1
|
Lim CH, Rasti B, Sulistyo J, Hamid MA. Comprehensive study on transglycosylation of CGTase from various sources. Heliyon 2021; 7:e06305. [PMID: 33665455 PMCID: PMC7907775 DOI: 10.1016/j.heliyon.2021.e06305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Transglycosylation is the in-vivo or in-vitro process of transferring glycosyl groups from a donor to an acceptor, which is usually performed by enzymatic reactions because of their simplicity, low steric hindrance, high region-specificity, low production cost, and mild processing conditions. One of the enzymes commonly used in the transglycosylation reaction is cyclodextrin glucanotransferase (CGTase). The transglycosylated products, catalyzed by CGTase, are widely used in food additives, supplements, and personal care and cosmetic products. This is due to improvements in the solubility, stability, bioactivity and length of the synthesized products. This paper's focus is on the importance of enzymes used in the transglycosylation reaction, their characteristics and mechanism of action, sources and production yield, and donor and acceptor specificities. Moreover, the influence of intrinsic and extrinsic factors on the enzymatic reaction, catalysis of glycosidic linkages, and advantages of CGTase transglycosylation reactions are discussed in detail.
Collapse
Affiliation(s)
- Chin Hui Lim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Babak Rasti
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Joko Sulistyo
- Faculty of Biotechnology, University of Surabaya, Jalan Ngagel Jaya Selatan, Surabaya, 60294, Indonesia
| | - Mansoor Abdul Hamid
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
2
|
Ogunbadejo B, Al-Zuhair S. MOFs as Potential Matrices in Cyclodextrin Glycosyltransferase Immobilization. Molecules 2021; 26:680. [PMID: 33525568 PMCID: PMC7869009 DOI: 10.3390/molecules26030680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclodextrins (CDs) and their derivatives have attracted significant attention in the pharmaceutical, food, and textile industries, which has led to an increased demand for their production. CD is typically produced by the action of cyclodextrin glycosyltransferase (CGTase) on starch. Owing to the relatively high cost of enzymes, the economic feasibility of the entire process strongly depends on the effective retention and recycling of CGTase in the reaction system, while maintaining its stability. CGTase enzymes immobilized on various supports such as porous glass beads or glyoxyl-agarose have been previously used to achieve this objective. Nevertheless, the attachment of biocatalysts on conventional supports is associated with numerous drawbacks, including enzyme leaching prominent in physical adsorption, reduced activity as a result of chemisorption, and increased mass transfer limitations. Recent reports on the successful utilization of metal-organic frameworks (MOFs) as supports for various enzymes suggest that CGTase could be immobilized for enhanced production of CDs. The three-dimensional microenvironment of MOFs could maintain the stability of CGTase while posing minimal diffusional limitations. Moreover, the presence of different functional groups on the surfaces of MOFs could provide multiple points for attachment of CGTase, thereby reducing enzyme loss through leaching. The present review focuses on the advantages MOFs can offer as support for CGTase immobilization as well as their potential for application in CD production.
Collapse
Affiliation(s)
| | - Sulaiman Al-Zuhair
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain 15551, UAE;
| |
Collapse
|
3
|
Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of Microbial Products in Cosmetic Industry. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:267-278. [PMID: 31214881 PMCID: PMC6646485 DOI: 10.1007/s13659-019-0215-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Cosmetology is the developing branch of science, having direct impact on the society. The cosmetic sector is interested in finding novel biological alternatives which can enhance the product attributes as well as it can substitute chemical compounds. Many of the compounds are having biological origin and are acquire from bacteria, fungi, and algae. A range of biological compounds, like bio-surfactant, vitamins, antioxidants, pigments, enzymes, peptides have promising features and beneficial properties. Moreover, these products can be produced commercially with ease. The review will encompass the importance and use of microbial compounds for new cosmetic formulations as well as products associated with it.
Collapse
Affiliation(s)
| | | | - Tejas Oza
- Department of Microbiology, Marwadi University, Rajkot, 360001, India
| | | | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360001, India.
| |
Collapse
|
4
|
Hashim SO. Starch-Modifying Enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:221-244. [PMID: 30937486 DOI: 10.1007/10_2019_91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Starch is a carbohydrate polymer found abundantly on earth. It is synthesized in plants as a short-term storage compound for respiration in the leaves and for long-term storage in the tubers, seeds and roots of plants. A wide variety of enzymes modify or convert starch into various products. The classes of enzymes that act on starch include endoamylases, exoamylases, debranching enzymes and transferases. Starch-modifying enzymes of microbial origin are utilized in a wide variety of industrial applications. Alkaline-active amylases are diverse in terms of optimum reaction conditions, substrate and product specificity. Amylases that are active at lower temperatures and alkaline conditions are most suited for detergent formulation. Other notable starch-modifying enzymes from alkaliphiles include maltooligosaccharide-forming amylases and cyclodextrin glycosyltransferases (CGTases), which produce a variety of maltooligosaccharides and cyclodextrins, respectively. Such compounds are used in the food, fine chemical, pharmaceutical and cosmetic industries, among others. Alkaline-active amylases are also applicable in the paper, textile and leather industries and also in bioremediation and alkaline waste water treatment. Their application in these fields is further enhanced through stabilization and improving their specificity and catalytic action by employing nanotechnology and genetic engineering. Graphical Abstract *Alkaline alpha-amylase AmyK from Bacillus sp. KSM-1378. Shirai T, Igarashi K, Ozawa T, Hagihara H, Kobayashi T, Ozaki K, Ito S (2007) Proteins 66:600-610. Source: Protein Data Bank in Europe (PDBe).
Collapse
Affiliation(s)
- Suhaila Omar Hashim
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya.
| |
Collapse
|
5
|
Chen S, Xiong Y, Su L, Wang L, Wu J. Position 228 in Paenibacillus macerans cyclodextrin glycosyltransferase is critical for 2-O-d-glucopyranosyl-l-ascorbic acid synthesis. J Biotechnol 2017; 247:18-24. [PMID: 28219734 DOI: 10.1016/j.jbiotec.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The markedly stable l-ascorbic acid (L-AA) derivative 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) has been widely used in the fields of food, medicine, cosmetics, and husbandry. Cyclodextrin glycosyltransferase (CGTase) is considered suitable for the large-scale production of AA-2G. In this work, Paenibacillus macerans CGTase was used to produce AA-2G and the production was 13.5g/l. An amino-acid sequence alignment of α-, β-, and α⁄β-CGTase indicated that the Phe at position 228 of P. macerans CGTase was different from the amino acids at this position in other CGTases (Met, Val, or Ile). In addition, the CGTases from Anaerobranca gottschalkii and Bacillus circulans 251, which have Val and Met at position 228, were shown to produce 28.9 and 35.7g/l AA-2G, respectively, which verified the importance of this position for AA-2G synthesis. Subsequently, P. macerans CGTase mutants F228M and F228V were constructed and shown to produce 24.8g/l and 24.0g/l AA-2G, respectively, which are 84% and 78% higher than that of wild-type P. macerans CGTase, respectively. Kinetic analysis of AA-2G synthesis showed that affinities of the two mutants for L-AA and the catalytic efficiencies increased. Meanwhile, the mutants had lower cyclization activity but higher disproportionation activities, which is beneficial for AA-2G synthesis. All these results indicated that amino acid at position 228 of P. macerans CGTase is crucial to AA-2G synthesis.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yanjun Xiong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
6
|
Cyclodextrin Glycosyl Transferase (CGTase): An Overview of Their Production and Biotechnological Applications. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Melzer S, Sonnendecker C, Föllner C, Zimmermann W. Stepwise error-prone PCR and DNA shuffling changed the pH activity range and product specificity of the cyclodextrin glucanotransferase from an alkaliphilic Bacillus sp. FEBS Open Bio 2015; 5:528-34. [PMID: 26155461 PMCID: PMC4491590 DOI: 10.1016/j.fob.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 01/26/2023] Open
Abstract
We performed random mutagenesis experiments with a cyclodextrin glucanotransferase. Error-prone PCR and DNA shuffling steps were combined. Variants with a broad pH activity range could be obtained. Several variants showed increased product specificity for γ-cyclodextrin.
Cyclodextrin glucanotransferase (EC 2.4.1.19) from the alkaliphilic Bacillus sp. G-825-6 converts starch mainly to γ-cyclodextrin (CD8). A combination of error-prone PCR and DNA shuffling was used to obtain variants of this enzyme with higher product specificity for CD8 and a broad pH activity range. The variant S54 with seven amino acid substitutions showed a 1.2-fold increase in CD8-synthesizing activity and the product ratio of CD7:CD8 was shifted to 1:7 compared to 1:3 of the wild-type enzyme. Nine amino acid substitutions of the cyclodextrin glucanotransferase were performed to generate the variant S35 active in a pH range 4.0–10.0. Compared to the wild-type enzyme which is inactive below pH 6.0, S35 retained 70% of its CD8-synthesizing activity at pH 4.0.
Collapse
Affiliation(s)
- Susanne Melzer
- Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Johannisallee 23, 04103 Leipzig, Germany
| | - Christian Sonnendecker
- Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Johannisallee 23, 04103 Leipzig, Germany
| | - Christina Föllner
- Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Johannisallee 23, 04103 Leipzig, Germany
| | - Wolfgang Zimmermann
- Institute of Biochemistry, Department of Microbiology and Bioprocess Technology, Leipzig University, Johannisallee 23, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Lee YS, Zhou Y, Park DJ, Chang J, Choi YL. β-cyclodextrin production by the cyclodextrin glucanotransferase from Paenibacillus illinoisensis ZY-08: cloning, purification, and properties. World J Microbiol Biotechnol 2012; 29:865-73. [PMID: 23264152 DOI: 10.1007/s11274-012-1241-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/14/2012] [Indexed: 11/25/2022]
Abstract
The gene encoding the cyclodextrin glucanotransferase (CGTase, EC2.4.1.19) of Paenibacillus illinoisensis was isolated, cloned, sequenced and expressed in Escherichia coli. Sequence analysis showed that the mature enzyme (684 amino acids) was preceded by a signal peptide of 34-residues. The deduced amino acid sequence of the CGTase from P. illinoisensis ZY-08 exhibited highest identity (99 %) to the CGTase sequence from Bacillus licheniformis (P14014). The four consensus regions of carbohydrate converting domain and Ca(2+) binding domain could be identified in the sequence. The CGTase was purified by using cold expression vector, pCold I, and His-tag affinity chromatography. The molecular weight of the purified enzyme was about 74 kDa. The optimum temperature and pH of the enzyme were 40 °C and pH 7.4, respectively. The enzyme activity was increased by the addition of Ca(2+) and inhibited by Ba(2+), Cu(2+), and Hg(2+). The K m and V max values calculated were 0.48 mg/ml and 51.38 mg of β-cyclodextrin/ml/min. The ZY-08 and recombinant readily converted soluble starch to β-cyclodextrin but ZY-08 did not convert king oyster mushroom powder and enoki mushroom powder. However the recombinant CGTase converted king oyster mushroom powder and enoki mushroom powder to β-cyclodextrin.
Collapse
Affiliation(s)
- Yong-Suk Lee
- Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | |
Collapse
|
9
|
Effect of organic solvents on the yield and specificity of cyclodextrins by recombinant cyclodextrin glucanotransferase (CGTase) from Anaerobranca gottschalkii. J INCL PHENOM MACRO 2012. [DOI: 10.1007/s10847-012-0225-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Strategies for Enhancing Extracellular Secretion of Recombinant Cyclodextrin Glucanotransferase in E. coli. Appl Biochem Biotechnol 2012; 167:897-908. [DOI: 10.1007/s12010-012-9747-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
11
|
Zhou Y, Lee YS, Park IH, Sun ZX, Yang TX, Yang P, Choi YL, Sun M. Cyclodextrin glycosyltransferase encoded by a gene of Paenibacillus azotofixans YUPP-5 exhibited a new function to hydrolyze polysaccharides with β-1,4 linkage. Enzyme Microb Technol 2011; 50:151-7. [PMID: 22226202 DOI: 10.1016/j.enzmictec.2011.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/29/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
The bacteria with hydrolysis activity to glucomannan were isolated from the rhizosphere of Amorphophallus konjac through enrichment cultivation. One strain with strong activity in degrading glucomannan was identified preliminarily as Paenibacillus azotofixans YUPP-5 according to the sequence analysis of 16S rDNA. This strain is able to hydrolyze many polysaccharide with β-1,4 linkage, including glucomannan, galactomannan, xylan, carboxymethyl cellulose, and chitin. One hydrolytic enzyme band of approximately 70 kDa was examined from the supernatants of YUPP-5 by using zymogram with mixture polysaccharides as substrate. The encoding gene had an open reading frame of 2157 bp, which deduced cyclodextrin glycosyltransferase (CGTase), including 718 amino acids with a signal peptide in the N-terminal region. When the gene was expressed in Escherichia coli BL21, the recombinant CGTase exhibited strong activity in degrading polysaccharides with β-1,4 linkage, and in forming cyclodextrin by using carboxymethyl cellulose as substrate. This CGTase exhibited some new functions. Finally, the hydrolytic oligosaccharides from galactomannan or glucomannan were detected by thin layer chromatography. Pentasaccharide, tetrasaccharide, trisaccharide, and disaccharide could be examined as reaction time went on.
Collapse
Affiliation(s)
- Yi Zhou
- Engineering Research Center of Wetland Agriculture in the Central Yangtze, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei Province, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Low KO, Mahadi NM, Rahim RA, Rabu A, Abu Bakar FD, Murad AMA, Illias RM. An effective extracellular protein secretion by an ABC transporter system in Escherichia coli: statistical modeling and optimization of cyclodextrin glucanotransferase secretory production. J Ind Microbiol Biotechnol 2011; 38:1587-97. [PMID: 21336875 DOI: 10.1007/s10295-011-0949-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/02/2011] [Indexed: 11/27/2022]
Abstract
Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 μM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.
Collapse
Affiliation(s)
- Kheng Oon Low
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
13
|
Leemhuis H, Kelly RM, Dijkhuizen L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl Microbiol Biotechnol 2010; 85:823-35. [PMID: 19763564 PMCID: PMC2804789 DOI: 10.1007/s00253-009-2221-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 08/25/2009] [Accepted: 08/25/2009] [Indexed: 11/07/2022]
Abstract
Cyclodextrin glucanotransferases (CGTases) are industrially important enzymes that produce cyclic alpha-(1,4)-linked oligosaccharides (cyclodextrins) from starch. Cyclodextrin glucanotransferases are also applied as catalysts in the synthesis of glycosylated molecules and can act as antistaling agents in the baking industry. To improve the performance of CGTases in these various applications, protein engineers are screening for CGTase variants with higher product yields, improved CD size specificity, etc. In this review, we focus on the strategies employed in obtaining CGTases with new or enhanced enzymatic capabilities by searching for new enzymes and improving existing enzymatic activities via protein engineering.
Collapse
Affiliation(s)
- Hans Leemhuis
- Microbial Physiology, Groningen Biomolecular Sciences, and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| | - Ronan M. Kelly
- Dublin-Oxford Glycobiology Laboratory, NIBRT, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences, and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| |
Collapse
|
14
|
Cloning, extracellular expression and characterization of a predominant β-CGTase from Bacillus sp. G1 in E. coli. J Ind Microbiol Biotechnol 2008; 35:1705-14. [DOI: 10.1007/s10295-008-0462-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 08/08/2008] [Indexed: 11/26/2022]
|
15
|
Li Z, Wang M, Wang F, Gu Z, Du G, Wu J, Chen J. gamma-Cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 2007; 77:245-55. [PMID: 17891389 DOI: 10.1007/s00253-007-1166-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
Cyclodextrins are cyclic alpha-1,4-glucans that are produced from starch or starch derivates using cyclodextrin glycosyltransferase (CGTase). The most common forms are alpha-, beta-, and gamma-cyclodextrins. This mini-review focuses on the enzymatic production, unique properties, and applications of gamma-cyclodextrin as well as its difference with alpha- and beta-cyclodextrins. As all known wild-type CGTases produce a mixture of alpha-, beta-, and gamma-cyclodextrins, the obtaining of a CGTase predominantly producing gamma-cyclodextrin is discussed. Recently, more economic production processes for gamma-cyclodextrin have been developed using improved gamma-CGTases and appropriate complexing agents. Compared with alpha- and beta-cyclodextrins, gamma-cyclodextrin has a larger internal cavity, higher water solubility, and more bioavailability, so it has wider applications in many industries, especially in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zhaofeng Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, 214122, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
. MMB, . NAS, . YRAF. Production, Partial Characterization and Cloning of Thermostable α-amylase of a Thermophile Geobacillus thermoleovorans YN. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/biotech.2007.175.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Qi Q, Zimmermann W. Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol 2004; 66:475-85. [PMID: 15630515 DOI: 10.1007/s00253-004-1781-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 09/22/2004] [Accepted: 10/02/2004] [Indexed: 11/25/2022]
Abstract
Cyclodextrin glucanotransferase (CGTase) is an important industrial enzyme which is used to produce cyclodextrins. CGTase genes from more than 30 bacteria have been isolated and several of the enzymes have been identified and biochemically characterized. For a better understanding of the reaction mechanism and function of CGTase, the enzyme has been analyzed at gene level and protein level with regard to its structure and the similarity of different CGTase subgroups. The biological role of the enzyme is proposed based on the genetic and enzymatic analyses. Methods to enhance the production of active CGTase by bacteria are compared. The enzyme can be applied in biotechnology for the production of cyclodextrins and oligosaccharides with novel properties.
Collapse
Affiliation(s)
- Qingsheng Qi
- Life Science School, Shandong University, Jinan, 250100, P.R. China.
| | | |
Collapse
|
18
|
Janecek S, Svensson B, MacGregor EA. Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:635-45. [PMID: 12581203 DOI: 10.1046/j.1432-1033.2003.03404.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alpha-amylase family (glycoside hydrolase family 13; GH 13) contains enzymes with approximately 30 specificities. Six types of enzyme from the family can possess a C-terminal starch-binding domain (SBD): alpha-amylase, maltotetraohydrolase, maltopentaohydrolase, maltogenic alpha-amylase, acarviose transferase, and cyclodextrin glucanotransferase (CGTase). Such enzymes are multidomain proteins and those that contain an SBD consist of four or five domains, the former enzymes being mainly hydrolases and the latter mainly transglycosidases. The individual domains are labelled A [the catalytic (beta/alpha)8-barrel], B, C, D and E (SBD), but D is lacking from the four-domain enzymes. Evolutionary trees were constructed for domains A, B, C and E and compared with the 'complete-sequence tree'. The trees for domains A and B and the complete-sequence tree were very similar and contain two main groups of enzymes, an amylase group and a CGTase group. The tree for domain C changed substantially, the separation between the amylase and CGTase groups being shortened, and a new border line being suggested to include the Klebsiella and Nostoc CGTases (both four-domain proteins) with the four-domain amylases. In the 'SBD tree' the border between hydrolases (mainly alpha-amylases) and transglycosidases (principally CGTases) was not readily defined, because maltogenic alpha-amylase, acarviose transferase, and the archaeal CGTase clustered together at a distance from the main CGTase cluster. Moreover the four-domain CGTases were rooted in the amylase group, reflecting sequence relationships for the SBD. It appears that with respect to the SBD, evolution in GH 13 shows a transition in the segment of the proteins C-terminal to the catalytic (beta/alpha)8-barrel(domain A).
Collapse
Affiliation(s)
- Stefan Janecek
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | |
Collapse
|
19
|
Uitdehaag JC, Dijkstra BW, Dijkhuizen L. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:336-360. [PMID: 11150613 DOI: 10.1016/s0167-4838(00)00233-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L. The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3432-41. [PMID: 10848958 DOI: 10.1046/j.1432-1327.2000.01353.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) is used for the industrial production of cyclodextrins. Its application, however, is hampered by the limited cyclodextrin product specificity and the strong inhibitory effect of cyclodextrins on CGTase activity. Recent structural studies have identified Arg47 in the Bacillus circulans strain 251 CGTase as an active-site residue interacting with cyclodextrins, but not with linear oligosaccharides. Arg47 thus may specifically affect CGTase reactions with cyclic substrates or products. Here we show that mutations in Arg47 (to Leu or Gln) indeed have a negative effect on the cyclization and coupling activities; Arg47 specifically stabilizes the oligosaccharide chain in the transition state for these reactions. As a result, the mutant proteins display a shift in product specificity towards formation of larger cyclodextrins. As expected, both mutants also showed lower affinities for cyclodextrins in the coupling reaction, and a reduced competitive (product) inhibition of the disproportionation reaction by cyclodextrins. Both mutants also provide valuable information about the processes taking place during cyclodextrin production assays. Mutant Arg47-->Leu displayed an increased hydrolyzing activity, causing accumulation of increasing amounts of short oligosaccharides in the reaction mixture, which resulted in lower final amounts of cyclodextrins produced from starch. Interestingly, mutant Arg47-->Gln displayed an increased ratio of cyclization/coupling and a decreased hydrolyzing activity. Due to the decreased coupling activity, which especially affects the production of larger cyclodextrins, this CGTase variant produced the various cyclodextrins in a stable ratio in time. This feature is very promising for the industrial application of CGTase enzymes with improved product specificity.
Collapse
Affiliation(s)
- B A van der Veen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
21
|
Yamamoto T, Shiraki K, Fujiwara S, Takagi M, Fukui K, Imanaka T. In vitro heat effect on functional and conformational changes of cyclodextrin glucanotransferase from hyperthermophilic archaea. Biochem Biophys Res Commun 1999; 265:57-61. [PMID: 10548490 DOI: 10.1006/bbrc.1999.1629] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The in vitro heat effect on protein characteristics of thermostable enzyme was examined using a cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) from the hyperthermophilic archaeon Thermococcus sp. B1001 as a model protein. The recombinant form of CGTase was obtained as an inclusion body from Escherichia coli cells harboring a plasmid which carried the B1001 CGTase gene (cgtA). CGTase was solubilized by 6 M urea, refolded, purified to homogeneity, and heat treated at 80 degrees C for 20 min. Enzyme characteristics were examined compared with those of unheated CGTase. Cyclization activity was increased by in vitro heat treatment, while hydrolysis activity was decreased. The heated and unheated CGTases were analyzed for structures by circular dichroism (CD). The near- and far-UV CD spectra indicated that the structure of unheated CGTase with low cyclization activity was different from that of heated CGTase with high activity. Differential scanning calorimetry of unheated CGTase showed two absorption peaks at 87 and 106 degrees C with increasing temperature. After heat treatment, the minor peak at 87 degrees C disappeared, suggesting that heat-dependent structural conversion occurred in CGTase. These results indicate that the thermal environment plays an important role for the protein folding process of thermostable CGTase.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|