1
|
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019; 32:e00002-19. [PMID: 31315895 PMCID: PMC6750132 DOI: 10.1128/cmr.00002-19] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Enterobacter is a member of the ESKAPE group, which contains the major resistant bacterial pathogens. First described in 1960, this group member has proven to be more complex as a result of the exponential evolution of phenotypic and genotypic methods. Today, 22 species belong to the Enterobacter genus. These species are described in the environment and have been reported as opportunistic pathogens in plants, animals, and humans. The pathogenicity/virulence of this bacterium remains rather unclear due to the limited amount of work performed to date in this field. In contrast, its resistance against antibacterial agents has been extensively studied. In the face of antibiotic treatment, it is able to manage different mechanisms of resistance via various local and global regulator genes and the modulation of the expression of different proteins, including enzymes (β-lactamases, etc.) or membrane transporters, such as porins and efflux pumps. During various hospital outbreaks, the Enterobacter aerogenes and E. cloacae complex exhibited a multidrug-resistant phenotype, which has stimulated questions about the role of cascade regulation in the emergence of these well-adapted clones.
Collapse
Affiliation(s)
- Anne Davin-Regli
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, U1047, INSERM, University Montpellier and University Hospital Nîmes, Nîmes, France
| | - Jean-Marie Pagès
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| |
Collapse
|
2
|
Davin-Regli A, Pagès JM. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 2015; 6:392. [PMID: 26042091 PMCID: PMC4435039 DOI: 10.3389/fmicb.2015.00392] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/16/2015] [Indexed: 12/14/2022] Open
Abstract
Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution.
Collapse
Affiliation(s)
- Anne Davin-Regli
- Transporteurs Membranaires, Chimiorésistance et Drug Design, Facultés de Médecine et Pharmacie, UMR-MD1, IRBA - Aix-Marseille Université, Marseille France
| | - Jean-Marie Pagès
- Transporteurs Membranaires, Chimiorésistance et Drug Design, Facultés de Médecine et Pharmacie, UMR-MD1, IRBA - Aix-Marseille Université, Marseille France
| |
Collapse
|
3
|
Successive emergence of extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacter aerogenes isolates in a university hospital. J Clin Microbiol 2008; 46:1037-44. [PMID: 18234876 DOI: 10.1128/jcm.00197-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixty-two clinical isolates of Enterobacter aerogenes resistant to expanded-spectrum cephalosporins were collected between July 2003 and May 2005. Among these isolates, 23 (37.1%) were imipenem (IPM) susceptible, and 39 (62.9%) were IPM insusceptible, of which 89.7% (35/39) were resistant and 10.3% (4/39) were intermediate. Isolate genotypes were compared by pulsed-field gel electrophoresis. Of 62 isolates, 48 belonged to epidemic pulsotype A (77.4%). This pulsotype included 37.5% and 58.4% of beta-lactam phenotypes b and a, respectively. Nine isolates (14.5%) belonged to pulsotype E, which included 22.3% and 77.7% of phenotypes b and a, respectively. The beta-lactamases with pIs of 5.4, 6.5, 8.2, and 8.2 corresponded to extended-spectrum beta-lactamases (ESBLs) TEM-20, TEM-24, SHV-5, and SHV-12, respectively. Of 39 IPM-insusceptible E. aerogenes isolates, 26 (66.6%) were determined to be metallo-beta-lactamase producers, by using a phenotypic method. Of these isolates, 24 harbored a bla(IMP-1) gene encoding a protein with a pI of >9.5, and two carried the bla(VIM-2) gene encoding a protein with a pI of 5.3, corresponding to beta-lactamases IMP-1 and VIM-2, respectively. The remaining 13 (33.4%) isolates were negative for the bla(IMP-1) and bla(VIM-2) genes but showed an alteration of their outer membrane proteins (OMPs). Ten of these isolates produced the two possible OMPs (32 and 42 kDa), with IPM MICs between 8 and 32 microg/ml, and three others produced only a 32-kDa OMP with IPM MICs >32 microg/ml. This work demonstrates that, in addition to resistance to expanded-spectrum cephalosporins, IPM resistance can occur in ESBL-producing E. aerogenes isolates by carbapenemase production or by the loss of porin in the outer membrane.
Collapse
|
4
|
Brzostek K, Raczkowska A. The YompC protein of Yersinia enterocolitica: molecular and physiological characterization. Folia Microbiol (Praha) 2007; 52:73-80. [PMID: 17571800 DOI: 10.1007/bf02932142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The structural gene coding for YompC has been identified in the genome of a pathogenic strain of Yersinia enterocolitica O:9, and was subsequently cloned and sequenced. Detailed alignment of the deduced amino acid sequence showed that YompC is a member of the OmpC porin family with the highest degree of homology to Klebsiella pneumoniae. The mutant lacking YompC porin was constructed by insertional inactivation of the yompC gene which resulted from the integration of suicide vector at the yompC locus. In intact cells of Y. enterocolitica, loss of the YompC protein reduced the outer membrane permeability for beta-lactam antibiotics and tetracycline and resulted in a 2-5-fold increase in resistance to these compounds, depending on their chemical properties. Mutation in the ompR regulatory gene resulted in the loss of both YompC and YompF porins, which led to a greater increase of resistance to antibiotics, as compared with the YompC mutant strain. Moreover, the binding assay with HEp-2 cells suggests that YompC may play a role in the adhesion properties of Y. enterocolitica strains.
Collapse
Affiliation(s)
- K Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, 02-096 Warsaw, Poland.
| | | |
Collapse
|
5
|
Dupont M, James CE, Chevalier J, Pagès JM. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother 2007; 51:3190-8. [PMID: 17606680 PMCID: PMC2043185 DOI: 10.1128/aac.01481-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial adaptation to external stresses and toxic compounds is a key step in the emergence of multidrug-resistant strains that are a serious threat to human health. Although some of the proteins and regulators involved in antibiotic resistance mechanisms have been described, no information is available to date concerning the early bacterial response to external stresses. Here we report that the expression of ompX, encoding an outer membrane protein, is increased during early exposure to drugs or environmental stresses. At the same time, the level of ompF porin expression is noticeably affected. Because of the role of these proteins in membrane permeability, these data suggest that OmpF and OmpX are involved in the control of the penetration of antibiotics such as beta-lactams and fluoroquinolones through the enterobacterial outer membrane. Consequently, the early control of ompX and ompF induced by external stresses may represent a preliminary response to antibiotics, thus triggering the initial bacterial line of defense against antibiotherapy.
Collapse
Affiliation(s)
- Myrielle Dupont
- UMR-MD1, Faculté de Médecine, 27 Blvd. Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | |
Collapse
|
6
|
Gayet S, Chollet R, Molle G, Pagès JM, Chevalier J. Modification of outer membrane protein profile and evidence suggesting an active drug pump in Enterobacter aerogenes clinical strains. Antimicrob Agents Chemother 2003; 47:1555-9. [PMID: 12709321 PMCID: PMC153306 DOI: 10.1128/aac.47.5.1555-1559.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two clinical strains of Enterobacter aerogenes that exhibited phenotypes of multiresistance to beta-lactam antibiotics, fluoroquinolones, chloramphenicol, tetracycline, and kanamycin were investigated. Both strains showed a porin pattern different from that of a susceptible strain, with a drastic reduction in the amount of the major porin but with an apparently conserved normal structure (size and immunogenicity), together with overproduction of two known outer membrane proteins, OmpX and LamB. In addition, the full-length O-polysaccharide phenotype was replaced by a semirough Ra phenotype. Moreover, in one isolate the intracellular accumulation of chloramphenicol was increased in the presence of the energy uncoupler carbonyl cyanide m-chlorophenylhydrazone, suggesting an energy-dependent efflux of chloramphenicol in this strain. The resistance strategies used by these isolates appear to be similar to that induced by stress in Escherichia coli cells.
Collapse
Affiliation(s)
- Stéphane Gayet
- EA2197-IFR 48, Faculté de Médecine, 13385 Marseille Cedex 05. UMR 5048, CNRS, U554 INSERM, 34090 Montpellier, France
| | | | | | | | | |
Collapse
|
7
|
Chollet R, Bollet C, Chevalier J, Malléa M, Pagès JM, Davin-Regli A. mar Operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob Agents Chemother 2002; 46:1093-7. [PMID: 11897595 PMCID: PMC127096 DOI: 10.1128/aac.46.4.1093-1097.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the sequence of the entire marRAB operon in Enterobacter aerogenes. It is functionally and structurally analogous to the Escherichia coli operon. The overexpression of E. aerogenes MarA induces a multidrug resistance phenotype in a susceptible strain, demonstrated by a noticeable resistance to various antibiotics, a decrease in immunodetected porins, and active efflux of norfloxacin.
Collapse
Affiliation(s)
- Renaud Chollet
- Enveloppe Bactérienne, Antibiotiques et Colonisation, CJF 9606-EA 2197, Facultés de Médecine et Pharmacie, Université de la Méditerranée, 13385 Marseille Cedex 05, France
| | | | | | | | | | | |
Collapse
|
8
|
Bornet C, Davin-Regli A, Bosi C, Pages JM, Bollet C. Imipenem resistance of enterobacter aerogenes mediated by outer membrane permeability. J Clin Microbiol 2000; 38:1048-52. [PMID: 10698994 PMCID: PMC86335 DOI: 10.1128/jcm.38.3.1048-1052.2000] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/1999] [Accepted: 12/11/1999] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant Enterobacter aerogenes strains are increasingly isolated in Europe and especially in France. Treatment leads to imipenem resistance, because of a lack of porin. We studied the evolution of resistance in 29 strains isolated from four patients during their clinical course. These strains belonged to the prevalent epidemiological type observed in France in previous studies (C. Bosi, et al., J. Clin. Microbiol. 37:2165-2169, 1999; A. Davin-Regli et al., J. Clin. Microbiol. 34:1474-1480, 1996). They also harbored a TEM-24 extended-spectrum beta-lactamase-coding gene. Thirteen strains were susceptible to gentamicin and resistant to imipenem and cefepime. All of the patients showed E. aerogenes strains with this resistance after an imipenem treatment. One patient showed resistance to imipenem after a treatment with cefpirome. Twelve of these 13 strains showed a lack of porin. Cessation of treatment with imipenem for three patients was followed by reversion of susceptibility to this antibiotic and the reappearance of porins, except in one case. For one patient, we observed three times in the same day the coexistence of resistant strains lacking porin and susceptible strains possessing porin. The emergence of multidrug-resistant E. aerogenes strains is very disquieting. In our study, infection by E. aerogenes increased the severity of the patients' illnesses, causing a 100% fatality rate.
Collapse
Affiliation(s)
- C Bornet
- Enveloppe Bactérienne, Antibiotiques et Colonisation, CJF 96-06 INSERM, Faculté de Médecine, Université de la Mediterrannée, 13385 Marseille Cedex 05, France
| | | | | | | | | |
Collapse
|
9
|
Simonet V, Malléa M, Pagès JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 2000; 44:311-5. [PMID: 10639355 PMCID: PMC89676 DOI: 10.1128/aac.44.2.311-315.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli OmpF porin is a nonspecific channel involved in the membrane translocation of small hydrophilic molecules and especially in the passage of beta-lactam antibiotics. In order to understand the dynamic of charged-compound uptake through bacterial porins, specific charges located in the E. coli OmpF channel were mutated. Substitutions G119D and G119E, inserting a protruding acidic side chain into the pore, decreased cephalosporin and colicin susceptibilities. Cefepime diffusion was drastically altered by these mutations. Conversely, substitutions R132A and R132D, changing a residue located in the positively charged cluster, increased the rate of cephalosporin uptake without modifying colicin sensitivity. Modelling approaches suggest that G119E generates a transverse hydrogen bond dividing the pore, while the two R132 substitutions stretch the channel size. These charge alterations located in the constriction area have differential effects on cephalosporin diffusion and substantially modify the profile of antibiotic susceptibility.
Collapse
Affiliation(s)
- V Simonet
- CJF 9606, Faculté de Médecine, 13385 Marseille Cedex 05, France
| | | | | |
Collapse
|
10
|
Bosi C, Davin-Regli A, Bornet C, Mallea M, Pages JM, Bollet C. Most Enterobacter aerogenes strains in France belong to a prevalent clone. J Clin Microbiol 1999; 37:2165-9. [PMID: 10364580 PMCID: PMC85109 DOI: 10.1128/jcm.37.7.2165-2169.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to determine the distribution in France of the Enterobacter aerogenes prevalent clone isolated in the hospitals of the Marseille area (A. Davin-Regli, D. Monnet, P. Saux, C. Bosi, R. Charrel, A. Barthelemy, and C. Bollet, J. Clin. Microbiol. 34:1474-1480, 1996). A total of 123 E. aerogenes isolates were collected from 23 hospital laboratories and analyzed by random amplification of polymorphic DNA and enterobacterial repetitive intergenic consensus-PCR to determine their epidemiological relatedness. Molecular typing revealed that 21 of the 23 laboratories had isolated this prevalent clone harboring the plasmid encoding for extended-spectrum beta-lactamase of the TEM-24 type. Most isolates were susceptible only to imipenem and gentamicin. Their dissemination seems to be clonal and was probably the result of the general use of broad-spectrum cephalosporins and quinolones. Four isolates showed an alteration of their outer membrane proteins, causing decrease of susceptibility to third-generation cephalosporins and imipenem and leading to the critical situation of having no alternative therapeutic. The large dissemination of the E. aerogenes prevalent clone probably results from its good adaptation to the antibiotics administered in France and the hospital environment, particularly in intensive care units.
Collapse
Affiliation(s)
- C Bosi
- Enveloppe Bactérienne, Antibiotiques et Colonisation, CJF 96-06 INSERM, Faculté de Médecine, Université de la Mediterranée, 13385 Marseille Cedex 05, France
| | | | | | | | | | | |
Collapse
|
11
|
Simonet V, Mallea M, Fourel D, Bolla JM, Pages JM. Crucial domains are conserved in Enterobacteriaceae porins. FEMS Microbiol Lett 1996; 136:91-7. [PMID: 8919461 DOI: 10.1111/j.1574-6968.1996.tb08030.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With the recent resolution of the crystal structures of several bacterial porins, it is worthwhile to define the generality of their organization throughout the Enterobacteriaceae. The distribution of specific epitopes was analysed among various Gram-negative bacterial porins using anti-peptide antibodies specific to exposed, transmembrane spanning, or pore-forming regions of Escherichia coli porins. Anti-peptide antibodies which recognized the exposed epitopes indicated a great variability among the bacterial porins analysed. Interestingly, an antigenic site located in the internal loop L3 constricting the pore diameter was present in the majority of the bacterial porins tested. Two epitopes located in domains involved in subunit interaction were also highly conserved. The presence of these common peptides suggested a conservation of specific regions involved in the functional organization of the enterobacterial porins.
Collapse
Affiliation(s)
- V Simonet
- Enveloppe et permeation chez les Enterobacteries, France
| | | | | | | | | |
Collapse
|