1
|
Abstract
Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.
Collapse
|
2
|
Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T. Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res 2013; 20:339-54. [PMID: 23599422 PMCID: PMC3738161 DOI: 10.1093/dnares/dst014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The availability of next-generation sequences of transcripts from prokaryotic organisms offers the opportunity to design a new generation of automated genome annotation tools not yet available for prokaryotes. In this work, we designed EuGene-P, the first integrative prokaryotic gene finder tool which combines a variety of high-throughput data, including oriented RNA-Seq data, directly into the prediction process. This enables the automated prediction of coding sequences (CDSs), untranslated regions, transcription start sites (TSSs) and non-coding RNA (ncRNA, sense and antisense) genes. EuGene-P was used to comprehensively and accurately annotate the genome of the nitrogen-fixing bacterium Sinorhizobium meliloti strain 2011, leading to the prediction of 6308 CDSs as well as 1876 ncRNAs. Among them, 1280 appeared as antisense to a CDS, which supports recent findings that antisense transcription activity is widespread in bacteria. Moreover, 4077 TSSs upstream of protein-coding or non-coding genes were precisely mapped providing valuable data for the study of promoter regions. By looking for RpoE2-binding sites upstream of annotated TSSs, we were able to extend the S. meliloti RpoE2 regulon by ∼3-fold. Altogether, these observations demonstrate the power of EuGene-P to produce a reliable and high-resolution automatic annotation of prokaryotic genomes.
Collapse
Affiliation(s)
- Erika Sallet
- INRA, Laboratoire des Interactions Plantes-Microorganismes-LIPM, UMR 441, Castanet-Tolosan F-31326, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yurgel SN, Rice J, Kahn ML. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:355-362. [PMID: 22074345 DOI: 10.1094/mpmi-09-11-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA.
| | | | | |
Collapse
|
4
|
Yurgel SN, Rice J, Mulder M, Kahn ML. GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function. J Bacteriol 2010; 192:2473-81. [PMID: 20304991 PMCID: PMC2863565 DOI: 10.1128/jb.01657-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/10/2010] [Indexed: 11/20/2022] Open
Abstract
The Sinorhizobium meliloti Rm1021 Delta glnD-sm2 mutant, which is predicted to make a GlnD nitrogen sensor protein truncated at its amino terminus, fixes nitrogen in symbiosis with alfalfa, but the plants cannot use this nitrogen for growth (S. N. Yurgel and M. L. Kahn, Proc. Natl. Acad. Sci. U. S. A. 105:18958-18963, 2008). The mutant also has a generalized nitrogen stress response (NSR) defect. These results suggest a connection between GlnD, symbiotic metabolism, and the NSR, but the nature of this connection is unknown. In many bacteria, GlnD modifies the PII proteins, GlnB and GlnK, as it transduces a measurement of bacterial nitrogen status to a cellular response. We have now constructed and analyzed Rm1021 mutants missing GlnB, GlnK, or both proteins. Rm1021 Delta glnK Delta glnB was much more defective in its NSR than either single mutant, suggesting that GlnB and GlnK overlap in regulating the NSR in free-living Rm1021. The single mutants and the double mutant all formed an effective symbiosis, indicating that symbiotic nitrogen exchange could occur without the need for either GlnB or GlnK. N-terminal truncation of the GlnD protein interfered with PII protein modification in vitro, suggesting either that unmodified PII proteins were responsible for the glnD mutant's ineffective phenotype or that connecting GlnD and appropriate symbiotic behavior does not require the PII proteins.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|
5
|
Davalos M, Fourment J, Lucas A, Bergès H, Kahn D. Nitrogen regulation inSinorhizobium melilotiprobed with whole genome arrays. FEMS Microbiol Lett 2004; 241:33-40. [PMID: 15556707 DOI: 10.1016/j.femsle.2004.09.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/09/2004] [Accepted: 09/29/2004] [Indexed: 11/19/2022] Open
Abstract
Using whole genome arrays, we systematically investigated nitrogen regulation in the plant symbiotic bacterium Sinorhizobium meliloti. The use of glutamate instead of ammonium as a nitrogen source induced nitrogen catabolic genes independently of the carbon source, including two glutamine synthetase genes, various aminoacid transporters and the glnKamtB operon. These responses depended on both the ntrC and glnB nitrogen regulators. Glutamate repressible genes included glutamate synthase and a H+-translocating pyrophosphate synthase. The smc01041-ntrBC operon was negatively autoregulated in a glnB-dependent fashion, indicating an involvement of phosphorylated NtrC. In addition to the nitrogen response, glutamate remodelled expression of carbon metabolism by inhibiting expression of the Entner-Doudoroff and pentose phosphate pathways, and by stimulating gluconeogenetic genes independently of ntrC.
Collapse
Affiliation(s)
- Marcela Davalos
- Laboratoire des Interactions Plantes-Microorganismes, UMR 2594 INRA-CNRS, Chemin de Borde-Rouge, BP 27, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | |
Collapse
|
6
|
Perlova O, Ureta A, Nordlund S, Meletzus D. Identification of three genes encoding P(II)-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation. J Bacteriol 2003; 185:5854-61. [PMID: 13129958 PMCID: PMC193954 DOI: 10.1128/jb.185.19.5854-5861.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) protein-encoding genes, identified as glnK1 and glnK2, were located upstream of amtB1 and amtB2, respectively, genes which in other organisms encode ammonium (or methylammonium) transporters. Single and double mutants and a triple mutant with respect to the three P(II) protein-encoding genes were constructed, and the effects of the mutations on nitrogenase expression and activity in the presence of either ammonium starvation or ammonium sufficiency were studied. Based on the results presented here, it is suggested that none of the three P(II) homologs is required for nif gene expression, that the GlnK2 protein acts primarily as an inhibitor of nif gene expression, and that GlnB and GlnK1 control the expression of nif genes in response to ammonium availability, both directly and by relieving the inhibition by GlnK2. This model includes novel regulatory features of P(II) proteins.
Collapse
Affiliation(s)
- Olena Perlova
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF. A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:508-24. [PMID: 12795377 DOI: 10.1094/mpmi.2003.16.6.508] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A proteomic examination of Sinorhizobium meliloti strain 1021 was undertaken using a combination of 2-D gel electrophoresis, peptide mass fingerprinting, and bioinformatics. Our goal was to identify (i) putative symbiosis- or nutrient-stress-specific proteins, (ii) the biochemical pathways active under different conditions, (iii) potential new genes, and (iv) the extent of posttranslational modifications of S. meliloti proteins. In total, we identified the protein products of 810 genes (13.1% of the genome's coding capacity). The 810 genes generated 1,180 gene products, with chromosomal genes accounting for 78% of the gene products identified (18.8% of the chromosome's coding capacity). The activity of 53 metabolic pathways was inferred from bioinformatic analysis of proteins with assigned Enzyme Commission numbers. Of the remaining proteins that did not encode enzymes, ABC-type transporters composed 12.7% and regulatory proteins 3.4% of the total. Proteins with up to seven transmembrane domains were identified in membrane preparations. A total of 27 putative nodule-specific proteins and 35 nutrient-stress-specific proteins were identified and used as a basis to define genes and describe processes occurring in S. meliloti cells in nodules and under stress. Several nodule proteins from the plant host were present in the nodule bacteria preparations. We also identified seven potentially novel proteins not predicted from the DNA sequence. Post-translational modifications such as N-terminal processing could be inferred from the data. The posttranslational addition of UMP to the key regulator of nitrogen metabolism, PII, was demonstrated. This work demonstrates the utility of combining mass spectrometry with protein arraying or separation techniques to identify candidate genes involved in important biological processes and niche occupations that may be intransigent to other methods of gene expression profiling.
Collapse
Affiliation(s)
- Michael A Djordjevic
- Genomic Interactions Group, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601 Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Patriarca EJ, Tatè R, Iaccarino M. Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 2002; 66:203-22. [PMID: 12040124 PMCID: PMC120787 DOI: 10.1128/mmbr.66.2.203-222.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiotic nitrogen fixation is carried out in specialized organs, the nodules, whose formation is induced on leguminous host plants by bacteria belonging to the family Rhizobiaceae: Nodule development is a complex multistep process, which requires continued interaction between the two partners and thus the exchange of different signals and metabolites. NH(4)(+) is not only the primary product but also the main regulator of the symbiosis: either as ammonium and after conversion into organic compounds, it regulates most stages of the interaction, from the production of nodule inducers to the growth, function, and maintenance of nodules. This review examines the adaptation of bacterial NH(4)(+) metabolism to the variable environment generated by the plant, which actively controls and restricts bacterial growth by affecting oxygen and nutrient availability, thereby allowing a proficient interaction and at the same time preventing parasitic invasion. We describe the regulatory circuitry responsible for the downregulation of bacterial genes involved in NH(4)(+) assimilation occurring early during nodule invasion. This is a key and necessary step for the differentiation of N(2)-fixing bacteroids (the endocellular symbiotic form of rhizobia) and for the development of efficient nodules.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- International Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy.
| | | | | |
Collapse
|
9
|
Dombrecht B, Marchal K, Vanderleyden J, Michiels J. Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales. Genome Biol 2002; 3:RESEARCH0076. [PMID: 12537565 PMCID: PMC151178 DOI: 10.1186/gb-2002-3-12-research0076] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Revised: 09/16/2002] [Accepted: 10/18/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In the rhizobia, a group of symbiotic Gram-negative soil bacteria, RpoN (sigma54, sigmaN, NtrA) is best known as the sigma factor enabling transcription of the nitrogen fixation genes. Recent reports, however, demonstrate the involvement of RpoN in other symbiotic functions, although no large-scale effort has yet been undertaken to unravel the RpoN-regulon in rhizobia. We screened two complete rhizobial genomes (Mesorhizobium loti, Sinorhizobium meliloti) and four symbiotic regions (Rhizobium etli, Rhizobium sp. NGR234, Bradyrhizobium japonicum, M. loti) for the presence of the highly conserved RpoN-binding sites. A comparison was also made with two closely related non-symbiotic members of the Rhizobiales (Agrobacterium tumefaciens, Brucella melitensis). RESULTS A highly specific weight-matrix-based screening method was applied to predict members of the RpoN-regulon, which were stored in a highly annotated and manually curated dataset. Possible enhancer-binding proteins (EBPs) controlling the expression of RpoN-dependent genes were predicted with a profile hidden Markov model. CONCLUSIONS The methodology used to predict RpoN-binding sites proved highly effective as nearly all known RpoN-controlled genes were identified. In addition, many new RpoN-dependent functions were found. The dependency of several of these diverse functions on RpoN seems species-specific. Around 30% of the identified genes are hypothetical. Rhizobia appear to have recruited RpoN for symbiotic processes, whereas the role of RpoN in A. tumefaciens and B. melitensis remains largely to be elucidated. All species screened possess at least one uncharacterized EBP as well as the usual ones. Lastly, RpoN could significantly broaden its working range by direct interfering with the binding of regulatory proteins to the promoter DNA.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Kathleen Marchal
- ESAT-SCD, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| |
Collapse
|
10
|
Colnaghi R, Rudnick P, He L, Green A, Yan D, Larson E, Kennedy C. Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1267-1276. [PMID: 11320130 DOI: 10.1099/00221287-147-5-1267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GlnD is a pivotal protein in sensing intracellular levels of fixed nitrogen and has been best studied in enteric bacteria, where it reversibly uridylylates two related proteins, PII and GlnK. The uridylylation state of these proteins determines the activities of glutamine synthetase (GS) and NtrC. Results presented here demonstrate that glnD is an essential gene in Azotobacter vinelandii. Null glnD mutations were introduced into the A. vinelandii genome, but none could be stably maintained unless a second mutation was present that resulted in unregulated activity of GS. One mutation, gln-71, occurred spontaneously to give strain MV71, which failed to uridylylate the GlnK protein. The second, created by design, was glnAY407F (MV75), altering the adenylylation site of GS. The gln-71 mutation is probably located in glnE, encoding adenylyltransferase, because introducing the Escherichia coli glnE gene into MV72, a glnD(+) derivative of MV71, restored the regulation of GS activity. GlnK-UMP is therefore apparently required for GS to be sufficiently deadenylylated in A. vinelandii for growth to occur. The DeltaglnD GS(c) isolates were Nif(-), which could be corrected by introducing a nifL mutation, confirming a role for GlnD in mediating nif gene regulation via some aspect of the NifL/NifA interaction. MV71 was unexpectedly NtrC(+), suggesting that A. vinelandii NtrC activity might be regulated differently than in enteric organisms.
Collapse
Affiliation(s)
- Rita Colnaghi
- Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1
| | - Paul Rudnick
- Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1
| | - Luhong He
- Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1
| | - Andrew Green
- Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1
| | - Dalai Yan
- Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1
| | - Ethan Larson
- Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1
| | - Christina Kennedy
- Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1
| |
Collapse
|
11
|
Rudnick PA, Arcondéguy T, Kennedy CK, Kahn D. glnD and mviN are genes of an essential operon in Sinorhizobium meliloti. J Bacteriol 2001; 183:2682-5. [PMID: 11274131 PMCID: PMC95188 DOI: 10.1128/jb.183.8.2682-2685.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of uridylyl-transferase, the Sinorhizobium meliloti glnD gene was isolated by heterologous complementation in Azotobacter vinelandii. The glnD gene is cotranscribed with a gene homologous to Salmonella mviN. glnD1::Omega or mviN1::Omega mutants could not be isolated by a powerful sucrose counterselection procedure unless a complementing cosmid was provided, indicating that glnD and mviN are members of an indispensable operon in S. meliloti.
Collapse
Affiliation(s)
- P A Rudnick
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA/CNRS, 31326 Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|
12
|
Arcondéguy T, Jack R, Merrick M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001; 65:80-105. [PMID: 11238986 PMCID: PMC99019 DOI: 10.1128/mmbr.65.1.80-105.2001] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) family of signal transduction proteins are among the most widely distributed signal proteins in the bacterial world. First identified in 1969 as a component of the glutamine synthetase regulatory apparatus, P(II) proteins have since been recognized as playing a pivotal role in control of prokaryotic nitrogen metabolism. More recently, members of the family have been found in higher plants, where they also potentially play a role in nitrogen control. The P(II) proteins can function in the regulation of both gene transcription, by modulating the activity of regulatory proteins, and the catalytic activity of enzymes involved in nitrogen metabolism. There is also emerging evidence that they may regulate the activity of proteins required for transport of nitrogen compounds into the cell. In this review we discuss the history of the P(II) proteins, their structures and biochemistry, and their distribution and functions in prokaryotes. We survey data emerging from bacterial genome sequences and consider other likely or potential targets for control by P(II) proteins.
Collapse
Affiliation(s)
- T Arcondéguy
- Department of Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
13
|
Schlüter A, Nöhlen M, Krämer M, Defez R, Priefer UB. The Rhizobium leguminosarum bv. viciae glnD gene, encoding a uridylyltransferase/uridylyl-removing enzyme, is expressed in the root nodule but is not essential for nitrogen fixation. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2987-2996. [PMID: 11065377 DOI: 10.1099/00221287-146-11-2987] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Rhizobium leguminosarum bv. viciae VF39 gene (glnD) encoding the uridylyltransferase/uridylyl-removing enzyme, which constitutes the sensory component of the nitrogen regulation (ntr) system, was identified, cloned and characterized. The deduced amino acid sequence contains the conserved active site motif of the nucleotidyltransferase superfamily and is highly homologous to the glnD gene products of other bacterial species. Downstream of the VF39 glnD resides an open reading frame with similarity to the Salmonella typhimurium virulence factor gene mviN. Mutation of the glnD gene abolished the ability to use nitrate as a sole nitrogen source but not glutamine. In addition, neither uridylylation of P(II) nor induction of the ntr-regulated glnII gene (encoding glutamine synthetase II) under ammonium deficiency could be observed in mutant strains. This strongly suggests that glnD mutants harbour a permanently deuridylylated P(II) protein and as a consequence are unable to activate transcription from NtrC-dependent promoters. The glnD gene itself is expressed constitutively, irrespective of the nitrogen content of the medium. A functional GlnD protein is not essential for nitrogen fixation in R. leguminosarum bv. viciae, but in situ detection of glnD expression in the symbiotic and infection zone of the root nodule and quantitative measurements suggest that at least part of the ntr system functions in symbiosis. The results also indicate that the N-terminal part of GlnD is essential for the cell, as deletions in the 5'-region of the gene appear to be lethal and mutations possibly affecting the expression of the first half of the protein have a significant effect on the vitality of the mutant strain.
Collapse
Affiliation(s)
- Andreas Schlüter
- Ökologie des Bodens, Botanisches Institut, RWTH Aachen, Worringerweg 1, 52056 Aachen, Germany1
| | - Michael Nöhlen
- Ökologie des Bodens, Botanisches Institut, RWTH Aachen, Worringerweg 1, 52056 Aachen, Germany1
| | - Maria Krämer
- Ökologie des Bodens, Botanisches Institut, RWTH Aachen, Worringerweg 1, 52056 Aachen, Germany1
| | - Roberto Defez
- International Institute of Genetics and Biophysics - CNR, Via Marconi 12, 80125 Napoli, Italy2
| | - Ursula B Priefer
- Ökologie des Bodens, Botanisches Institut, RWTH Aachen, Worringerweg 1, 52056 Aachen, Germany1
| |
Collapse
|
14
|
Natera SH, Guerreiro N, Djordjevic MA. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:995-1009. [PMID: 10975656 DOI: 10.1094/mpmi.2000.13.9.995] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two-dimensional gel electrophoresis was used to identify differentially displayed proteins expressed during the symbiotic interaction between the bacterium Sinorhizobium meliloti strain 1021 and the legume Melilotus alba (white sweetclover). Our aim was to characterize novel symbiosis proteins and to determine how the two symbiotic partners alter their respective metabolisms as part of the interaction, by identifying gene products that are differentially present between the symbiotic and non-symbiotic states. Proteome maps from control M. alba roots, wild-type nodules, cultured S. meliloti, and S. meliloti bacteroids were generated and compared. Over 250 proteins were induced or up-regulated in the nodule, compared with the root, and over 350 proteins were down-regulated in the bacteroid form of the rhizobia, compared with cultured cells. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide mass fingerprint analysis, in conjunction with data base searching, were used to assign putative identity to nearly 100 nodule, bacterial, and bacteroid proteins. These included the previously identified nodule proteins leghemoglobin and NifH as well as proteins involved in carbon and nitrogen metabolism in S. meliloti. Bacteroid cells showed down-regulation of several proteins involved in nitrogen acquisition, including glutamine synthetase, urease, a urea-amide binding protein, and a PII isoform, indicating that the bacteroids were nitrogen proficient. The down-regulation of several enzymes involved in polyhydroxybutyrate synthesis and a cell division protein was also observed. This work shows that proteome analysis will be a useful strategy to link sequence information and functional genomics.
Collapse
Affiliation(s)
- S H Natera
- Plant-Microbe Interaction Group, Research School of Biological Sciences, Australian National University, Canberra City
| | | | | |
Collapse
|
15
|
Taté R, Riccio A, Merrick M, Patriarca EJ. The Rhizobium etli amtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:188-198. [PMID: 9487694 DOI: 10.1094/mpmi.1998.11.3.188] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During development of root nodules, Rhizobium bacteria differentiate inside the invaded plant cells into N2-fixing bacteroids. Terminally differentiated bacteroids are unable to grow using the ammonia (NH3) produced therein by the nitrogenase complex. Therefore, the nitrogen assimilation activities of bacteroids, including the ammonium (NH4+) uptake activity, are expected to be repressed during symbiosis. By sequence homology the R. etli amtB (ammonium transport) gene was cloned and sequenced. As previously shown for its counterpart in other organisms, the R. etli amtB gene product mediates the transport of NH4+. The amtB gene is cotranscribed with the glnK gene (coding for a PII-like protein) from a nitrogen-regulated sigma 54-dependent promoter, which requires the transcriptional activator NtrC. Expression of the glnKamtB operon was found to be activated under nitrogen-limiting, free-living conditions, but down-regulated just when bacteria are released from the infection threads and before transcription of the nitrogenase genes. Our data suggest that the uncoupling between N2-fixation and NH3 assimilation observed in symbiosomes is generated by a transcriptional regulatory mechanism(s) beginning with the inactivation of NtrC in younger bacteroids.
Collapse
Affiliation(s)
- R Taté
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
16
|
Michel-Reydellet N, Desnoues N, Elmerich C, Kaminski PA. Characterization of Azorhizobium caulinodans glnB and glnA genes: involvement of the P(II) protein in symbiotic nitrogen fixation. J Bacteriol 1997; 179:3580-7. [PMID: 9171403 PMCID: PMC179151 DOI: 10.1128/jb.179.11.3580-3587.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nucleotide sequence and transcriptional organization of Azorhizobium caulinodans ORS571 glnA, the structural gene for glutamine synthetase (GS), and glnB, the structural gene for the P(II) protein, have been determined. glnB and glnA are organized as a single operon transcribed from the same start site, under conditions of both nitrogen limitation and nitrogen excess. This start site may be used by two different promoters since the expression of a glnB-lacZ fusion was high in the presence of ammonia and enhanced under conditions of nitrogen limitation in the wild-type strain. The increase was not observed in rpoN or ntrC mutants. In addition, this fusion was overexpressed under both growth conditions, in the glnB mutant strain, suggesting that P(II) negatively regulates its own expression. A DNA motif, similar to a sigma54-dependent promoter consensus, was found in the 5' nontranscribed region. Thus, the glnBA operon seems to be transcribed from a sigma54-dependent promoter that operates under conditions of nitrogen limitation and from another uncharacterized promoter in the presence of ammonia. Both glnB and glnBA mutant strains derepress their nitrogenase in the free-living state, but only the glnBA mutant, auxotrophic for glutamine, does not utilize molecular nitrogen for growth. The level of GS adenylylation is not affected in the glnB mutant as compared to that in the wild type. Under symbiotic conditions, the glnB and glnBA mutant strains induced Fix- nodules on Sesbania rostrata roots. P(II) is the first example in A. caulinodans of a protein required for symbiotic nitrogen fixation but dispensable in bacteria growing in the free-living state.
Collapse
Affiliation(s)
- N Michel-Reydellet
- Unité de Physiologie Cellulaire, Centre National de la Recherche Scientifique, Unité Recherche Associée 1300, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
17
|
Arcondéguy T, Huez I, Tillard P, Gangneux C, de Billy F, Gojon A, Truchet G, Kahn D. The Rhizobium meliloti PII protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development. Genes Dev 1997; 11:1194-206. [PMID: 9159400 DOI: 10.1101/gad.11.9.1194] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Symbiotic nitrogen fixation involves the development of specialized organs called nodules within which plant photosynthates are exchanged for combined nitrogen of bacterial origin. To determine the importance of bacterial nitrogen metabolism in symbiosis, we have characterized a key regulator of this metabolism in Rhizobium meliloti, the uridylylatable P(II) protein encoded by glnB. We have constructed both a glnB null mutant and a point mutant making nonuridylylatable P(II). In free-living conditions, P(II) is required for expression of the ntrC-dependent gene glnII and for adenylylation of glutamine synthetase I. P(II) is also required for efficient infection of alfalfa but not for expression of nitrogenase. However alfalfa plants inoculated with either glnB mutant are nitrogen-starved in the absence of added combined nitrogen. We hypothesize that P(II) controls expression or activity of a bacteroid ammonium transporter required for a functional nitrogen-fixing symbiosis. Therefore, the P(II) protein affects both Rhizobium nitrogen metabolism and alfalfa nodule development.
Collapse
Affiliation(s)
- T Arcondéguy
- Unité Mixte de Recherches (UMR) 215 Institut National de la Recherche Agronomique (INRA)/Centre National de la Recherche Scientifique (CNRS), Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|