille Eicher
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| | | | | | - Hervé Alexandre
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| | - Cristina Reguant
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Tarragona, Catalonia, Spain
| | - Cosette Grandvalet
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| |
Collapse
|
2
|
van Mastrigt O, Mager EE, Jamin C, Abee T, Smid EJ. Citrate, low pH and amino acid limitation induce citrate utilization in Lactococcus lactis biovar diacetylactis. Microb Biotechnol 2018; 11:369-380. [PMID: 29215194 PMCID: PMC5812246 DOI: 10.1111/1751-7915.13031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/07/2017] [Accepted: 11/05/2017] [Indexed: 11/27/2022] Open
Abstract
In Lactococcus lactis subsp. lactis biovar diacetylactis, citrate transport is facilitated by the plasmid-encoded citrate permease (CitP). In this work, we analysed regulation of citrate utilization by pH, nutrient limitation and the presence of citrate at four different levels: (i) plasmid copy number, (ii) citP transcription, (iii) citP mRNA processing and (iv) citrate utilization capacity. Citrate was supplied as cosubstrate together with lactose. The citP gene is known to be induced in cells grown at low pH. However, we demonstrated that transcription of citP was even higher in the presence of citrate (3.8-fold compared with 2.0-fold). The effect of citrate has been overlooked by other researchers because they determined the effect of citrate using M17 medium, which already contains 0.80 ± 0.07 mM citrate. The plasmid copy number increased in cells grown under amino acid limitation (1.6-fold) and/or at low pH (1.4-fold). No significant differences in citP mRNA processing were found. Citrate utilization rates increased from approximately 1 to 65 μmol min-1 gDW-1 from lowest to highest citP expression. Acetoin formation increased during growth in an acidic environment due to induction of the acetoin pathway. Quantification of the relative contributions allowed us to construct a model for regulation of citrate utilization in L. lactis biovar diacetylactis. This knowledge will help to select conditions to improve flavour formation from citrate.
Collapse
Affiliation(s)
- Oscar van Mastrigt
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Emma E. Mager
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Casper Jamin
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Tjakko Abee
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Eddy J. Smid
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Frantzen CA, Kot W, Pedersen TB, Ardö YM, Broadbent JR, Neve H, Hansen LH, Dal Bello F, Østlie HM, Kleppen HP, Vogensen FK, Holo H. Genomic Characterization of Dairy Associated Leuconostoc Species and Diversity of Leuconostocs in Undefined Mixed Mesophilic Starter Cultures. Front Microbiol 2017; 8:132. [PMID: 28217118 PMCID: PMC5289962 DOI: 10.3389/fmicb.2017.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Undefined mesophilic mixed (DL-type) starter cultures are composed of predominantly Lactococcus lactis subspecies and 1-10% Leuconostoc spp. The composition of the Leuconostoc population in the starter culture ultimately affects the characteristics and the quality of the final product. The scientific basis for the taxonomy of dairy relevant leuconostocs can be traced back 50 years, and no documentation on the genomic diversity of leuconostocs in starter cultures exists. We present data on the Leuconostoc population in five DL-type starter cultures commonly used by the dairy industry. The analyses were performed using traditional cultivation methods, and further augmented by next-generation DNA sequencing methods. Bacterial counts for starter cultures cultivated on two different media, MRS and MPCA, revealed large differences in the relative abundance of leuconostocs. Most of the leuconostocs in two of the starter cultures were unable to grow on MRS, emphasizing the limitations of culture-based methods and the importance of careful media selection or use of culture independent methods. Pan-genomic analysis of 59 Leuconostoc genomes enabled differentiation into twelve robust lineages. The genomic analyses show that the dairy-associated leuconostocs are highly adapted to their environment, characterized by the acquisition of genotype traits, such as the ability to metabolize citrate. In particular, Leuconostoc mesenteroides subsp. cremoris display telltale signs of a degenerative evolution, likely resulting from a long period of growth in milk in association with lactococci. Great differences in the metabolic potential between Leuconostoc species and subspecies were revealed. Using targeted amplicon sequencing, the composition of the Leuconostoc population in the five commercial starter cultures was shown to be significantly different. Three of the cultures were dominated by Ln. mesenteroides subspecies cremoris. Leuconostoc pseudomesenteroides dominated in two of the cultures while Leuconostoc lactis, reported to be a major constituent in fermented dairy products, was only present in low amounts in one of the cultures. This is the first in-depth study of Leuconostoc genomics and diversity in dairy starter cultures. The results and the techniques presented may be of great value for the dairy industry.
Collapse
Affiliation(s)
- Cyril A. Frantzen
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
| | - Witold Kot
- Department of Environmental Science, Aarhus UniversityRoskilde, Denmark
| | | | - Ylva M. Ardö
- Department of Food Science, University of CopenhagenCopenhagen, Denmark
| | - Jeff R. Broadbent
- Department of Nutrition, Dietetics and Food Sciences, Utah State UniversityLogan, UT, USA
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Lars H. Hansen
- Department of Environmental Science, Aarhus UniversityRoskilde, Denmark
| | | | - Hilde M. Østlie
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
| | - Hans P. Kleppen
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
- ACD Pharmaceuticals ASLeknes, Norway
| | - Finn K. Vogensen
- Department of Food Science, University of CopenhagenCopenhagen, Denmark
| | - Helge Holo
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
- TINE SAOslo, Norway
| |
Collapse
|
4
|
Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01575-15. [PMID: 26847906 PMCID: PMC4742675 DOI: 10.1128/genomea.01575-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains.
Collapse
|
5
|
Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster. Int J Food Microbiol 2016; 218:27-37. [DOI: 10.1016/j.ijfoodmicro.2015.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/24/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023]
|
6
|
Zuljan FA, Repizo GD, Alarcon SH, Magni C. α-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions. Int J Food Microbiol 2014; 188:99-107. [DOI: 10.1016/j.ijfoodmicro.2014.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/03/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
7
|
Uptake of α-ketoglutarate by citrate transporter CitP drives transamination in Lactococcus lactis. Appl Environ Microbiol 2012. [PMID: 23204417 DOI: 10.1128/aem.02254-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transamination is the first step in the conversion of amino acids into aroma compounds by lactic acid bacteria (LAB) used in food fermentations. The process is limited by the availability of α-ketoglutarate, which is the best α-keto donor for transaminases in LAB. Here, uptake of α-ketoglutarate by the citrate transporter CitP is reported. Cells of Lactococcus lactis IL1403 expressing CitP showed significant levels of transamination activity in the presence of α-ketoglutarate and one of the amino acids Ile, Leu, Val, Phe, or Met, while the same cells lacking CitP showed transamination activity only after permeabilization of the cell membrane. Moreover, the transamination activity of the cells followed the levels of CitP in a controlled expression system. The involvement of CitP in the uptake of the α-keto donor was further demonstrated by the increased consumption rate in the presence of L-lactate, which drives CitP in the fast exchange mode of transport. Transamination is the only active pathway for the conversion of α-ketoglutarate in IL1403; a stoichiometric conversion to glutamate and the corresponding α-keto acid from the amino acids was observed. The transamination activity by both the cells and the cytoplasmic fraction showed a remarkably flat pH profile over the range from pH 5 to pH 8, especially with the branched-chain amino acids. Further metabolism of the produced α-keto acids into α-hydroxy acids and other flavor compounds required the coupling of transamination to glycolysis. The results suggest a much broader role of the citrate transporter CitP in LAB than citrate uptake in the citrate fermentation pathway alone.
Collapse
|
8
|
Pudlik AM, Lolkema JS. Rerouting citrate metabolism in Lactococcus lactis to citrate-driven transamination. Appl Environ Microbiol 2012; 78:6665-73. [PMID: 22798354 PMCID: PMC3426677 DOI: 10.1128/aem.01811-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/04/2012] [Indexed: 11/20/2022] Open
Abstract
Oxaloacetate is an intermediate of the citrate fermentation pathway that accumulates in the cytoplasm of Lactococcus lactis ILCitM(pFL3) at a high concentration due to the inactivation of oxaloacetate decarboxylase. An excess of toxic oxaloacetate is excreted into the medium in exchange for citrate by the citrate transporter CitP (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:4049-4056, 2011). In this study, transamination of amino acids with oxaloacetate as the keto donor is described as an additional mechanism to relieve toxic stress. Redirection of the citrate metabolic pathway into the transamination route in the presence of the branched-chain amino acids Ile, Leu, and Val; the aromatic amino acids Phe, Trp, and Tyr; and Met resulted in the formation of aspartate and the corresponding α-keto acids. Cells grown in the presence of citrate showed 3.5 to 7 times higher transaminase activity in the cytoplasm than cells grown in the absence of citrate. The study demonstrates that transaminases of L. lactis accept oxaloacetate as a keto donor. A significant fraction of 2-keto-4-methylthiobutyrate formed from methionine by citrate-driven transamination in vivo was further metabolized, yielding the cheese aroma compounds 2-hydroxy-4-methylthiobutyrate and methyl-3-methylthiopropionate. Reducing equivalents required for the former compound were produced in the citrate fermentation pathway as NADH. Similarly, phenylpyruvate, the transamination product of phenylalanine, was reduced to phenyllactate, while the dehydrogenase activity was not observed for the branched-chain keto acids. Both α-keto acids and α-hydroxy acids are known substrates of CitP and may be excreted from the cell in exchange for citrate or oxaloacetate.
Collapse
Affiliation(s)
- Agata M. Pudlik
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentations/NCSB, Delft, The Netherlands
| | - Juke S. Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Substrate specificity of the citrate transporter CitP of Lactococcus lactis. J Bacteriol 2012; 194:3627-35. [PMID: 22563050 DOI: 10.1128/jb.00196-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The citrate transporter CitP of lactic acid bacteria catalyzes electrogenic precursor-product exchange of citrate versus L-lactate during citrate-glucose cometabolism. In the absence of sugar, L-lactate is replaced by the metabolic intermediates/end products pyruvate, α-acetolactate, and acetate. In this study, the binding and translocation properties of CitP were analyzed systematically for a wide variety of mono- and dicarboxylates of the form X-CR(2)-COO(-), where X represents OH (2-hydroxy acid), O (2-keto acid), or H (acid) and R groups differ in size, hydrophobicity, and composition. It follows that CitP is a very promiscuous carboxylate transporter. A carboxylate group is both essential and sufficient for recognition by the transporter. A C-2 atom is not essential, formate is a substrate, and C-2 may be part of a ring structure, as in benzoate. The R group may be as bulky as an indole ring structure. For all monocarboxylates of the form X-CHR-COO(-), the hydroxy (X = OH) analogs were the preferred substrates. The preference for keto (X = O) or acid (X = H) analogs was dependent on the bulkiness of the R group, such that the acid was preferred for small R groups and the 2-ketoacid was preferred for more bulky R groups. The C(4) to C(6) dicarboxylates succinate, glutarate, and adipate were also substrates of CitP. The broad substrate specificity is discussed in the context of a model of the binding site of CitP. Many of the substrates of CitP are intermediates or products of amino acid metabolism, suggesting that CitP may have a broader physiological function than its role in citrate fermentation alone.
Collapse
|
10
|
Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403. J Bacteriol 2011; 193:4049-56. [PMID: 21665973 DOI: 10.1128/jb.05012-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.
Collapse
|
11
|
Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403. J Bacteriol 2010; 193:706-14. [PMID: 21115655 DOI: 10.1128/jb.01171-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbohydrate/citrate cometabolism in Lactococcus lactis results in the formation of the flavor compound acetoin. Resting cells of strain IL1403(pFL3) rapidly consumed citrate while producing acetoin when substoichiometric concentrations of glucose or l-lactate were present. A proton motive force was generated by electrogenic exchange of citrate and lactate catalyzed by the citrate transporter CitP and proton consumption in decarboxylation reactions in the pathway. In the absence of glucose or l-lactate, citrate consumption was biphasic. During the first phase, hardly any citrate was consumed. In the second phase, citrate was converted rapidly, but without the formation of acetoin. Instead, significant amounts of the intermediates pyruvate and α-acetolactate, and the end product acetate, were excreted from the cells. It is shown that the intermediates and acetate are excreted in exchange with the uptake of citrate catalyzed by CitP. The availability of exchangeable substrates in the cytoplasm determines both the rate of citrate consumption and the end product profile. It follows that citrate metabolism in L. lactis IL1403(pFL3) splits up in two routes after the formation of pyruvate, one the well-characterized route yielding acetoin and the other a new route yielding acetate. The flux distribution between the two branches changes from 85:15 in the presence of l-lactate to 30:70 in the presence of pyruvate. The proton motive force generated was greatest in the presence of l-lactate and zero in the presence of pyruvate, suggesting that the pathway to acetate does not generate proton motive force.
Collapse
|
12
|
Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl Environ Microbiol 2007; 74:1136-44. [PMID: 18156322 DOI: 10.1128/aem.01061-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis subsp. lactis biovar diacetylactis CRL264 is a natural strain isolated from cheese (F. Sesma, D. Gardiol, A. P. de Ruiz Holgado, and D. de Mendoza, Appl. Environ. Microbiol. 56:2099-2103, 1990). The effect of citrate on the growth parameters at a very acidic pH value was studied with this strain and with derivatives whose citrate uptake capacity was genetically manipulated. The culture pH was maintained at 4.5 to prevent alkalinization of the medium, a well-known effect of citrate metabolism. In the presence of citrate, the maximum specific growth rate and the specific glucose consumption rate were stimulated. Moreover, a more efficient energy metabolism was revealed by analysis of the biomass yields relative to glucose consumption or ATP production. Thus, it was shown that the beneficial effect of citrate on growth under acid stress conditions is not primarily due to the concomitant alkalinization of the medium but stems from less expenditure of ATP, derived from glucose catabolism, to achieve pH homeostasis. After citrate depletion, a deleterious effect on the final biomass was apparent due to organic acid accumulation, particularly acetic acid. On the other hand, citrate metabolism endowed cells with extra ability to counteract lactic and acetic acid toxicity. In vivo 13C nuclear magnetic resonance provided strong evidence for the operation of a citrate/lactate exchanger. Interestingly, the greater capacity for citrate transport correlated positively with the final biomass and growth rates of the citrate-utilizing strains. We propose that increasing the citrate transport capacity of CRL264 could be a useful strategy to improve further the ability of this strain to cope with strongly acidic conditions.
Collapse
|
13
|
Augagneur Y, Garmyn D, Guzzo J. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism. J Appl Microbiol 2007; 104:260-8. [PMID: 17927748 DOI: 10.1111/j.1365-2672.2007.03582.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. METHODS AND RESULTS A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis. CONCLUSIONS The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.
Collapse
Affiliation(s)
- Y Augagneur
- Laboratoire ReVV, Université de Bourgogne, IUVV, Dijon, France
| | | | | |
Collapse
|
14
|
Tanous C, Gori A, Rijnen L, Chambellon E, Yvon M. Pathways for -ketoglutarate formation by Lactococcus lactis and their role in amino acid catabolism. Int Dairy J 2005. [DOI: 10.1016/j.idairyj.2004.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Martín MG, Sender PD, Peirú S, de Mendoza D, Magni C. Acid-inducible transcription of the operon encoding the citrate lyase complex of Lactococcus lactis Biovar diacetylactis CRL264. J Bacteriol 2004; 186:5649-60. [PMID: 15317769 PMCID: PMC516808 DOI: 10.1128/jb.186.17.5649-5660.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Lactococcus is one of the most extensively studied lactic acid bacteria and is the paradigm for biochemical studies of citrate metabolism, little information is available on the regulation of the citrate lyase complex. In order to fill this gap, we characterized the genes encoding the subunits of the citrate lyase of Lactococcus lactis CRL264, which are located on an 11.4-kb chromosomal DNA region. Nucleotide sequence analysis revealed a cluster of eight genes in a new type of genetic organization. The citM-citCDEFXG operon (cit operon) is transcribed as a single polycistronic mRNA of 8.6 kb. This operon carries a gene encoding a malic enzyme (CitM, a putative oxaloacetate decarboxylase), the structural genes coding for the citrate lyase subunits (citD, citE, and citF), and the accessory genes required for the synthesis of an active citrate lyase complex (citC, citX, and citG). We have found that the cit operon is induced by natural acidification of the medium during cell growth or by a shift to media buffered at acidic pHs. Between the citM and citC genes is a divergent open reading frame whose expression was also increased at acidic pH, which was designated citI. This inducible response to acid stress takes place at the transcriptional level and correlates with increased activity of citrate lyase. It is suggested that coordinated induction of the citrate transporter, CitP, and citrate lyase by acid stress provides a mechanism to make the cells (more) resistant to the inhibitory effects of the fermentation product (lactate) that accumulates under these conditions.
Collapse
MESH Headings
- Adaptation, Physiological
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Carboxy-Lyases/genetics
- Carrier Proteins/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Gene Expression Regulation, Bacterial
- Gene Order
- Genes, Bacterial
- Hydrogen-Ion Concentration
- Lactic Acid/metabolism
- Lactococcus lactis/enzymology
- Lactococcus lactis/genetics
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Multigene Family
- Open Reading Frames
- Operon
- Oxo-Acid-Lyases/genetics
- Oxo-Acid-Lyases/metabolism
- Protein Subunits
- RNA, Bacterial/analysis
- RNA, Bacterial/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/isolation & purification
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Mauricio G Martín
- Instituto de Biología Molecular y Celular de Rosario , S2002LRK Rosario, Argentina
| | | | | | | | | |
Collapse
|
16
|
Martín M, Magni C, López P, de Mendoza D. Transcriptional control of the citrate-inducible citMCDEFGRP operon, encoding genes involved in citrate fermentation in Leuconostoc paramesenteroides. J Bacteriol 2000; 182:3904-12. [PMID: 10869065 PMCID: PMC94572 DOI: 10.1128/jb.182.14.3904-3912.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we describe the expression pattern of the Leuconostoc paramesenteroides citMCDEFGRP operon in response to the addition of citrate to the growth medium. An 8.8-kb polycistronic transcript, which includes the citMCDEFGRP genes, was identified; its synthesis was dramatically induced upon addition of citrate to the growth medium. We also found that expression of the cit operon is subjected to posttranscriptional regulation, since processing sites included in four complex secondary structures (I, II, III, and IV) were identified by Northern blot analysis and mapped by primer extension. Upstream of the citMCDEFGRP operon a divergent open reading frame, whose expression was also increased by citrate, was identified by DNA sequencing and designated citI. The start and end sites of transcription of the cit operon and citI gene were mapped. The start sites are separated by a stretch of 188 bp with a very high A+T content of 77% and are preceded by transcriptional promoters. The end sites of the transcripts are located next to the 3' end of two secondary structures characteristic of rho-independent transcriptional terminators. The effect of the citI gene on expression of the cit operon was studied in Escherichia coli. The presence of the citI gene in cis and in trans resulted in increased activity of the cit promoter. These data provide the first evidence that citrate fermentation in Leuconostoc is regulated at the transcriptional level by a transcriptional activator rather than by a repressor.
Collapse
Affiliation(s)
- M Martín
- Instituto de Biología Molecular y Celular de Rosario and Departamento de Microbiología, Universidad Nacional de Rosario, Argentina
| | | | | | | |
Collapse
|
17
|
Medina de Figueroa R, Alvarez F, Pesce de Ruiz Holgado A, Oliver G, Sesma F. Citrate utilization by homo- and heterofermentative lactobacilli. Microbiol Res 2000; 154:313-20. [PMID: 10772153 DOI: 10.1016/s0944-5013(00)80005-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Citrate utilization by several homo- and heterofermentative lactobacilli was determined in Kempler and McKay and in calcium citrate media. The last medium with glucose permitted best to distinguish citrate-fermenting lactobacilli. Lactobacillus rhamnosus ATCC 11443, Lactobacillus zeae ATCC 15820 and Lactobacillus plantarum ATCC 8014 used citrate as sole energy source, whereas in the other strains, glucose and citrate were cometabolized. Some lactobacilli strains produced aroma compounds from citrate. Citrate transport experiments suggested that all strains studied presented a citrate transport system inducible by citrate. The levels of induction were variable between several strains. Dot blot experiment showed that lactobacilli do not present an equivalent plasmid coding for citrate permease.
Collapse
|
18
|
Martín M, Corrales MA, de Mendoza D, López P, Magni C. Cloning and molecular characterization of the citrate utilization citMCDEFGRP cluster of Leuconostoc paramesenteroides. FEMS Microbiol Lett 1999; 174:231-8. [PMID: 10339813 DOI: 10.1111/j.1574-6968.1999.tb13573.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The citMCDEFGRP cluster from Leuconostoc paramesenteroides involved in citrate utilization was cloned and its nucleotide sequence determined. Homology of the inferred gene products with characterized enzymes reveals that citP encodes the citrate permease P, citC the citrate ligase and citDEF the subunits of the citrate lyase of Leuconostoc. Moreover, it suggests that citM encodes a Leuconostoc malic enzyme. Analysis of citrate consumption by and citrate lyase activity of Lc. paramesenteroides J1[pCITJ1] showed that its citrate permease and its citrate lyase are induced by the presence of citrate in the growth medium. Southern blot analysis demonstrated that the citMCDEFGRP cluster is located in a plasmid.
Collapse
Affiliation(s)
- M Martín
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Drider D, García-Quintáns N, Santos JM, Arraiano CM, López P. A comparative analysis of the citrate permease P mRNA stability in Lactococcus lactis biovar diacetylactis and Escherichia coli. FEMS Microbiol Lett 1999; 172:115-22. [PMID: 10188238 DOI: 10.1111/j.1574-6968.1999.tb13458.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The role of ribonucleases in the control of gene expression remains unknown in lactic acid bacteria. In the present work, we analysed the expression of the citP gene, which encodes the lactococcal citrate permease P, through the stability of the citQRP messenger in both Lactococcus lactis biovar diacetylactis (L. diacetylactis) and Escherichia coli. The chemical half-life for citQRP mRNA observed in L. diacetylactis wild-type strain was abnormally long for bacteria. It was even longer than that detected in E. coli RNase E or RNase III mutant strains. A model of processing and fate of RNA species containing citP gene is presented.
Collapse
Affiliation(s)
- D Drider
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Magni C, de Mendoza D, Konings WN, Lolkema JS. Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. J Bacteriol 1999; 181:1451-7. [PMID: 10049375 PMCID: PMC93533 DOI: 10.1128/jb.181.5.1451-1457.1999] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 12/20/1998] [Indexed: 11/20/2022] Open
Abstract
Measurement of the flux through the citrate fermentation pathway in resting cells of Lactococcus lactis CRL264 grown in a pH-controlled fermentor at different pH values showed that the pathway was constitutively expressed, but its activity was significantly enhanced at low pH. The flux through the citrate-degrading pathway correlated with the magnitude of the membrane potential and pH gradient that were generated when citrate was added to the cells. The citrate degradation rate and proton motive force were significantly higher when glucose was metabolized at the same time, a phenomenon that could be mimicked by the addition of lactate, the end product of glucose metabolism. The results clearly demonstrate that citrate metabolism in L. lactis is a secondary proton motive force-generating pathway. Although the proton motive force generated by citrate in cells grown at low pH was of the same magnitude as that generated by glucose fermentation, citrate metabolism did not affect the growth rate of L. lactis in rich media. However, inhibition of growth by lactate was relieved when citrate also was present in the growth medium. Citrate did not relieve the inhibition by other weak acids, suggesting a specific role of the citrate transporter CitP in the relief of inhibition. The mechanism of citrate metabolism presented here provides an explanation for the resistance to lactate toxicity. It is suggested that the citrate metabolic pathway is induced under the acidic conditions of the late exponential growth phase to make the cells (more) resistant to the inhibitory effects of the fermentation product, lactate, that accumulates under these conditions.
Collapse
Affiliation(s)
- C Magni
- Department of Microbiology, Groningen Biotechnology and Biomolecular Sciences Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
21
|
Bandell M, Lhotte ME, Marty-Teysset C, Veyrat A, Prévost H, Dartois V, Diviès C, Konings WN, Lolkema JS. Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species. Appl Environ Microbiol 1998; 64:1594-600. [PMID: 9572922 PMCID: PMC106201 DOI: 10.1128/aem.64.5.1594-1600.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1997] [Accepted: 02/09/1998] [Indexed: 02/07/2023] Open
Abstract
Citrate metabolism in the lactic acid bacterium Leuconostoc mesenteroides generates an electrochemical proton gradient across the membrane by a secondary mechanism (C. Marty-Teysset, C. Posthuma, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Bacteriol. 178:2178-2185, 1996). Reports on the energetics of citrate metabolism in the related organism Lactococcus lactis are contradictory, and this study was performed to clarify this issue. Cloning of the membrane potential-generating citrate transporter (CitP) of Leuconostoc mesenteroides revealed an amino acid sequence that is almost identical to the known sequence of the CitP of Lactococcus lactis. The cloned gene was expressed in a Lactococcus lactis Cit- strain, and the gene product was functionally characterized in membrane vesicles. Uptake of citrate was counteracted by the membrane potential, and the transporter efficiently catalyzed heterologous citrate-lactate exchange. These properties are essential for generation of a membrane potential under physiological conditions and show that the Leuconostoc CitP retains its properties when it is embedded in the cytoplasmic membrane of Lactococcus lactis. Furthermore, using the same criteria and experimental approach, we demonstrated that the endogenous CitP of Lactococcus lactis has the same properties, showing that the few differences in the amino acid sequences of the CitPs of members of the two genera do not result in different catalytic mechanisms. The results strongly suggest that the energetics of citrate degradation in Lactococcus lactis and Leuconostoc mesenteroides are the same; i.e., citrate metabolism in Lactococcus lactis is a proton motive force-generating process.
Collapse
Affiliation(s)
- M Bandell
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
García-Quintáns N, Magni C, de Mendoza D, López P. The citrate transport system of Lactococcus lactis subsp. lactis biovar diacetylactis is induced by acid stress. Appl Environ Microbiol 1998; 64:850-7. [PMID: 9501425 PMCID: PMC106337 DOI: 10.1128/aem.64.3.850-857.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1997] [Accepted: 12/26/1997] [Indexed: 02/06/2023] Open
Abstract
Citrate transport in Lactococcus lactis subsp. lactis biovar diacetylactis is catalyzed by citrate permease P (CitP), which is encoded by the plasmidic citP gene. We have shown previously that citP is included in the citQRP operon, which is mainly transcribed from the P1 promoter in L. lactis subsp. lactis biovar diacetylactis. furthermore, transcription of citQRP and citrate transport are not induced by the presence of citrate in the growth medium. In this work, we analyzed the influence of the extracellular pH on the expression of citP. The citrate transport system is induced by natural acidification of the medium during cell growth and by a shift to media buffered at acidic pHs. This inducible response to acid stress takes place at the transcriptional level and seems to be due to increased utilization of the P1 promoter. Increased transcription correlates with increased synthesis of CitP and results in higher citrate transport activity catalyzed by the cells. Finally, this acid stress response seems to provide L. lactis subsp. lactis biovar diacetylactis with a selective advantage resulting from cometabolism of glucose and citrate at low pHs.
Collapse
Affiliation(s)
- N García-Quintáns
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Bourel G, Bekal S, Diviès C, Prévost H. Citrate permease gene expression inLactococcus lactissubsp.lactisstrains IL1403 and MG1363. FEMS Microbiol Lett 1996. [DOI: 10.1111/j.1574-6968.1996.tb08602.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Marty-Teysset C, Lolkema JS, Schmitt P, Diviès C, Konings WN. The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport. J Bacteriol 1996; 178:6209-15. [PMID: 8892820 PMCID: PMC178491 DOI: 10.1128/jb.178.21.6209-6215.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Citrate metabolism in Leuconostoc mesenteroides subspecies mesenteroides is associated with the generation of a proton motive force by a secondary mechanism (C. Marty-Teysset, C. Posthuma, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Bacteriol. 178:2178-2185, 1996). The pathway consists of four steps: (i) uptake of citrate, (ii) splitting of citrate into acetate and oxaloacetate, (iii) pyruvate formation by decarboxylation of oxaloacetate, and (iv) reduction of pyruvate to lactate. Studies of citrate uptake and metabolism in resting cells of L. mesenteroides grown in the presence or absence of citrate show that the citrate transporter CitP and citrate lyase are constitutively expressed. On the other hand, oxaloacetate decarboxylase is under stringent control of the citrate in the medium and is not expressed in its absence, thereby blocking the pathway at the level of oxaloacetate. Under those conditions, the pathway is completely directed towards the formation of aspartate, which is formed from oxaloacetate by transaminase activity. The data indicate a role for citrate metabolism in amino acid biosynthesis. Internalized radiolabeled aspartate produced from citrate metabolism could be chased from the cells by addition of the amino acid precursors oxaloacetate, pyruvate, alpha-ketoglutarate, and alpha-ketoisocaproate to the cells, indicating a broad specificity of the transamination reaction. The alpha-ketocarboxylates are readily transported across the cytoplasmic membrane. alpha-Ketoglutarate uptake in resting cells of L. mesenteroides was dependent upon the presence of an energy source and was inhibited by inhibition of the proton motive force generating F(0)F(1) ATPase and by selective dissipation of the membrane potential and the transmembrane pH gradient. It is concluded that in L. mesenteroides alpha-ketoglutarate is transported via a secondary transporter that may be a general alpha-ketocarboxylate carrier.
Collapse
Affiliation(s)
- C Marty-Teysset
- Department of Microbiology, Groningen Biotechnology and Biomolecular Sciences Institute, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
de Figueroa RM, Benito de Cárdenas IL, Sesma F, Alvarez F, de Ruiz Holgado AP, Oliver G. Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469. THE JOURNAL OF APPLIED BACTERIOLOGY 1996; 81:348-54. [PMID: 8896349 DOI: 10.1111/j.1365-2672.1996.tb03518.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.
Collapse
Affiliation(s)
- R M de Figueroa
- Cátedra de Microbiología General, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
26
|
Figueroa R, Cárdenas IB, Sesma F, Alvarez F, Holgado ADR, Oliver G. Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469. J Appl Microbiol 1996. [DOI: 10.1111/j.1365-2672.1996.tb01925.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Magni C, López P, Mendoza D. The properties of citrate transport catalyzed by CitP of Lactococcus lactisssp. lactisbiovar diacetylactis. FEMS Microbiol Lett 1996. [DOI: 10.1111/j.1574-6968.1996.tb08441.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Magni C, de Felipe FL, López P, de Mendoza D. Characterization of an insertion sequence-like element identified in plasmid pCIT264 from Lactococcus lactis subsp. lactis biovar diacetylactis. FEMS Microbiol Lett 1996; 136:289-95. [PMID: 8867382 DOI: 10.1111/j.1574-6968.1996.tb08063.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Plasmid pCIT264 from Lactococcus lactis subsp. lactis biovar diacetylactis (L. diacetylactis) contains an insertion sequence (IS)-like element located in the citrate utilization (citQRP) cluster. This 967-nucleotide long element is bounded by 17 bp perfect inverted repeats and contains an open reading frame (ORF1) composed of 296 codons, which could encode a transposase. Expression of the IS from pCIT264 generates two mRNAs of 2900 and 1900 nucleotides. The transcription is driven by the P3 promoter, composed of a -10 region located at the right end of the IS and of a -35 region positioned downstream of this element. The IS-like element (IS982) is present in seven copies in the L.diacetylactis genome. The copy present in pCIT264 is highly stable and does not promote rearrangements of the cit cluster. We suggest that the stable maintenance of the IS-like element in pCIT264 could be due to a translational control of the putative transposase by an antisense RNA.
Collapse
Affiliation(s)
- C Magni
- Programa Multidisciplinario de Biología Experimental (PROMUBIE-CONICET), Universidad Nacional de Rosario, Argentina
| | | | | | | |
Collapse
|
29
|
Marty-Teysset C, Lolkema JS, Schmitt P, Divies C, Konings WN. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. J Biol Chem 1995; 270:25370-6. [PMID: 7592702 DOI: 10.1074/jbc.270.43.25370] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Citrate uptake in Leuconostoc mesenteroides subsp. mesenteroides 19D is catalyzed by a secondary citrate carrier (CitP). The kinetics and mechanism of CitP were investigated in membrane vesicles of L. mesenteroides. The transporter is induced by the presence of citrate in the medium and transports both citrate and malate. In spite of sequence homology to the Na(+)-dependent citrate carrier of Klebsiella pneumoniae, CitP is not Na(+)-dependent, nor is CitP Mg(2+)-dependent. The pH gradient (delta pH) is a driving force for citrate and malate uptake into the membrane vesicles, whereas the membrane potential (delta psi) counteracts transport. An inverted membrane potential (inside positive) generated by thiocyanide diffusion can drive citrate and malate uptake in membrane vesicles. Analysis of the forces involved showed that a single unit of negative charge is translocated during transport. Kinetic analysis of citrate counterflow at different pH values indicated that CitP transports the dianionic form of citrate (Hcit2-) with an affinity constant of approximately 20 microns. It is concluded that CitP catalyzes Hcit2-/H+ symport. Translocation of negative charge into the cell during citrate metabolism results in the generation of a membrane potential that contributes to the protonmotive force across the cytoplasmic membrane, i.e. citrate metabolism in L. mesenteroides generates metabolic energy. Efficient exchange of citrate and D-lactate, a product of citrate/carbohydrate co-metabolism, is observed, suggesting that under physiological conditions, CitP may function as an electrogenic precursor/product exchanger rather than a symporter. The mechanism and energetic consequences of citrate uptake are similar to malate uptake in lactic acid bacteria.
Collapse
Affiliation(s)
- C Marty-Teysset
- Department of Microbiology, Groningen Biotechnology and Biomolecular Sciences Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Vaughan EE, David S, Harrington A, Daly C, Fitzgerald GF, De Vos WM. Characterization of plasmid-encoded citrate permease (citP) genes from Leuconostoc species reveals high sequence conservation with the Lactococcus lactis citP gene. Appl Environ Microbiol 1995; 61:3172-6. [PMID: 7487049 PMCID: PMC167593 DOI: 10.1128/aem.61.8.3172-3176.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The citrate permease determinant (citP) in several Leuconostoc strains was demonstrated to be plasmid encoded by curing experiments and hybridization studies with a DNA fragment containing the citP gene from Lactococcus lactis subsp. lactis biovar diacetylactis NCDO176. Cloning and nucleotide sequence analysis of Leuconostoc lactis NZ6070 citP revealed almost complete identity to lactococcal citP.
Collapse
Affiliation(s)
- E E Vaughan
- Department of Biophysical Chemistry, Netherlands Institute for Dairy Research (NIZO), Ede
| | | | | | | | | | | |
Collapse
|
31
|
López de Felipe F, Magni C, de Mendoza D, López P. Citrate utilization gene cluster of the Lactococcus lactis biovar diacetylactis: organization and regulation of expression. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:590-9. [PMID: 7535377 DOI: 10.1007/bf00298965] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transport of citrate in Lactococcus lactis biovar diacetylactis is mediated by the citrate permease P. This polypeptide is encoded by the citP gene carried by plasmid pCIT264. In this report, we characterize the citP transcript, identify a cluster of two genes cotranscribed with citP and describe their post-transcriptional regulation. The transcriptional promoter is located 1500 nucleotides upstream of the citP gene and the transcriptional terminator is positioned next to the 3'-end of this gene. The DNA sequence was determined of the region upstream of the citP gene, including the promoter. Two partially overlapping open reading frames, citQ and citR were identified, which could encode polypeptides of 3.9 and 13 kDa respectively. These two genes, together with citP, constitute the cit cluster. Moreover, an IS-like element located between the cit promoter and the citQ open reading frame was identified. This element includes an open reading frame ORF1, which could encode a 33 kDa polypeptide. A translational fusion between the citP and a cat reporter gene showed that translation of citR and citP is coupled, and regulated by CitR. The cit mRNA was subjected to specific cleavage after addition of rifampicin to the bacterial cultures. We propose that expression of the cit cluster is controlled at the post-transcriptional level by mRNA processing at a putative complex secondary structure and by translational repression mediated by CitR.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins
- Base Sequence
- Carrier Proteins
- Citrates/metabolism
- Citric Acid
- DNA Transposable Elements/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Lactococcus lactis/genetics
- Lactococcus lactis/metabolism
- Lactoferrin/genetics
- Membrane Transport Proteins/genetics
- Molecular Sequence Data
- Multigene Family/genetics
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Organic Anion Transporters
- Peptide Fragments/genetics
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis/genetics
- RNA Processing, Post-Transcriptional/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Recombinant Fusion Proteins
- Sequence Analysis, DNA
- Terminator Regions, Genetic/genetics
Collapse
Affiliation(s)
- F López de Felipe
- Centro de Investigaciones Biológicas, C.S.I.C., Velázquez, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
López de Felipe F, Corrales MA, López P. Comparative analysis of gene expression in Streptococcus pneumoniae and Lactococcus lactis. FEMS Microbiol Lett 1994; 122:289-95. [PMID: 7988870 DOI: 10.1111/j.1574-6968.1994.tb07182.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pFL10 plasmid vector for translational fusions was constructed. pFL10 is based in the promiscuous pLS1 replicon and contains the pC194 cat gene deprived of its transcriptional promoter and Shine-Dalgarno (SD) sequence. Three promoters (Pcit, PpolA and PtetL) from Gram-positive bacteria, inserted in pFL10, were tested for their ability to drive transcription in Lactococcus lactis and Streptococcus pneumoniae. These promoters were coupled to the SD sequence of the lactococcal citP gene fused to the cat gene. Determination of the 5' ends of the three mRNAs by primer extension revealed the same start sites in both bacterial systems. However, it was observed a differential efficiency of promoter utilization by the RNA polymerases from the two hosts. The transcriptional behavior correlates with expression of the cat gene measured by determinations of chloramphenicol acetyltransferase (CAT) activity. Substitution of the SD of citP by that of the T7 phi 10 gene rendered a similar decrease of the CAT production in both bacterial systems.
Collapse
|