1
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Purdy GE, Hsu FF. Complete Characterization of Polyacyltrehaloses from Mycobacterium tuberculosis H37Rv Biofilm Cultures by Multiple-Stage Linear Ion-Trap Mass Spectrometry Reveals a New Tetraacyltrehalose Family. Biochemistry 2021; 60:381-397. [PMID: 33491458 DOI: 10.1021/acs.biochem.0c00956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyacylated trehaloses in Mycobacterium tuberculosis play important roles in pathogenesis and structural roles in the cell envelope, promoting the intracellular survival of the bacterium, and are potential targets for drug development. Herein, we describe a linear ion-trap multiple-stage mass spectrometric approach (LIT MSn) with high-resolution mass spectrometry to the structural characterization of a glycolipid family that includes a 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, 2,3,6,2',4'-petaacyltrehalose, and a novel 2,3,6,2'-tetraacyltrehalose (TetraAT) subfamily isolated from biofilm cultures of M. tuberculosis H37Rv. The LIT MSn spectra (n = 2, 3, or 4) provide structural information to unveil the location of the palmitoyl/stearoyl and one to four multiple methyl-branched fatty acyl substituents attached to the trehalose backbone, leading to the identification of hundreds of glycolipid species with many isomeric structures. We identified a new TetraAT subfamily whose structure has not been previously defined. We also developed a strategy for defining the structures of the multiple methyl-branched fatty acid substituents, leading to the identification of mycosanoic acid, mycolipenic acid, mycolipodienoic acid, mycolipanolic acid, and a new cyclopropyl-containing acid. The observation of the new TetraAT family, and the realization of the structural similarity between the various subfamilies, may have significant implications in the biosynthetic pathways of this glycolipid family.
Collapse
Affiliation(s)
- Georgiana E Purdy
- Department of Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
4
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
5
|
Holzheimer M, Reijneveld JF, Ramnarine AK, Misiakos G, Young DC, Ishikawa E, Cheng TY, Yamasaki S, Moody DB, Van Rhijn I, Minnaard AJ. Asymmetric Total Synthesis of Mycobacterial Diacyl Trehaloses Demonstrates a Role for Lipid Structure in Immunogenicity. ACS Chem Biol 2020; 15:1835-1841. [PMID: 32293864 PMCID: PMC7372558 DOI: 10.1021/acschembio.0c00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first asymmetric total synthesis of three structures proposed for mycobacterial diacyl trehaloses, DAT1, DAT2, and DAT3 is reported. The presence of two of these glycolipids, DAT1 and DAT3, within different strains of pathogenic M. tuberculosis was confirmed, and it was shown that their abundance varies significantly. In mass spectrometry, synthetic DAT2 possessed almost identical fragmentation patterns to presumptive DAT2 from Mycobacterium tuberculosis H37Rv, but did not coelute by HPLC, raising questions as the precise relationship of the synthetic and natural materials. The synthetic DATs were examined as agonists for signaling by the C-type lectin, Mincle. The small differences in the chemical structure of the lipidic parts of DAT1, DAT2, and DAT3 led to drastic differences of Mincle binding and activation, with DAT3 showing similar potency as the known Mincle agonist trehalose dimycolate (TDM). In the future, DAT3 could serve as basis for the design of vaccine adjuvants with simplified chemical structure.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Josephine F. Reijneveld
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Brigham and Women’s Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Alexandrea K. Ramnarine
- Brigham and Women’s Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Georgios Misiakos
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - David C. Young
- Brigham and Women’s Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tan-Yun Cheng
- Brigham and Women’s Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - D. Branch Moody
- Brigham and Women’s Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ildiko Van Rhijn
- Brigham and Women’s Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Dunlap MD, Prince OA, Rangel-Moreno J, Thomas KA, Scordo JM, Torrelles JB, Cox J, Steyn AJC, Zúñiga J, Kaushal D, Khader SA. Formation of Lung Inducible Bronchus Associated Lymphoid Tissue Is Regulated by Mycobacterium tuberculosis Expressed Determinants. Front Immunol 2020; 11:1325. [PMID: 32695111 PMCID: PMC7338767 DOI: 10.3389/fimmu.2020.01325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of the infectious disease tuberculosis (TB), which is a leading cause of death worldwide. Approximately one fourth of the world's population is infected with Mtb. A major unresolved question is delineating the inducers of protective long-lasting immune response without inducing overt, lung inflammation. Previous studies have shown that the presence of inducible Bronchus-Associated Lymphoid Tissue (iBALT) correlate with protection from Mtb infection. In this study, we hypothesized that specific Mtb factors could influence the formation of iBALT, thus skewing the outcome of TB disease. We infected non-human primates (NHPs) with a transposon mutant library of Mtb, and identified specific Mtb mutants that were over-represented within iBALT-containing granulomas. A major pathway reflected in these mutants was Mtb cell wall lipid transport and metabolism. We mechanistically addressed the function of one such Mtb mutant lacking mycobacteria membrane protein large 7 (MmpL7), which transports phthiocerol dimycocerosate (PDIM) to the mycobacterial outer membrane (MOM). Accordingly, murine aerosol infection with the Mtb mutant Δmmpl7 correlated with increased iBALT-containing granulomas. Our studies showed that the Δmmpl7 mutant lacking PDIMs on the surface overexpressed diacyl trehaloses (DATs) in the cell wall, which altered the cytokine/chemokine production of epithelial and myeloid cells, thus leading to a dampened inflammatory response. Thus, this study describes an Mtb specific factor that participates in the induction of iBALT formation during TB by directly modulating cytokine and chemokine production in host cells.
Collapse
Affiliation(s)
- Micah D Dunlap
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Oliver A Prince
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Kimberly A Thomas
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Julia M Scordo
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jeffery Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Adrie J C Steyn
- Department of Microbiology, Centers for AIDS Research and Free Radical Biology, University of Alabama at Alabama, Birmingham, AL, United States.,African Health Research Institute (AHRI), Durban, South Africa
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, United States.,Division of Bacteriology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shabaana A Khader
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Sarpe VA, Jana S, Kulkarni SS. Synthesis of Mycobacterium tuberculosis Sulfolipid-3 Analogues and Total Synthesis of the Tetraacylated Trehaloglycolipid of Mycobacterium paraffinicum. Org Lett 2015; 18:76-9. [PMID: 26652194 DOI: 10.1021/acs.orglett.5b03300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel methodology for the regioselective O6 acylation of the 2,3-diacyl trehaloses to access Mycobacterium tuberculosis sulfolipid SL-3 and related 2,3,6-triester glycolipid analogues is reported for the first time. The methodology was successfully extended to achieve the first total synthesis of the tetraacylated trehalose glycolipid from Mycobacterium paraffinicum. The corresponding 2,3,6'-triesters trehalose glycolipids were also synthesized starting from the common 2,3-diacyl trehalose. These synthetic glycolipids are potential candidates for serodiagnosis and vaccine development for tuberculosis.
Collapse
Affiliation(s)
- Vikram A Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages. BMC Immunol 2015; 16:38. [PMID: 26100760 PMCID: PMC4477496 DOI: 10.1186/s12865-015-0102-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/08/2015] [Indexed: 01/23/2023] Open
Abstract
Background Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines. Results In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ). Conclusions These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.
Collapse
|
9
|
Sliding Motility, Biofilm Formation, and Glycopeptidolipid Production in Mycobacterium colombiense Strains. BIOMED RESEARCH INTERNATIONAL 2015; 2015:419549. [PMID: 26180799 PMCID: PMC4477443 DOI: 10.1155/2015/419549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/15/2023]
Abstract
Mycobacterium colombiense is a novel member of the Mycobacterium avium complex, which produces respiratory and disseminated infections in immunosuppressed patients. Currently, the morphological and genetic bases underlying the phenotypic features of M. colombiense strains remain unknown. In the present study, we demonstrated that M. colombiense strains displaying smooth morphology show increased biofilm formation on hydrophobic surfaces and sliding on motility plates. Thin-layer chromatography experiments showed that M. colombiense strains displaying smooth colonies produce large amounts of glycolipids with a chromatographic behaviour similar to that of the glycopeptidolipids (GPLs) of M. avium. Conversely, we observed a natural rough variant of M. colombiense (57B strain) lacking pigmentation and exhibiting impaired sliding, biofilm formation, and GPL production. Bioinformatics analyses revealed a gene cluster that is likely involved in GPL biosynthesis in M. colombiense CECT 3035. RT-qPCR experiments showed that motile culture conditions activate the transcription of genes possibly involved in key enzymatic activities of GPL biosynthesis.
Collapse
|
10
|
The rv1184c locus encodes Chp2, an acyltransferase in Mycobacterium tuberculosis polyacyltrehalose lipid biosynthesis. J Bacteriol 2014; 197:201-10. [PMID: 25331437 DOI: 10.1128/jb.02015-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates.
Collapse
|
11
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
12
|
Rodríguez JE, Ramírez AS, Salas LP, Helguera-Repetto C, Gonzalez-y-Merchand J, Soto CY, Hernández-Pando R. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection. PLoS One 2013; 8:e58378. [PMID: 23472191 PMCID: PMC3589379 DOI: 10.1371/journal.pone.0058378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/04/2013] [Indexed: 01/10/2023] Open
Abstract
The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb) is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL) and diacyltrehalose/polyacyltrehalose (DAT/PAT) profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1) and anaerobiosis (NRP2) models of hypoxia (Wayne model), and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase) genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.
Collapse
Affiliation(s)
- Jimmy E. Rodríguez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ana S. Ramírez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laura P. Salas
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Cecilia Helguera-Repetto
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Jorge Gonzalez-y-Merchand
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Carlos Y. Soto
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, México D.F., México
- * E-mail:
| |
Collapse
|
13
|
Sartain MJ, Dick DL, Rithner CD, Crick DC, Belisle JT. Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel "Mtb LipidDB". J Lipid Res 2011; 52:861-72. [PMID: 21285232 DOI: 10.1194/jlr.m010363] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cellular envelope of Mycobacterium tuberculosis is highly distinctive and harbors a wealth of unique lipids possessing diverse structural and biological properties. However, the ability to conduct global analyses on the full complement of M. tuberculosis lipids has been missing from the repertoire of tools applied to the study of this important pathogen. We have established methods to detect and identify lipids from all major M. tuberculosis lipid classes through LC/MS lipid profiling. This methodology is based on efficient chromatographic separation and automated ion identification through accurate mass determination and searching of a newly created database (Mtb LipidDB) that contains 2,512 lipid entities. We demonstrate the sensitive detection of molecules representing all known classes of M. tuberculosis lipids from a single crude extract. We also demonstrate the ability of this methodology to identify changes in lipid content in response to cellular growth phases. This work provides a customizable framework and resource to facilitate future studies on mycobacterial lipid biosynthesis and metabolism.
Collapse
Affiliation(s)
- Mark J Sartain
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
14
|
Julián E, Matas L, Alcaide J, Luquin M. Comparison of antibody responses to a potential combination of specific glycolipids and proteins for test sensitivity improvement in tuberculosis serodiagnosis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:70-6. [PMID: 14715547 PMCID: PMC321345 DOI: 10.1128/cdli.11.1.70-76.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The humoral response to different proteinaceous antigens of Mycobacterium tuberculosis is heterogeneous among patients with active disease, and this has originated in the proposal to use a combination of several specific antigens to find an efficient serodiagnostic test for tuberculosis (TB). However, to date, comparisons of antibody responses to several antigens in the same population have been carried out without consideration of antigenic cell wall glycolipids. In the present study the presence of immunoglobulin G (IgG), IgM, and IgA antibodies to M. tuberculosis glycolipids (sulfolipid I, diacyltrehaloses, triacyltrehaloses, and cord factor) was compared with the response to four commercially available tests based on the 38-kDa protein mixed with the 16-kDa protein or lipoarabinomannan. Fifty-two serum samples from TB patients and 83 serum samples from control individuals (48 healthy individuals and 35 non-TB pneumonia patients) were studied. Three relevant results were obtained. (i) Smear-negative TB patients presented low humoral responses, but the sera which did react principally showed IgA antibodies to some glycolipidic antigens. (ii) TB patients exhibit heterogeneous humoral responses against glycolipidic antigens. (iii) Finally, test sensitivity is improved (from 23 to 62%) when IgG and IgA antibodies are detected together in tests based on different antigens (proteins and glycolipids). We conclude that it is possible to include glycolipidic antigens in a cocktail of specific antigens from M. tuberculosis to develop a serodiagnostic test.
Collapse
Affiliation(s)
- Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
15
|
Julián E, Matas L, Pérez A, Alcaide J, Lanéelle MA, Luquin M. Serodiagnosis of tuberculosis: comparison of immunoglobulin A (IgA) response to sulfolipid I with IgG and IgM responses to 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, and cord factor antigens. J Clin Microbiol 2002; 40:3782-8. [PMID: 12354881 PMCID: PMC130848 DOI: 10.1128/jcm.40.10.3782-3788.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonpeptidic antigens from the Mycobacterium tuberculosis cell wall are the focus of extensive studies to determine their potential role as protective antigens or serological markers of tuberculous disease. Regarding this latter role and using an enzyme-linked immunosorbent assay, we have made a comparative study of the immunoglobulin G (IgG), IgM, and IgA antibody responses to four trehalose-containing glycolipids purified from M. tuberculosis: diacyltrehaloses, triacyltrehaloses, cord factor, and sulfolipid I (SL-I). Sera from 92 tuberculosis patients (taken before starting antituberculosis treatment) and a wide group of control individuals (84 sera from healthy donors, including purified protein derivative-negative, -positive, healed, and vaccinated individuals, and 52 sera from nontuberculous pneumonia patients), all from Spain, were studied. The results indicated a significantly elevated IgG and IgA antibody response in tuberculosis patients, compared with controls, with all the antigens used. SL-I was the best antigen studied, showing test sensitivities and specificities for IgG of 81 and 77.6%, respectively, and of 66 and 87.5% for IgA. Using this antigen and combining IgA and IgG antibody detection, high test specificity was achieved (93.7%) with a sensitivity of 67.5%. Currently, it is widely accepted that it is not possible to achieve sensitivities above 80% in tuberculosis serodiagnosis when using one antigen alone. Thus, we conclude that SL-I, in combination with other antigenic molecules, could be a useful antigen for tuberculosis serodiagnosis.
Collapse
Affiliation(s)
- Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Ciències i Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Saavedra R, Segura E, Leyva R, Esparza LA, López-Marín LM. Mycobacterial di-O-acyl-trehalose inhibits mitogen- and antigen-induced proliferation of murine T cells in vitro. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:1081-8. [PMID: 11687444 PMCID: PMC96230 DOI: 10.1128/cdli.8.6.1-91-1088.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
2,3-Di-O-acyl-trehalose (DAT) is a glycolipid located on the outer layer of the Mycobacterium tuberculosis cell envelope. Due to its noncovalent linkage to the mycobacterial peptidoglycan, DAT could easily interact with host cells located in the focus of infection. The aim of the present work was to study the effects of DAT on the proliferation of murine spleen cells. DAT was purified from reference strains of M. tuberculosis, or M. fortuitum as a surrogate source of the compound, by various chromatography and solvent extraction procedures and then chemically identified. Incubation of mouse spleen cells with DAT inhibited in a dose-dependent manner concanavalin A-stimulated proliferation of the cells. Experiments, including the propidium iodide exclusion test, showed that these effects were not due to death of the cells. Tracking of cell division by labeling with 5,6-carboxyfluorescein diacetate succinimidyl ester revealed that DAT reduces the rounds of cell division. Immunofluorescence with an anti-CD3 monoclonal antibody indicated that T lymphocytes were the population affected in our model. Our experiments also suggest that the extent of the suppressive activity is strongly dependent on the structural composition of the acyl moieties in DATs. Finally, the inhibitory effect was also observed on antigen-induced proliferation of mouse spleen cells specific for Toxoplasma gondii. All of these data suggest that DAT could have a role in the T-cell hyporesponsiveness observed in chronic tuberculosis.
Collapse
Affiliation(s)
- R Saavedra
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|