1
|
Batista Araújo MR, Bernardes Sousa MÂ, Seabra LF, Caldeira LA, Faria CD, Bokermann S, Sant'Anna LO, Dos Santos LS, Mattos-Guaraldi AL. Cutaneous infection by non-diphtheria-toxin producing and penicillin-resistant Corynebacterium diphtheriae strain in a patient with diabetes mellitus. Access Microbiol 2022; 3:000284. [PMID: 35018328 PMCID: PMC8742586 DOI: 10.1099/acmi.0.000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Diphtheria is a potentially fatal infection, mostly caused by diphtheria toxin (DT)-producing Corynebacterium diphtheriae strains. During the last decades, the isolation of DT-producing C. diphtheriae strains has been decreasing worldwide. However, non-DT-producing C. diphtheriae strains emerged as causative agents of cutaneous and invasive infections. Although endemic in countries with warm climates, cutaneous diphtheria is rarely reported in Brazil. Presently, an unusual case of skin lesion in a Brazilian elderly diabetic patient infected by a penicillin-resistant non-DT-producing C. diphtheriae strain was reported. Laboratory diagnosis included mass spectrometry and multiplex PCR analyses. Since cutaneous diphtheria lesions are possible sources of secondary diphtheria cases and systemic diseases and considering that penicillin is the first line of antimicrobial agent for the treatment of these infections, the detection of penicillin-resistant strains of diphtheria bacilli should be a matter of concern. Thus, cases similar to the presently reported should be appropriately investigated and treated, particularly in patients with risk factor (s) for the development of C. diphtheriae invasive infections, such as diabetes. Moreover, health professionals must be aware of the presence of C. diphtheriae in cutaneous lesions of lower limbs, a common type of morbidity in diabetic patients, especially in tropical and subtropical countries.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Mireille Ângela Bernardes Sousa
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Luisa Ferreira Seabra
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Letícia Aparecida Caldeira
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute. Av. das Nações, 3801 - Parque Jardim Itaú, Minas Gerais, Brazil
| | - Carmem Dolores Faria
- Bacterial and Fungal Diseases Service, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Brazil
| | - Lincoln Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, The Collaborating Center for Reference and Research on Diphtheria, National Health Foundation, Ministry of Health, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Brodzik K, Krysztopa-Grzybowska K, Polak M, Lach J, Strapagiel D, Zasada AA. Analysis of the Amino Acid Sequence Variation of the 67-72p Protein and the Structural Pili Proteins of Corynebacterium diphtheriae for their Suitability as Potential Vaccine Antigens. Pol J Microbiol 2019; 68:233-246. [PMID: 31250594 PMCID: PMC7256701 DOI: 10.33073/pjm-2019-025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to identify the potential vaccine antigens in Corynebacterium diphtheriae strains by in silico analysis of the amino acid variation in the 67-72p surface protein that is involved in the colonization and induction of epithelial cell apoptosis in the early stages of infection. The analysis of pili structural proteins involved in bacterial adherence to host cells and related to various types of infections was also performed. A polymerase chain reaction (PCR) was carried out to amplify the genes encoding the 67-72p protein and three pili structural proteins (SpaC, SpaI, SapD) and the products obtained were sequenced. The nucleotide sequences of the particular genes were translated into amino acid sequences, which were then matched among all the tested strains using bioinformatics tools. In the last step, the affinity of the tested proteins to major histocompatibility complex (MHC) classes I and II, and linear B-cell epitopes was analyzed. The variations in the nucleotide sequence of the 67-72p protein and pili structural proteins among C. diphtheriae strains isolated from various infections were noted. A transposition of the insertion sequence within the gene encoding the SpaC pili structural proteins was also detected. In addition, the bioinformatics analyses enabled the identification of epitopes for B-cells and T-cells in the conserved regions of the proteins, thus, demonstrating that these proteins could be used as antigens in the potential vaccine development. The results identified the most conserved regions in all tested proteins that are exposed on the surface of C. diphtheriae cells. The aim of this study was to identify the potential vaccine antigens in Corynebacterium diphtheriae strains by in silico analysis of the amino acid variation in the 67–72p surface protein that is involved in the colonization and induction of epithelial cell apoptosis in the early stages of infection. The analysis of pili structural proteins involved in bacterial adherence to host cells and related to various types of infections was also performed. A polymerase chain reaction (PCR) was carried out to amplify the genes encoding the 67–72p protein and three pili structural proteins (SpaC, SpaI, SapD) and the products obtained were sequenced. The nucleotide sequences of the particular genes were translated into amino acid sequences, which were then matched among all the tested strains using bioinformatics tools. In the last step, the affinity of the tested proteins to major histocompatibility complex (MHC) classes I and II, and linear B-cell epitopes was analyzed. The variations in the nucleotide sequence of the 67–72p protein and pili structural proteins among C. diphtheriae strains isolated from various infections were noted. A transposition of the insertion sequence within the gene encoding the SpaC pili structural proteins was also detected. In addition, the bioinformatics analyses enabled the identification of epitopes for B-cells and T-cells in the conserved regions of the proteins, thus, demonstrating that these proteins could be used as antigens in the potential vaccine development. The results identified the most conserved regions in all tested proteins that are exposed on the surface of C. diphtheriae cells.
Collapse
Affiliation(s)
- Klaudia Brodzik
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene , Warsaw , Poland
| | - Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene , Warsaw , Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene , Warsaw , Poland
| | - Jakub Lach
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz , Lodz , Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz , Lodz , Poland ; BBMRI.pl Consortium, Wroclaw Research Center EIT+ , Wroclaw , Poland
| | - Aleksandra Anna Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene , Warsaw , Poland
| |
Collapse
|
3
|
Gruteser N, Marin K, Krämer R, Thomas GH. Sialic acid utilization by the soil bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 2012; 336:131-8. [PMID: 22924979 DOI: 10.1111/j.1574-6968.2012.02663.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/28/2022] Open
Abstract
The ability to use the sialic acid, N-acetylneuraminic acid, Neu5Ac, as a nutrient has been characterized in a number of bacteria, most of which are human pathogens that encounter this molecule because of its presence on mucosal surfaces. The soil bacterium Corynebacterium glutamicum also has a full complement of genes for sialic acid catabolism, and we demonstrate that it can use Neu5Ac as a sole source of carbon and energy and isolate mutants with a much reduced growth lag on Neu5Ac. Disruption of the cg2937 gene, encoding a component of a predicted sialic acid-specific ABC transporter, results in a complete loss of growth of C. glutamicum on Neu5Ac and also a complete loss of [(14)C]-Neu5Ac uptake into cells. Uptake of [(14)C]-Neu5Ac is induced by pregrowth on Neu5Ac, but the additional presence of glucose prevents this induction. The demonstration that a member of the Actinobacteria can transport and catabolize Neu5Ac efficiently suggests that sialic acid metabolism has a physiological role in the soil environment.
Collapse
Affiliation(s)
- Nadine Gruteser
- Department of Biology (Area 10), University of York, York, UK
| | | | | | | |
Collapse
|
4
|
Dias AADSDO, Santos LS, Sabbadini PS, Santos CS, Silva Junior FC, Napoleão F, Nagao PE, Villas-Bôas MHS, Hirata Junior R, Guaraldi ALM. Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. Rev Saude Publica 2012; 45:1176-91. [PMID: 22124745 DOI: 10.1590/s0034-89102011000600021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/27/2011] [Indexed: 11/21/2022] Open
Abstract
The article is a literature review on the emergence of human infections caused by Corynebacterium ulcerans in many countries including Brazil. Articles in Medline/PubMed and SciELO databases published between 1926 and 2011 were reviewed, as well as articles and reports of the Brazilian Ministry of Health. It is presented a fast, cost-effective and easy to perform screening test for the presumptive diagnosis of C. ulcerans and C. diphtheriae infections in most Brazilian public and private laboratories. C. ulcerans spread in many countries and recent isolation of this pathogen in Rio de Janeiro, southeastern Brazil, is a warning to clinicians, veterinarians, and microbiologists on the occurrence of zoonotic diphtheria and C. ulcerans dissemination in urban and rural areas of Brazil and/or Latin America.
Collapse
|
5
|
Coustou V, Plazolles N, Guegan F, Baltz T. Sialidases play a key role in infection and anaemia in Trypanosoma congolense animal trypanosomiasis. Cell Microbiol 2012; 14:431-45. [PMID: 22136727 DOI: 10.1111/j.1462-5822.2011.01730.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Animal African trypanosomiasis is a major constraint to livestock productivity and has an important impact on millions of people in developing African countries. This parasitic disease, caused mainly by Trypanosoma congolense, results in severe anaemia leading to animal death. In order to characterize potential targets for an anti-disease vaccine, we investigated a multigenic trans-sialidase family (TcoTS) in T. congolense. Sialidase and trans-sialidase activities were quantified for the first time, as well as the tightly regulated TcoTS expression pattern throughout the life cycle. Active enzymes were expressed in bloodstream form parasites and released into the blood during infection. Using genetic tools, we demonstrated a significant correlation between TcoTS silencing and impairment of virulence during experimental infection with T. congolense. Reduced TcoTS expression affected infectivity, parasitaemia and pathogenesis development. Immunization-challenge experiments using recombinant TcoTS highlighted their potential protective use in an anti-disease vaccine.
Collapse
Affiliation(s)
- Virginie Coustou
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, Bordeaux, France.
| | | | | | | |
Collapse
|
6
|
Schauer R, Kamerling JP. The Chemistry and Biology of Trypanosomal trans-Sialidases: Virulence Factors in Chagas Disease and Sleeping Sickness. Chembiochem 2011; 12:2246-64. [DOI: 10.1002/cbic.201100421] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Indexed: 11/10/2022]
|
7
|
Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genomics 2011; 12:383. [PMID: 21801446 PMCID: PMC3164646 DOI: 10.1186/1471-2164-12-383] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Corynebacterium ulcerans has been detected as a commensal in domestic and wild animals that may serve as reservoirs for zoonotic infections. During the last decade, the frequency and severity of human infections associated with C. ulcerans appear to be increasing in various countries. As the knowledge of genes contributing to the virulence of this bacterium was very limited, the complete genome sequences of two C. ulcerans strains detected in the metropolitan area of Rio de Janeiro were determined and characterized by comparative genomics: C. ulcerans 809 was initially isolated from an elderly woman with fatal pulmonary infection and C. ulcerans BR-AD22 was recovered from a nasal sample of an asymptomatic dog. Results The circular chromosome of C. ulcerans 809 has a total size of 2,502,095 bp and encodes 2,182 predicted proteins, whereas the genome of C. ulcerans BR-AD22 is 104,279 bp larger and comprises 2,338 protein-coding regions. The minor difference in size of the two genomes is mainly caused by additional prophage-like elements in the C. ulcerans BR-AD22 chromosome. Both genomes show a highly similar order of orthologous coding regions; and both strains share a common set of 2,076 genes, demonstrating their very close relationship. A screening for prominent virulence factors revealed the presence of phospholipase D (Pld), neuraminidase H (NanH), endoglycosidase E (EndoE), and subunits of adhesive pili of the SpaDEF type that are encoded in both C. ulcerans genomes. The rbp gene coding for a putative ribosome-binding protein with striking structural similarity to Shiga-like toxins was additionally detected in the genome of the human isolate C. ulcerans 809. Conclusions The molecular data deduced from the complete genome sequences provides considerable knowledge of virulence factors in C. ulcerans that is increasingly recognized as an emerging pathogen. This bacterium is apparently equipped with a broad and varying set of virulence factors, including a novel type of a ribosome-binding protein. Whether the respective protein contributes to the severity of human infections (and a fatal outcome) remains to be elucidated by genetic experiments with defined bacterial mutants and host model systems.
Collapse
|
8
|
Kim S, Oh DB, Kang HA, Kwon O. Features and applications of bacterial sialidases. Appl Microbiol Biotechnol 2011; 91:1-15. [PMID: 21544654 DOI: 10.1007/s00253-011-3307-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases (EC 3.2.1.18), belong to a class of glycosyl hydrolases that release terminal N-acylneuraminate residues from the glycans of glycoproteins, glycolipids, and polysaccharides. In bacteria, sialidases can be used to scavenge sialic acids as a nutrient from various sialylated substrates or to recognize sialic acids exposed on the surface of the host cell. Despite the fact that bacterial sialidases share many structural features, their biochemical properties, especially their linkage and substrate specificities, vary widely. Bacterial sialidases can catalyze the hydrolysis of terminal sialic acids linked by the α(2,3)-, α(2,6)-, or α(2,8)-linkage to a diverse range of substrates. In addition, some of these enzymes can catalyze the transfer of sialic acids from sialoglycans to asialoglycoconjugates via a transglycosylation reaction mechanism. Thus, some bacterial sialidases have been applied to synthesize complex sialyloligosaccharides through chemoenzymatic approaches and to analyze the glycan structure. In this review article, the biochemical features of bacterial sialidases and their potential applications in regioselective hydrolysis reactions as well as sialylation by transglycosylation for the synthesis of sialylated complex glycans are discussed.
Collapse
Affiliation(s)
- Seonghun Kim
- Microbe-based Fusion Technology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup, South Korea
| | | | | | | |
Collapse
|
9
|
Kim S, Oh DB, Kwon O, Kang HA. Construction of an in vitro trans-sialylation system: surface display of Corynebacterium diphtheriae sialidase on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 88:893-903. [DOI: 10.1007/s00253-010-2812-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/22/2010] [Accepted: 07/30/2010] [Indexed: 11/24/2022]
|
10
|
Taylor RE, Gregg CJ, Padler-Karavani V, Ghaderi D, Yu H, Huang S, Sorensen RU, Chen X, Inostroza J, Nizet V, Varki A. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. ACTA ACUST UNITED AC 2010; 207:1637-46. [PMID: 20624889 PMCID: PMC2916132 DOI: 10.1084/jem.20100575] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc “xeno-autoantibody” response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc. However, dietary Neu5Gc alone cannot elicit anti-Neu5Gc antibodies in mice with a humanlike Neu5Gc deficiency. Other postnatally appearing anti-carbohydrate antibodies are likely induced by bacteria expressing these epitopes; however, no microbe is known to synthesize Neu5Gc. Here, we show that trace exogenous Neu5Gc can be incorporated into cell surface lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensal/pathogen. Indeed, infant anti-Neu5Gc antibodies appear coincident with antibodies against NTHi. Furthermore, NTHi that express Neu5Gc-containing LOS induce anti-Neu5Gc antibodies in Neu5Gc-deficient mice, without added adjuvant. Finally, Neu5Gc from baby food is taken up and expressed by NTHi. As the flora residing in the nasopharynx of infants can be in contact with ingested food, we propose a novel model for how NTHi and dietary Neu5Gc cooperate to generate anti-Neu5Gc antibodies in humans.
Collapse
Affiliation(s)
- Rachel E Taylor
- Department of Medicine, Skaggs School of Pharmacy and PharmaceuticalSciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim S, Oh DB, Kwon O, Kang HA. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. ACTA ACUST UNITED AC 2010; 147:523-33. [DOI: 10.1093/jb/mvp198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Monti E, Bonten; E, D'Azzo A, Bresciani R, Venerando B, Borsani G, Schauer R, Tettamanti G. Sialidases in Vertebrates. Adv Carbohydr Chem Biochem 2010; 64:403-79. [DOI: 10.1016/s0065-2318(10)64007-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Moreira LO, Mattos-Guaraldi AL, Andrade AFB. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 2008; 190:521-30. [PMID: 18575847 DOI: 10.1007/s00203-008-0398-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/20/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes. Members of this group have a characteristic cell envelope structure composed primarily of branched long-chain lipids, termed mycolic acids, and a rich number of lipoglycans such as lipoarabinomanans (LAM) and lipomannans. In this study, we identified a novel LAM variant isolated from Corynebacterium diphtheriae named CdiLAM. The key structural features of CdiLAM are a linear alpha-1-->6-mannan with side chains containing 2-linked alpha-D-Manp and 4-linked alpha-D-Araf residues. The polysaccharide backbone is linked to a phosphatidylinositol anchor. In contrast to the LAMs of other members of actinomycetales, CdiLAM presents an unusual substitution at position 4 of alpha-1-->6-mannan backbone by alpha-D-Araf. Unlike the non-fimbrial adhesin 62-72p, CdiLAM did not function as a hemagglutinin to human red blood cells. Experimental evidences pointed to CdiLAM as an adhesin of C. diphtheriae to human respiratory epithelial cells, thereby, contributing to the pathogenesis of diphtheria.
Collapse
Affiliation(s)
- L O Moreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
14
|
Hansmeier N, Chao TC, Kalinowski J, Pühler A, Tauch A. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics 2006; 6:2465-76. [PMID: 16544277 DOI: 10.1002/pmic.200500360] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Secreted proteins of the human pathogen Corynebacterium diphtheriae might be involved in important pathogen-host cell interactions. Here, we present the first systematic reference map of the extracellular and cell surface proteome fractions of the type strain C. diphtheriae C7s(-)tox-. The analysis window of 2-DE covered the pI range from 3 to 10 along with a MW range from 8 to 150 kDa. Computational analysis of the 2-D gels detected almost 150 protein spots in the extracellular proteome fraction and about 80 protein spots of the cell surface proteome. MALDI-TOF-MS and PMF with trypsin unambiguously identified 107 extracellular protein spots and 53 protein spots of the cell surface, representing in total 85 different proteins of C. diphtheriae C7s(-)tox-. Several of the identified proteins are encoded by pathogenicity islands and might represent virulence factors of C. diphtheriae. Additionally, four solute-binding proteins (HmuT, Irp6A, CiuA, and FrgD) of different iron ABC transporters were identified, with the hitherto uncharacterized FrgD protein being the most abundant one of the cell surface proteome of C. diphtheriae C7s(-)tox-.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
15
|
Buscaglia CA, Campo VA, Frasch ACC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 2006; 4:229-36. [PMID: 16489349 DOI: 10.1038/nrmicro1351] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The surface of the protozoan parasite Trypanosoma cruzi is covered in mucins, which contribute to parasite protection and to the establishment of a persistent infection. Their importance is highlighted by the fact that the approximately 850 mucin-encoding genes comprise approximately 1% of the parasite genome and approximately 6% of all predicted T. cruzi genes. The coordinate expression of a large repertoire of mucins containing variable regions in the mammal-dwelling stages of the T. cruzi life cycle suggests a possible strategy to thwart the host immune response. Here, we discuss the expression profiling of T. cruzi mucins, the mechanisms leading to the acquisition of mucin diversity and the possible consequences of a mosaic surface coat in the interplay between parasite and host.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martn-CONICET, San Martín (1650), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM. Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 2004; 68:132-53. [PMID: 15007099 PMCID: PMC362108 DOI: 10.1128/mmbr.68.1.132-153.2004] [Citation(s) in RCA: 433] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sialic acids are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host sialic acid is to regulate innate immunity, and microbes have evolved various strategies for subverting this process by decorating their surfaces with sialylated oligosaccharides that mimic those of the host. These subversive strategies include a de novo synthetic pathway and at least two truncated pathways that depend on scavenging host-derived intermediates. A fourth strategy involves modification of sialidases so that instead of transferring sialic acid to water (hydrolysis), a second active site is created for binding alternative acceptors. Sialic acids also are excellent sources of carbon, nitrogen, energy, and precursors of cell wall biosynthesis. The catabolic strategies for exploiting host sialic acids as nutritional sources are as diverse as the biosynthetic mechanisms, including examples of horizontal gene transfer and multiple transport systems. Finally, as compounds coating the surfaces of virtually every vertebrate cell, sialic acids provide information about the host environment that, at least in Escherichia coli, is interpreted by the global regulator encoded by nanR. In addition to regulating the catabolism of sialic acids through the nan operon, NanR controls at least two other operons of unknown function and appears to participate in the regulation of type 1 fimbrial phase variation. Sialic acid is, therefore, a host molecule to be copied (molecular mimicry), eaten (nutrition), and interpreted (cell signaling) by diverse metabolic machinery in all major groups of mammalian pathogens and commensals.
Collapse
Affiliation(s)
- Eric R Vimr
- Laboratory of Sialobiology and Microbial Metabolomics, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA.
| | | | | | | |
Collapse
|
17
|
Schrader S, Tiralongo E, Paris G, Yoshino T, Schauer R. A nonradioactive 96-well plate assay for screening of trans-sialidase activity. Anal Biochem 2003; 322:139-47. [PMID: 14596820 DOI: 10.1016/j.ab.2003.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trans-sialidase (E.C. 3.2.1.18) catalyzes the transfer of preferably alpha2,3-linked sialic acid to another glycan or glycoconjugate, forming a new alpha2,3 linkage to galactose or N-acetylgalactosamine. Here, we describe a nonradioactive 96-well plate fluorescence test for monitoring trans-sialidase activity with high sensitivity, specificity, and reproducibility using sialyllactose and 4-methylumbelliferyl-beta-D-galactoside as donor and acceptor substrates, respectively. The assay conditions were optimized using the trans-sialidase from Trypanosoma congolense and its general applicability was confirmed with recombinant trans-sialidase from Trypanosoma cruzi. Using this procedure, a large number of samples can be tested quickly and reliably, for instance in monitoring trans-sialidase during enzyme purification and the production of monoclonal antibodies, for enzyme characterization, and for identifying potential substrates and inhibitors. The trans-sialidase assay reported here was capable of detecting trans-sialidase activity in the low-mU range and may be a valuable tool in the search for further trans-sialidases in various biological systems.
Collapse
Affiliation(s)
- Silke Schrader
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany.
| | | | | | | | | |
Collapse
|
18
|
Tiralongo E, Schrader S, Lange H, Lemke H, Tiralongo J, Schauer R. Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. J Biol Chem 2003; 278:23301-10. [PMID: 12649268 DOI: 10.1074/jbc.m212909200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Trypanosomes express an enzyme called trans-sialidase (TS), which enables the parasites to transfer sialic acids from the environment onto trypanosomal surface molecules. Here we describe the purification and characterization of two TS forms from the African trypanosome Trypanosoma congolense. The purification of the two TS forms using a combination of anion exchange chromatography, isoelectric focusing, gel filtration, and subsequently, antibody affinity chromatography resulted, in both cases, in the isolation of a 90-kDa monomer on SDS-PAGE, which was identified as trans-sialidase using micro-sequencing. Monoclonal antibody 7/23, which bound and partially inhibited TS activity, was found in both cases to bind to a 90-kDa protein. Both TS forms possessed sialidase and transfer activity, but markedly differed in their activity ratios. The TS form with a high transfer-to-sialidase activity ratio, referred to as TS-form 1, possessed a pI of pH 4-5 and a molecular mass of 350-600 kDa. In contrast, the form with a low transfer-to-sialidase activity ratio, referred to as TS-form 2, exhibited a pI of pH 5-6.5 and a molecular mass of 130-180 kDa. Both TS forms were not significantly inhibited by known sialidase inhibitors and revealed no significant differences in donor and acceptor substrate specificities; however, TS-form 1 utilized various acceptor substrates with a higher catalytic efficiency. Interestingly, glutamic acid-alanine-rich protein, the surface glycoprotein, was co-purified with TS-form 1 suggesting an association between both proteins.
Collapse
Affiliation(s)
- Evelin Tiralongo
- Biochemisches Institut, Universität zu Kiel, Olshausenstrasse 40, Kiel 24098 Germany
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Most oropharyngeal pathogens express sialic acid units on their surfaces, mimicking the sialyl-rich mucin layer coating epithelial cells and the glycoconjugates present on virtually all host cell surfaces and serum proteins. Unlike the host's cells, which synthesize sialic acids endogenously, several microbial pathogens use truncated sialylation pathways. How microorganisms regulate sialic acid metabolism to ensure an adequate supply of free sugar for surface remodeling is a new area of research interest to basic scientists and those focused on the clinical outcome of the host-pathogen interaction.
Collapse
Affiliation(s)
- Eric Vimr
- Division of Microbiology and Immunology, Dept of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA.
| | | |
Collapse
|
20
|
Colombo AV, Hirata R, de Souza CM, Monteiro-Leal LH, Previato JO, Formiga LC, Andrade AF, Mattos-Guaraldi AL. Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett 2001; 197:235-9. [PMID: 11313140 DOI: 10.1111/j.1574-6968.2001.tb10609.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Corynebacterium diphtheriae strains express non-fimbrial surface proteins able to recognize and bind to specific host cells receptors. Protein extracts were obtained from bacterial cells by mechanical process and ammonium sulfate precipitation at 25 and 45% (w/v) saturation. SDS-PAGE analysis of the extracts detected two polypeptide bands of 67 and 72 kDa, named 67-72 p. The 67-72 p, rabbit anti-67-72 p IgG antibodies as well as human gastric mucin, N-acetylneuraminic acid and N-acetyl D-glucosamine molecules were able to inhibit bacterial hemagglutination. Hemagglutination assays using 67-72 p-coated latex beads and Western blot analysis of biotin-labeled 67-72 p and erythrocyte receptors demonstrated the binding of 67-72 p to human erythrocyte membranes. Immunolabeled colloidal gold-A protein transmission electron microscopy using anti-67-72 p revealed a diffuse distribution of non-fimbrial 67-72 p on the surface of C. diphtheriae strains of both sucrose-fermenting and non-fermenting biotypes. Non-fimbrial lectin-like surface 67-72 p may play a role as adhesins in bacterial attachment thereby facilitating the early steps in pathogenesis of both toxigenic and non-toxigenic C. diphtheriae.
Collapse
Affiliation(s)
- A V Colombo
- Disciplina de Microbiologia e Imunologia, Faculdade De Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mattos-Guaraldi AL, Duarte Formiga LC, Pereira GA. Cell surface components and adhesion in Corynebacterium diphtheriae. Microbes Infect 2000; 2:1507-12. [PMID: 11099937 DOI: 10.1016/s1286-4579(00)01305-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Main primary approaches and new developments in the study of the molecular basis of the adhesive process of Corynebacterium diphtheriae are reviewed along with a discussion of the potential importance of hemagglutinins, exposed sugar residues, hydrophobins and trans-sialidase enzymes as adhesins of strains of the sucrose fermenting and non-fermenting biotypes.
Collapse
Affiliation(s)
- A L Mattos-Guaraldi
- Disciplina de Microbiologia e Imunologia, Faculdade de Ciências Médicas, UERJ, Av. 28 de Setembro 87, 3 degrees andar - fundos, Vila Isabel, CEP 20551-030, RJ, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|