1
|
Wang T, Leibrock N, Plugge CM, Smidt H, Zoetendal EG. In vitro interactions between Blautia hydrogenotrophica, Desulfovibrio piger and Methanobrevibacter smithii under hydrogenotrophic conditions. Gut Microbes 2023; 15:2261784. [PMID: 37753963 PMCID: PMC10538451 DOI: 10.1080/19490976.2023.2261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Methanogens, reductive acetogens and sulfate-reducing bacteria play an important role in disposing of hydrogen in gut ecosystems. However, how they interact with each other remains largely unknown. This in vitro study cocultured Blautia hydrogenotrophica (reductive acetogen), Desulfovibrio piger (sulfate reducer) and Methanobrevibacter smithii (methanogen). Results revealed that these three species coexisted and did not compete for hydrogen in the early phase of incubations. Sulfate reduction was not affected by B. hydrogenotrophica and M. smithii. D. piger inhibited the growth of B. hydrogenotrophica and M. smithii after 10 h incubations, and the inhibition on M. smithii was associated with increased sulfide concentration. Remarkably, M. smithii growth lag phase was shortened by coculturing with B. hydrogenotrophica and D. piger. Formate was rapidly used by M. smithii under high acetate concentration. Overall, these findings indicated that the interactions of the hydrogenotrophic microbes are condition-dependent, suggesting their interactions may vary in gut ecosystems.
Collapse
Affiliation(s)
- Taojun Wang
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nils Leibrock
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wetsus European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Huang Q, Zakaria BS, Zhang Y, Zhang L, Liu Y, Dhar BR. A high-rate anaerobic biofilm reactor for biomethane recovery from source-separated blackwater at ambient temperature. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:61-74. [PMID: 32329182 DOI: 10.1002/wer.1347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic bioreactors for source-separated blackwater are mostly operated at low organic loading rates (OLRs) due to low biodegradability and the potential of ammonia inhibition. In this study, an anaerobic biofilm reactor having conductive carbon fibers as the media was investigated for the high-rate treatment of blackwater collected from vacuum toilets. The bioreactor was operated at different OLRs ranged from 0.77 to 3.01 g COD/L-d in four stages for a total operating period of ~ 250 days. With the increase of OLRs, the specific methane production rate increased from 105.3 to 304.6 ml/L-d with high methane content in biogas (75.5%-83%). The maximum methane yield was achieved at hydraulic retention time (HRT) of 15 days. Highest organics and suspended solids removal (80%-83%) were achieved at 20-days HRT, while increased OLRs resulted in diminished removal efficiencies. The state variables, including pH, total ammonia nitrogen, short-chain volatile fatty acids, and soluble chemical oxygen demand, indicated the system had a great capability to withstand the high OLRs. Microbial community analysis revealed that the high performance might be attributed to direct interspecies electron transfer (DIET) facilitated by potentially electroactive bacteria (e.g., Syntrophomonas, Clostridium) and electrotrophic archaea (e.g., Methanosaeta and Methanosarcina species) enriched on the carbon fibers. PRACTITIONER POINTS: An anaerobic biofilm reactor was investigated for biomethane recovery from source-separated blackwater. Conductive carbon fibers were utilized as the media to stimulate enrichment of potentially electroactive methanogenic communities. The bioreactor was operated at ambient temperature for over 250 days. High methane production rate and high-quality biogas were achieved at OLRs ranged from 0.77 to 3.01 g COD/L-d. Microbial community analysis suggested direct interspecies electron transfer (DIET) between specific electroactive bacteria and electrotrophic archaea.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Bipro R Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Wang J, Westerholm M, Qiao W, Mahdy A, Wandera SM, Yin D, Bi S, Fan R, Dong R. Enhancing anaerobic digestion of dairy and swine wastewater by adding trace elements: evaluation in batch and continuous experiments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1662-1672. [PMID: 32039898 DOI: 10.2166/wst.2019.420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trace elements play a critical role for microbial activity in anaerobic digestion (AD) but their effects were probably overestimated in batch tests and should be comparably evaluated in continuous systems. In this study, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ were added in different concentrations to manure wastewater, and the effects were compared in both batch and continuous systems. The results were used to demonstrate suitable trace element compositions for AD of dairy and swine wastewater, and to compare the outcomes from batch and continuous systems. Fe2+ and Zn2+ were identified as being the most efficient stimulant of dairy and swine wastewater respectively. The addition of 5 mg/L Fe2+ and 0.4 mg/L Zn2+ increased the batch specific methane yield by 62% and 126% for dairy and swine wastewater, respectively. Nevertheless, a lower increment of 2% and 21%, for dairy and swine wastewater was obtained in the 120-day continuously-fed experiments. The 16S rRNA gene sequencing results indicated a relationship between the methanogens population, specific methanogenic activities, propionate, and dissolved hydrogen. Conclusively, the addition of a low dosage of Fe2+ and Zn2+ is a feasible strategy to enhance the methanogenic metabolism of the AD of dairy and swine wastewater respectively.
Collapse
Affiliation(s)
- Jing Wang
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BG Fuels), Beijing 100083, China
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BG Fuels), Beijing 100083, China
| | - Ahmed Mahdy
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Simon M Wandera
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BG Fuels), Beijing 100083, China
| | - Dongmin Yin
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BG Fuels), Beijing 100083, China
| | - Shaojie Bi
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BG Fuels), Beijing 100083, China
| | - Run Fan
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BG Fuels), Beijing 100083, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, China E-mail: ; R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee (BG Fuels), Beijing 100083, China
| |
Collapse
|
4
|
Koo T, Yulisa A, Hwang S. Microbial community structure in full scale anaerobic mono-and co-digesters treating food waste and animal waste. BIORESOURCE TECHNOLOGY 2019; 282:439-446. [PMID: 30889535 DOI: 10.1016/j.biortech.2019.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Five mesophilic full-scale anaerobic digesters treating food waste (FW-digester), animal waste (AW-digester), and co-substrate of food waste and animal waste (CO-digesters) were monitored identify bacterial and archaeal communities and to quantify the effect of substrate characteristics on them, and to identify 'core' microorganism. The substrate characteristics and microbial communities of the FW-digester, AW-digester, and CO-digesters were statistically different. Organic concentration and [Na+] were identified as major variations that effect microbial community. Methanogen community was more diverse in AW-digester than in FW-digester. Methanogen community in CO-digester was as diverse as in AW-digester, and the most dominant species was Methanoculleus bourgensis same as in FW-digester. Twenty-one bacterial genera and four methanogen species were found in all digesters as a consequence of their metabolic versatility to degrade organic and inhibitor compounds. The results implied that these core microorganisms may contribute to maintaining a stable microbial ecosystem.
Collapse
Affiliation(s)
- Taewoan Koo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Arma Yulisa
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
5
|
Preisner EC, Fichot EB, Norman RS. Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance. Front Microbiol 2016; 7:1632. [PMID: 27799927 PMCID: PMC5066559 DOI: 10.3389/fmicb.2016.01632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011-2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models.
Collapse
Affiliation(s)
| | | | - Robert S. Norman
- Department of Environmental Health Sciences, University of South Carolina, ColumbiaSC, USA
| |
Collapse
|
6
|
Gwosdz S, West JM, Jones D, Rakoczy J, Green K, Barlow T, Blöthe M, Smith K, Steven M, Krüger M. Long-term CO2injection and its impact on near-surface soil microbiology. FEMS Microbiol Ecol 2016; 92:fiw193. [DOI: 10.1093/femsec/fiw193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 02/04/2023] Open
|
7
|
Blais-Lecours P, Perrott P, Duchaine C. Non-culturable bioaerosols in indoor settings: Impact on health and molecular approaches for detection. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 110:45-53. [PMID: 32288547 PMCID: PMC7108366 DOI: 10.1016/j.atmosenv.2015.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Despite their significant impact on respiratory health, bioaerosols in indoor settings remain understudied and misunderstood. Culture techniques, predominantly used for bioaerosol characterisation in the past, allow for the recovery of only a small fraction of the real airborne microbial burden in indoor settings, given the inability of several microorganisms to grow on agar plates. However, with the development of new tools to detect non-culturable environmental microorganisms, the study of bioaerosols has advanced significantly. Most importantly, these techniques have revealed a more complex bioaerosol burden that also includes non-culturable microorganisms, such as archaea and viruses. Nevertheless, air quality specialists and consultants remain reluctant to adopt these new research-developed techniques, given that there are relatively few studies found in the literature, making it difficult to find a point of comparison. Furthermore, it is unclear as to how this new non-culturable data can be used to assess the impact of bioaerosol exposure on human health. This article reviews the literature that describes the non-culturable fraction of bioaerosols, focussing on bacteria, archaea and viruses, and examines its impact on bioaerosol-related diseases. It also outlines available molecular tools for the detection and quantification of these microorganisms and states various research needs in this field.
Collapse
Affiliation(s)
- Pascale Blais-Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Phillipa Perrott
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Caroline Duchaine
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Département de biochimie, de microbiologie et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Moset V, Poulsen M, Wahid R, Højberg O, Møller HB. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb Biotechnol 2015; 8:787-800. [PMID: 25737010 PMCID: PMC4554467 DOI: 10.1111/1751-7915.12271] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH₄) yield, as well as better percentage of ultimate CH₄ yield retrieved and lower residual CH₄ emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability.
Collapse
Affiliation(s)
- Veronica Moset
- Department of Engineering, Aarhus University, Blichers Allé 20, DK 8830, Tjele, Denmark
| | - Morten Poulsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK 8830, Tjele, Denmark
| | - Radziah Wahid
- Department of Engineering, Aarhus University, Blichers Allé 20, DK 8830, Tjele, Denmark.,Faculty of Chemical Engineering, Universiti Teknologi Mara, 40450, Shah Alam, Malaysia
| | - Ole Højberg
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK 8830, Tjele, Denmark
| | - Henrik Bjarne Møller
- Department of Engineering, Aarhus University, Blichers Allé 20, DK 8830, Tjele, Denmark
| |
Collapse
|
9
|
Phylogenetic identification of methanogens assimilating acetate-derived carbon in dairy and swine manures. Syst Appl Microbiol 2015; 38:56-66. [DOI: 10.1016/j.syapm.2014.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022]
|
10
|
Costa OYA, Souto BM, Tupinambá DD, Bergmann JC, Kyaw CM, Kruger RH, Barreto CC, Quirino BF. Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J Ind Microbiol Biotechnol 2014; 42:73-84. [PMID: 25404204 DOI: 10.1007/s10295-014-1533-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
Abstract
Sugarcane ethanol production occurs in non-sterile conditions, and microbial contamination can decrease productivity. In this study, we assessed the microbial diversity of contaminants of ethanol production in an industrial facility in Brazil. Samples obtained at different stages were analyzed by pyrosequencing-based profiling of bacterial and archaeal 16S rRNA genes and the fungal internal transcribed spacer region. A total of 355 bacterial groups, 22 archaeal groups, and 203 fungal groups were identified, and community changes were related to temperature changes at certain stages. After fermentation, Lactobacillus and unclassified Lactobacillaceae accounted for nearly 100 % of the bacterial sequences. Predominant Fungi groups were "unclassified Fungi," Meyerozyma, and Candida. The predominant Archaea group was unclassified Thaumarchaeota. This is the first work to assess the diversity of Bacteria, and Archaea and Fungi associated with the industrial process of sugarcane-ethanol production using culture-independent techniques.
Collapse
Affiliation(s)
- Ohana Yonara Assis Costa
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Duan YF, Al-Soud W, Brejnrod A, Sørensen S, Elsgaard L, Petersen S, Boon N. Methanotrophs, methanogens and microbial community structure in livestock slurry surface crusts. J Appl Microbiol 2014; 117:1066-78. [DOI: 10.1111/jam.12584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Y.-F. Duan
- Department of Agroecology; Aarhus University; Tjele Denmark
| | - W.A. Al-Soud
- Molecular Microbial Ecology Group; Department of Biology; University of Copenhagen; København Ø Denmark
| | - A. Brejnrod
- Molecular Microbial Ecology Group; Department of Biology; University of Copenhagen; København Ø Denmark
| | - S.J. Sørensen
- Molecular Microbial Ecology Group; Department of Biology; University of Copenhagen; København Ø Denmark
| | - L. Elsgaard
- Department of Agroecology; Aarhus University; Tjele Denmark
| | - S.O. Petersen
- Department of Agroecology; Aarhus University; Tjele Denmark
| | - N. Boon
- Laboratory of Microbial Ecology & Technology (LabMET); Faculty of Bioscience Engineering; Ghent University; Gent Belgium
| |
Collapse
|
12
|
Petersen S, Højberg O, Poulsen M, Schwab C, Eriksen J. Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. J Appl Microbiol 2014; 117:160-72. [DOI: 10.1111/jam.12498] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 11/27/2022]
Affiliation(s)
- S.O. Petersen
- Department of Agroecology; Aarhus University; Tjele Denmark
| | - O. Højberg
- Department of Animal Science; Aarhus University; Tjele Denmark
| | - M. Poulsen
- Department of Animal Science; Aarhus University; Tjele Denmark
| | - C. Schwab
- Department of Genetics in Ecology; University of Vienna; Vienna Austria
| | - J. Eriksen
- Department of Agroecology; Aarhus University; Tjele Denmark
| |
Collapse
|
13
|
Tuan NN, Chang YC, Yu CP, Huang SL. Multiple approaches to characterize the microbial community in a thermophilic anaerobic digester running on swine manure: a case study. Microbiol Res 2014; 169:717-24. [PMID: 24629524 DOI: 10.1016/j.micres.2014.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/25/2022]
Abstract
In this study, the first survey of microbial community in thermophilic anaerobic digester using swine manure as sole feedstock was performed by multiple approaches including denaturing gradient gel electrophoresis (DGGE), clone library and pyrosequencing techniques. The integrated analysis of 21 DGGE bands, 126 clones and 8506 pyrosequencing read sequences revealed that Clostridia from the phylum Firmicutes account for the most dominant Bacteria. In addition, our analysis also identified additional taxa that were missed by the previous researches, including members of the bacterial phyla Synergistetes, Planctomycetes, Armatimonadetes, Chloroflexi and Nitrospira which might also play a role in thermophilic anaerobic digester. Most archaeal 16S rRNA sequences could be assigned to the order Methanobacteriales instead of Methanomicrobiales comparing to previous studies. In addition, this study reported that the member of Methanothermobacter genus was firstly found in thermophilic anaerobic digester.
Collapse
Affiliation(s)
- Nguyen Ngoc Tuan
- Department of Life Sciences, National Central University, No. 300 Jhongda Rd., Jhongli City 32001, Taiwan
| | - Yi-Chia Chang
- Department of Life Sciences, National Central University, No. 300 Jhongda Rd., Jhongli City 32001, Taiwan
| | - Chang-Ping Yu
- Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
| | - Shir-Ly Huang
- Department of Life Sciences, National Central University, No. 300 Jhongda Rd., Jhongli City 32001, Taiwan; Center for Biotechnology and Biomedical Engineering, National Central University, No. 300 Jhongda Rd., Jhongli City 32001, Taiwan.
| |
Collapse
|
14
|
Characterization of the methanogen community in a household anaerobic digester fed with swine manure in China. Appl Microbiol Biotechnol 2013; 97:8163-71. [PMID: 23649353 DOI: 10.1007/s00253-013-4957-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.
Collapse
|
15
|
Ban Q, Li J, Zhang L, Jha AK, Nies L. Linking Performance with Microbial Community Characteristics in an Anaerobic Baffled Reactor. Appl Biochem Biotechnol 2013; 169:1822-36. [DOI: 10.1007/s12010-013-0105-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 01/13/2013] [Indexed: 11/24/2022]
|
16
|
Identification of Methanoculleus spp. as active methanogens during anoxic incubations of swine manure storage tank samples. Appl Environ Microbiol 2012; 79:424-33. [PMID: 23104405 DOI: 10.1128/aem.02268-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-(13)C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of (13)C into DNA was detectable at in situ acetate concentrations (~7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the (13)C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis.
Collapse
|
17
|
Community structure analysis of methanogens associated with rumen protozoa reveals bias in universal archaeal primers. Appl Environ Microbiol 2012; 78:4051-6. [PMID: 22447586 DOI: 10.1128/aem.07994-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The diversity of protozoan-associated methanogens in cattle was investigated using five universal archaeal small-subunit (SSU) rRNA gene primer sets. Methanobrevibacter spp. and rumen cluster C (distantly related to Thermoplasma spp.) were predominant. Significant differences in species composition among libraries indicate that some primers used previously to characterize rumen methanogens exhibit biased amplification.
Collapse
|
18
|
Barret M, Gagnon N, Morissette B, Topp E, Kalmokoff M, Brooks SP, Matias F, Massé DI, Masse L, Talbot G. Methanoculleus spp. as a biomarker of methanogenic activity in swine manure storage tanks. FEMS Microbiol Ecol 2012; 80:427-40. [DOI: 10.1111/j.1574-6941.2012.01308.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/13/2011] [Accepted: 01/08/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Maialen Barret
- Dairy and Swine Research and Development Centre; Agriculture and Agri-Food Canada; Sherbrooke; QC; Canada
| | - Nathalie Gagnon
- Dairy and Swine Research and Development Centre; Agriculture and Agri-Food Canada; Sherbrooke; QC; Canada
| | - Bruno Morissette
- Dairy and Swine Research and Development Centre; Agriculture and Agri-Food Canada; Sherbrooke; QC; Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre; Agriculture and Agri-Food Canada; London; ON; Canada
| | - Martin Kalmokoff
- Atlantic Food and Horticulture Research Centre; Agriculture and Agri-Food Canada; Kentville; NS; Canada
| | - Stephen P.J. Brooks
- Bureau of Nutritional Sciences; Health Products and Foods Branch; Banting Research Centre; Ottawa; ON; Canada
| | - Fernando Matias
- Bureau of Nutritional Sciences; Health Products and Foods Branch; Banting Research Centre; Ottawa; ON; Canada
| | - Daniel I. Massé
- Dairy and Swine Research and Development Centre; Agriculture and Agri-Food Canada; Sherbrooke; QC; Canada
| | - Lucie Masse
- Dairy and Swine Research and Development Centre; Agriculture and Agri-Food Canada; Sherbrooke; QC; Canada
| | - Guylaine Talbot
- Dairy and Swine Research and Development Centre; Agriculture and Agri-Food Canada; Sherbrooke; QC; Canada
| |
Collapse
|
19
|
Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 2012; 16:177-91. [PMID: 22246205 DOI: 10.1007/s00792-011-0417-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Lost Hammer (LH) spring is a unique hypersaline, subzero, perennial high Arctic spring arising through thick permafrost. In the present study, the microbial and geochemical characteristics of the LH outflow channels, which remain unfrozen at ≥-18°C and are more aerobic/less reducing than the spring source were examined and compared to the previously characterized spring source environment. LH channel sediments contained greater microbial biomass (~100-fold) and greater microbial diversity reflected by the 16S rRNA clone libraries. Phylotypes related to methanogenesis, methanotrophy, sulfur reduction and oxidation were detected in the bacterial clone libraries while the archaeal community was dominated by phylotypes most closely related to THE ammonia-oxidizing Thaumarchaeota. The cumulative percent recovery of (14)C-acetate mineralization in channel sediment microcosms exceeded ~30% and ~10% at 5 and -5°C, respectively, but sharply decreased at -10°C (≤1%). Most bacterial isolates (Marinobacter, Planococcus, and Nesterenkonia spp.) were psychrotrophic, halotolerant, and capable of growth at -5°C. Overall, the hypersaline, subzero LH spring channel has higher microbial diversity and activity than the source, and supports a variety of niches reflecting the more dynamic and heterogeneous channel environment.
Collapse
|
20
|
Lee SH, Kang HJ, Lee YH, Lee TJ, Han K, Choi Y, Park HD. Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. ACTA ACUST UNITED AC 2012; 14:1893-905. [DOI: 10.1039/c2em10958a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Blais Lecours P, Duchaine C, Taillefer M, Tremblay C, Veillette M, Cormier Y, Marsolais D. Immunogenic properties of archaeal species found in bioaerosols. PLoS One 2011; 6:e23326. [PMID: 21858070 PMCID: PMC3155538 DOI: 10.1371/journal.pone.0023326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/13/2011] [Indexed: 11/24/2022] Open
Abstract
The etiology of bioaerosol-related pulmonary diseases remains poorly understood. Recently, archaea emerged as prominent airborne components of agricultural environments, but the consequences of airway exposure to archaea remain unknown. Since subcomponents of archaea can be immunogenic, we used a murine model to study the pulmonary immune responses to two archaeal species found in agricultural facilities: Methanobrevibacter smithii (MBS) and Methanosphaera stadtmanae (MSS). Mice were administered intranasally with 6.25, 25 or 100 µg of MBS or MSS, once daily, 3 days a week, for 3 weeks. MSS induced more severe histopathological alterations than MBS with perivascular accumulation of granulocytes, pronounced thickening of the alveolar septa, alveolar macrophages accumulation and increased perivascular mononucleated cell accumulation. Analyses of bronchoalveolar lavage fluids revealed up to 3 times greater leukocyte accumulation with MSS compared to MBS. Instillation of 100 µg of MBS or MSS caused predominant accumulation of monocyte/macrophages (4.5×10(5) and 4.8×10(5) cells/ml respectively) followed by CD4(+) T cells (1.38×10(5) and 1.94×10(5) cells/ml respectively), B cells (0.73×10(5) and 1.28×10(5) cells/ml respectively), and CD8(+) T cells (0.20×10(5) and 0.31×10(5) cells/ml respectively) in the airways. Both archaeal species induced similar titers of antigen-specific IgGs in plasma. MSS but not MBS caused an accumulation of eosinophils and neutrophils in the lungs, which surprisingly, correlated inversely with the size of the inoculum. Stronger immunogenicity of MSS was confirmed by a 3 fold higher accumulation of myeloid dendritic cells in the airways, compared to MBS. Thus, the dose and species of archaea determine the magnitude and nature of the pulmonary immune response. This is the first report of an immunomodulatory role of archaeal species found in bioaerosols.
Collapse
Affiliation(s)
- Pascale Blais Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline Duchaine
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Département de biochimie, de microbiologie et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | - Michel Taillefer
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | - Marc Veillette
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Yvon Cormier
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Départment de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - David Marsolais
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Départment de médecine, Faculté de médecine, Université Laval, Québec, Canada
| |
Collapse
|
22
|
Zhou M, McAllister T, Guan L. Molecular identification of rumen methanogens: Technologies, advances and prospects. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Wagner AO, Malin C, Lins P, Illmer P. Effects of various fatty acid amendments on a microbial digester community in batch culture. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:431-7. [PMID: 21071199 DOI: 10.1016/j.wasman.2010.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 05/24/2023]
Abstract
Since biogas production is becoming increasingly important the understanding of anaerobic digestion processes is fundamental. However, large-scale digesters often lack online sensor equipment to monitor key parameters. Furthermore the possibility to selectively change fermenting parameter settings in order to investigate methane output or microbial changes is limited. In the present study we examined the possibility to investigate the microbial community of a large scale (750,000 L) digester within a laboratory small-scale approach. We studied the short-term response of the downscaled communities on various fatty acids and its effects on gas production and compared it with data from the original digester sludge. Even high loads of formic acid led to distinct methane formation, whereas high concentrations of other acids (acetic, butyric, propionic acid) caused a marked inhibition of methanogenesis coupled with an increase in hydrogen concentration. Molecular microbial techniques (DGGE/quantitative real-time-PCR) were used to monitor the microbial community changes which were related to data from GC and HPLC analysis. DGGE band patterns showed that the same microorganisms which were already dominant in the original digester re-established again in the lab-scale experiment. Very few microorganisms dominated the whole fermenting process and species diversity was not easily influenced by moderate varying fatty acid amendments--Methanoculleus thermophilus being the most abundant species throughout the variants. MCR-copy number determined via quantitative real-time-PCR--turned out to be a reliable parameter for quantification of methanogens, even in a very complex matrix like fermenter sludge. Generally the downscaled batch approach was shown to be appropriate to investigate microbial communities from large-scale digesters.
Collapse
Affiliation(s)
- Andreas O Wagner
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
24
|
Yamamoto N, Asano R, Yoshii H, Otawa K, Nakai Y. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Appl Microbiol Biotechnol 2011; 90:1501-10. [PMID: 21336928 DOI: 10.1007/s00253-011-3153-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 12/01/2022]
Abstract
The composting process is carried out under aerobic conditions involving bacteria, archaea, and fungi. Little is known about the diversity of archaeal community in compost, although they may play an important role in methane production and ammonia oxidation. In the present study, archaeal community dynamics during cattle manure composting were analyzed using a clone library of the archaeal 16S rRNA gene. The results indicated that methane-producing archaea (methanogen) and ammonia-oxidizing archaea (AOA) may be the dominant microbes throughout the composting. The community consisted primarily of Methanocorpusculum-like and Methanosarcina-like sequences until day 2, while the number of Candidatus Nitrososphaera-like sequences increased from day 6 to day 30. Methanosarcina thermophila-like sequences were dominant from day 2, suggesting that M. thermophila-like species can adapt to increasing temperature or nutrient loss. A denaturant gradient gel electrophoresis analysis of the archaeal amoA genes revealed that the dominant amoA gene sequence with 99% homology to that of Candidatus Nitrososphaera gargensis was identical to those obtained from a different composting facility. These data suggested that AOA may play a role in ammonia oxidation in several composting practices. Our results provide fundamental information regarding archaeal community dynamics that will help in understanding the collective microbial community in compost.
Collapse
Affiliation(s)
- Nozomi Yamamoto
- Laboratory of Sustainable Environmental Biology, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | | | | | | | | |
Collapse
|
25
|
Loy A, Pester M, Steger D. Phylogenetic microarrays for cultivation-independent identification and metabolic characterization of microorganisms in complex samples. Methods Mol Biol 2011; 688:187-206. [PMID: 20938840 DOI: 10.1007/978-1-60761-947-5_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-throughput sequencing and hybridization technologies promise new insights into the natural diversity and dynamics of microorganisms. Among these new technologies are phylogenetic oligonucleotide microarrays (phylochips) that depend on the standard molecules for taxonomic and environmental studies of microorganisms: the ribosomal RNAs and their encoding genes. The beauty of phylochip hybridization is that a sample can be analyzed with hundreds to thousands of rRNA (gene)-targeted probes simultaneously, lending itself to the efficient diagnosis of many target organisms in many samples. An emerging application of phylochips is the highly parallel analysis of structure-function relationships of microbial community members by employing in vivo substrate-mediated isotope labeling of rRNA (via the isotope array approach). This chapter provides an introduction to phylochip and isotope array analysis and detailed wet-lab protocols for preparation, labeling, and hybridization of target nucleic acids.
Collapse
Affiliation(s)
- Alexander Loy
- Department of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Wien, Austria.
| | | | | |
Collapse
|
26
|
Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl Microbiol Biotechnol 2010; 87:353-63. [DOI: 10.1007/s00253-010-2539-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/27/2022]
|
27
|
Zhu C, Zhang J, Tang Y, Zhengkai X, Song R. Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiol Res 2010; 166:27-35. [PMID: 20116227 DOI: 10.1016/j.micres.2010.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/01/2010] [Accepted: 01/03/2010] [Indexed: 11/15/2022]
Abstract
Methanogenesis from the biomass in the anoxic biogas reactors is catalyzed by syntrophic cooperation between anaerobic bacteria, syntrophic acetogenic bacteria and methanogenic archaea. Understanding of microbial community composition within the biogas reactors may improve the methane production from biomass fermentation. In this study, methanogenic archaea diverity of a biogas reactor supplied with swine feces as mono-substrate under mesophilic conditions was investigated. Community composition was determined by analysis of methyl coenzyme reductase subunit A gene (mcrA) clone library consisting of 123 clones. Statistical analysis of mcrA library indicated that all major groups of methanogens from our biogas reactor were detected. In the library, 57.7% clones were affiliated to Methanobacteriales, 34.2% to Methanomicrobiales, 2.4% to Methanosarcinales and about 5.7% clones belonged to unclassified euryarchaeota. Over 90% of the methanogenic archaea from our biogas reactor were postulated to be hydrogenotrophic methanogens. Comparing with other previous studies reporting that hydrogenotrophic methanogens are dominant species in the biogas plants, this study firstly reported that Methanobacteriales instead of Methanomicrobiales are the most predominant methanogenic archaea in the biogas reactor fed with swine feces as sole substrate.
Collapse
Affiliation(s)
- Chenguang Zhu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | | | | | | |
Collapse
|
28
|
Franke-Whittle IH, Goberna M, Pfister V, Insam H. Design and development of the ANAEROCHIP microarray for investigation of methanogenic communities. J Microbiol Methods 2009; 79:279-88. [DOI: 10.1016/j.mimet.2009.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
|
29
|
Culture-independent characterization of archaeal biodiversity in swine confinement building bioaerosols. Appl Environ Microbiol 2009; 75:5445-50. [PMID: 19561186 DOI: 10.1128/aem.00726-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously demonstrated that microbial communities of pig manure were composed of both bacteria and archaea. Recent studies have shown that bacteria are aerosolized from pig manure, but none have ever focused on the airborne archaeal burden. We sought here to develop and apply molecular ecology approaches to thoroughly characterize airborne archaea from swine confinement buildings (SCBs). Eight swine operations were visited, twice in winter and once during summer. Institute of Occupational Medicine cassettes loaded with 25-mm gelatin filters were used to capture the inhalable microbial biomass. The total genomic DNA was extracted and used as a template for PCR amplification of the archaeal 16S rRNA gene. High concentrations of archaea were found in SCB bioaerosols, being as high as 10(8) 16S rRNA gene copies per cubic meter of air. Construction and sequencing of 16S rRNA gene libraries revealed that all sequences were closely related to methanogenic archaea, such as Methanosphaera stadtmanae (94.7% of the archaeal biodiversity). Archaeal community profiles were compared by 16S rRNA gene denaturing gradient gel electrophoresis. This analysis showed similar fingerprints in each SCB and confirmed the predominance of methanogenic archaea in the bioaerosols. This study sheds new light on the nature of bioaerosols in SCBs and suggests that archaea are also aerosolized from pig manure.
Collapse
|
30
|
Nayak B, Levine A, Cardoso A, Harwood V. Microbial population dynamics in laboratory-scale solid waste bioreactors in the presence or absence of biosolids. J Appl Microbiol 2009; 107:1330-9. [DOI: 10.1111/j.1365-2672.2009.04319.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Liu FH, Wang SB, Zhang JS, Zhang J, Yan X, Zhou HK, Zhao GP, Zhou ZH. The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 2009; 106:952-66. [PMID: 19187154 DOI: 10.1111/j.1365-2672.2008.04064.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To identify the bacterial and archaeal composition in a mesophilic biogas digester treating pig manure and to compare the consistency of two 16S rDNA-based methods to investigate the microbial structure. METHODS AND RESULTS Sixty-nine bacterial operational taxonomic units (OTU) and 25 archaeal OTU were identified by sequencing two 16S rDNA clone libraries. Most bacterial OTU were identified as phyla of Firmicutes (47.2% of total clones), Bacteroides (35.4%) and Spirochaetes (13.2%). Methanoculleus bourgensis (29.0%), Methanosarcina barkeri (27.4%) and Methanospirillum hungatei (10.8%) were the dominant methanogens. Only 9% of bacterial and 20% of archaeal OTU matched cultured isolates at a similarity index of >or=97%. About 78% of the dominant bacterial (with abundance >3%) and 83% of archaeal OTU were recovered from the denaturing gradient gel electrophoresis (DGGE) bands of V3 regions in 16S rDNAs. CONCLUSIONS In the digester, most bacterial and archaeal species were uncultured; bacteria belonging to Firmicutes, Bacteroides and Spirochaetes seem to take charge of cellulolysis, proteolysis, acidogenesis, sulfur-reducing and homoacetogenesis; the most methanogens were typical hydrogenotrophic or hydrogenotrophic/aceticlastic; DGGE profiles reflected the dominant microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study gave a first insight of the overall microbial structure in a rural biogas digester and also indicated DGGE was useful in displaying its dominant microbiota.
Collapse
Affiliation(s)
- F H Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cheon J, Hidaka T, Mori S, Koshikawa H, Tsuno H. Applicability of random cloning method to analyze microbial community in full-scale anaerobic digesters. J Biosci Bioeng 2008; 106:134-40. [PMID: 18804055 DOI: 10.1263/jbb.106.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/07/2008] [Indexed: 11/17/2022]
Abstract
Microbial communities were analyzed in six full-scale anaerobic digesters and a lab-scale digester using the random cloning method. The purposes were to confirm the applicability, reproducibility, and error range of this method; to discuss the difference in the dominant microbes determined by this method in different operational conditions of temperature (mesophilic and thermophilic) and substrate (garbage, sewage sludge, and livestock waste); and to determine key microbes in each digester. Each sample was analyzed in triplicate. In one of the samples, 373 clones were analyzed to study the composition of microbial community in the digester. Time course analysis was conducted from the start-up period for approximately one year in one of the digesters. Similar microbial diversity was obtained corresponding to the type of substrate change (sewage sludge to garbage). Operational taxonomic units (OTUs) closely related to Coprothermobacter sp. and unidentified bacterium clones TUG14 and TUG22 disappeared during the first 40 d, while OTUs closely related to Bacillus sp. and Clostridium sp. increased later. Microbial diversity in digesters is strongly affected by the operational conditions, and similar microbial diversity can be obtained in triplicate analysis and under similar operational conditions. The present study verified the applicability of this method to discuss the overall difference in microbial communities.
Collapse
Affiliation(s)
- Jihoon Cheon
- Department of Urban and Environmental Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Kyoto, Japan
| | | | | | | | | |
Collapse
|
33
|
Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B. Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 2008; 31:190-205. [DOI: 10.1016/j.syapm.2008.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/13/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
34
|
Methane-producing microbial community in a coal bed of the Illinois basin. Appl Environ Microbiol 2008; 74:2424-32. [PMID: 18310416 DOI: 10.1128/aem.02341-07] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H(2) and CO(2), which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H(2)-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H(2)-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.
Collapse
|
35
|
Talbot G, Topp E, Palin MF, Massé DI. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. WATER RESEARCH 2008; 42:513-37. [PMID: 17719078 DOI: 10.1016/j.watres.2007.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 05/16/2023]
Abstract
Molecular techniques have unveiled the complexity of the microbial consortium in anaerobic bioreactors and revealed the presence of several uncultivated species. This paper presents a review of the panoply of classical and recent molecular approaches and multivariate analyses that have been, or might be used to establish the interactions and functions of these anaerobic microorganisms. Most of the molecular approaches used so far are based on the analysis of small subunit ribosomal RNA but recent studies also use quantification of functional gene expressions. There are now several studies that have developed quantitative real-time PCR assays to investigate methanogens. With a view to improving the stability and performance of bioreactors, monitoring with molecular methods is also discussed. Advances in metagenomics and proteomics will lead to the development of promising lab-on chip technologies for cost-effective monitoring.
Collapse
Affiliation(s)
- G Talbot
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8.
| | | | | | | |
Collapse
|
36
|
Bottos EM, Vincent WF, Greer CW, Whyte LG. Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 2008; 10:950-66. [PMID: 18215157 DOI: 10.1111/j.1462-2920.2007.01516.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes, Proteobacteria and Actinobacteria. Clone library analyses showed that the bacterial communities were diverse and varied significantly between the two ice shelves, with the Markham library having a higher estimated diversity (Chao1 = 243; 105 operational taxonomic units observed in 189 clones) than the Ward Hunt library (Chao1 = 106; 52 operational taxonomic units observed in 128 clones). Archaeal 16S rRNA gene clone libraries from both ice shelves were dominated by a single Euryarchaeota sequence, which appears to represent a novel phylotype. Analyses of community activity by radiorespiration assays detected metabolism in mat samples from both ice shelves at temperatures as low as -10 degrees C. These findings provide the first insight into the prokaryotic biodiversity of Arctic ice shelf communities and underscore the importance of these cryo-ecosystems as a rich source of microbiota that are adapted to extreme cold.
Collapse
Affiliation(s)
- Eric M Bottos
- Department of Natural Resource Sciences, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
37
|
Bardavid RE, Mana L, Oren A. Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea-Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 2007; 57:780-783. [PMID: 17392206 DOI: 10.1099/ijs.0.64648-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study biological phenomena in the Dead Sea and to simulate the effects of mixing Dead Sea water with Red Sea water, experimental mesocosms were operated at the Dead Sea Works at Sedom, Israel. Dense communities of red halophilic archaea developed in mesocosms filled with 80 % Dead Sea water and 20 % Red Sea water after enrichment with phosphate. The most common type of colonies isolated from these brines belonged to the genus Halorubrum. A few white-pinkish opaque colonies contained pleomorphic flat cells with gas vesicles. Three strains isolated from the latter colonies were characterized in depth. Their 16S rRNA gene sequences showed only 91 % similarity to the closest cultured relative (Haloferax mediterranei), indicating that the new strains represent a novel species of a new genus. The name Haloplanus natans gen. nov., sp. nov. is proposed for this novel organism. The type strain of Haloplanus natans is RE-101(T) (=DSM 17983(T)=JCM 14081(T)).
Collapse
Affiliation(s)
- Rahel Elevi Bardavid
- The Institute of Life Sciences and The Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lily Mana
- The Institute of Life Sciences and The Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Aharon Oren
- The Institute of Life Sciences and The Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
38
|
Satoh H, Miura Y, Tsushima I, Okabe S. Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Appl Environ Microbiol 2007; 73:7300-7. [PMID: 17905889 PMCID: PMC2168234 DOI: 10.1128/aem.01426-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial community structure and spatial distribution of microorganisms and their in situ activities in anaerobic granules were investigated by 16S rRNA gene-based molecular techniques and microsensors for CH(4), H(2), pH, and the oxidation-reduction potential (ORP). The 16S rRNA gene-cloning analysis revealed that the clones related to the phyla Alphaproteobacteria (detection frequency, 51%), Firmicutes (20%), Chloroflexi (9%), and Betaproteobacteria (8%) dominated the bacterial clone library, and the predominant clones in the archaeal clone library were affiliated with Methanosaeta (73%). In situ hybridization with oligonucleotide probes at the phylum level revealed that these microorganisms were numerically abundant in the granule. A layered structure of microorganisms was found in the granule, where Chloroflexi and Betaproteobacteria were present in the outer shell of the granule, Firmicutes were found in the middle layer, and aceticlastic Archaea were restricted to the inner layer. Microsensor measurements for CH(4), H(2), pH, and ORP revealed that acid and H(2) production occurred in the upper part of the granule, below which H(2) consumption and CH(4) production were detected. Direct comparison of the in situ activity distribution with the spatial distribution of the microorganisms implied that Chloroflexi contributed to the degradation of complex organic compounds in the outermost layer, H(2) was produced mainly by Firmicutes in the middle layer, and Methanosaeta produced CH(4) in the inner layer. We determined the effective diffusion coefficient for H(2) in the anaerobic granules to be 2.66 x 10(-5) cm(2) s(-1), which was 57% in water.
Collapse
Affiliation(s)
- Hisashi Satoh
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Sapporo 060-8628, Japan
| | | | | | | |
Collapse
|
39
|
Malin C, Illmer P. Ability of DNA content and DGGE analysis to reflect the performance condition of an anaerobic biowaste fermenter. Microbiol Res 2007; 163:503-11. [PMID: 17765499 DOI: 10.1016/j.micres.2007.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/26/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Molecular-microbiological techniques have delivered insight into microbial populations present in anaerobic fermenters, although much information still remains to be elucidated. In this study, the ability of denaturing gradient gel electrophoresis (DGGE) to throw light on microbial community composition was investigated and latter data were compared with the gas production of a 750,000l anaerobic biogas fermenter. During 1 year, samples were taken from two different sites of the reactor and additionally from the substrate material. After DNA extraction and PCR with archaeal and bacterial primers, PCR products were run on denaturing gradient gels to compare band patterns. Using gel-imaging software (GelComparII), two major clusters could be identified. Dominant bands were excised from the gels, reamplified and sequenced. Most sequences were closely related to Lactobacilli and yet uncultured microorganisms. DNA content of all samples was significantly correlated with the gas production measured online. We concluded that PCR and subsequent DGGE are useful to monitor community shifts in anaerobic fermenter sludge. However, as these changes are not readily detectable via DGGE-pattern analysis, alternative factors influencing the fermenter functioning should be found and investigated. So far DNA-content measurement seems to be a good parameter to quickly determine anaerobic fermenter condition.
Collapse
Affiliation(s)
- Cornelia Malin
- Institute of Microbiology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
40
|
Ufnar JA, Ufnar DF, Wang SY, Ellender RD. Development of a swine-specific fecal pollution marker based on host differences in methanogen mcrA genes. Appl Environ Microbiol 2007; 73:5209-17. [PMID: 17586669 PMCID: PMC1950972 DOI: 10.1128/aem.00319-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10(-6) g of wet pig feces in 500 ml of phosphate-buffered saline and 10(-4) g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.
Collapse
Affiliation(s)
- Jennifer A Ufnar
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive, #5018, Hattiesburg, MS 39406-0001, USA.
| | | | | | | |
Collapse
|
41
|
Cook KL, Rothrock MJ, Loughrin JH, Doerner KC. Characterization of skatole-producing microbial populations in enriched swine lagoon slurry. FEMS Microbiol Ecol 2007; 60:329-40. [PMID: 17374129 DOI: 10.1111/j.1574-6941.2007.00299.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Skatole is one of the most malodorous compounds produced from the anaerobic degradation of animal waste. Little is known about the biochemistry of skatole production, the phylogeny of skatole-producing microorganisms or the conditions that favor their growth. These deficiencies hamper attempts to reduce skatole production. Our goals were to enrich for skatole producers in swine lagoon slurry (SLS) and evaluate the resulting microbial community structure using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene sequence analysis. Skatole producers were enriched by incubating dilutions of SLS with 100 muM indole-3-acetic acid (IAA). GC-MS was used to measure skatole production in the slurries after 0, 7 and 17 days' incubation. Based on most probable number analysis, skatole producers increased 100-fold in SLS samples supplemented with IAA. Based on DGGE fingerprint patterns from day 0, 7 and 17 treatments with high, mid or low levels of skatole production, changes in the SLS population occurred as skatole production increased. Changes in the bacterial community fingerprints were associated with an increase in the low-GC gram-positive and Bacteroides groups. Results from this study provides valuable new information concerning the organisms responsible for production of this odorant, a necessary first step towards controlling skatole production.
Collapse
|
42
|
Peu P, Brugère H, Pourcher AM, Kérourédan M, Godon JJ, Delgenès JP, Dabert P. Dynamics of a pig slurry microbial community during anaerobic storage and management. Appl Environ Microbiol 2006; 72:3578-85. [PMID: 16672505 PMCID: PMC1472392 DOI: 10.1128/aem.72.5.3578-3585.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial community of a pig slurry on a farm was monitored for 6 months using both molecular and cultural approaches. Sampling was carried out at all the different stages of effluent handling, from the rearing build-up to slurry spreading. Total DNA of each sample was extracted and analyzed by PCR-single-strand conformation polymorphism (SSCP) analysis using primers targeting the 16S rRNA genes from the archaeal and bacterial domains and also the Eubacterium-Clostridium, Bacillus-Streptococcus-Lactobacillus, and Bacteroides-Prevotella groups. A comparison of the SSCP profiles showed that there were rapid changes in the dominant bacterial community during the first 2 weeks of anaerobic storage and that the community was relatively stable thereafter. Several bacterial populations, identified as populations closely related to uncultured Clostridium and Porphyromonas and to Lactobacillus and Streptococcus cultured species commonly isolated from pig feces, remained present and dominant from the rearing build-up to the time of spreading. Enumeration of fecal indicators (enterococci and Escherichia coli) performed in parallel using cultural methods revealed the same trends. On the other hand, the archaeal community adapted slowly during pig slurry storage, and its diversity increased. A shift between two hydrogenotrophic methanogenic Methanobrevibacter populations from the storage pit to the pond was observed. Microorganisms present in pig slurry at the time of spreading could not be detected in soil after spreading by either molecular or cultural techniques, probably because of the detection limit inherent in the two techniques.
Collapse
Affiliation(s)
- Pascal Peu
- CEMAGREF, Environmental Management and Biological Treatment of Wastes Research Unit (GERE), 17 avenue de Cucillé, CS 64427, F-35044 Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Ufnar JA, Wang SY, Christiansen JM, Yampara-Iquise H, Carson CA, Ellender RD. Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 2006; 101:44-52. [PMID: 16834590 DOI: 10.1111/j.1365-2672.2006.02989.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The goal of this study was to develop and test the efficacy of a PCR assay for the environmental detection of the nifH gene of Methanobrevibacter smithii, a methanogen found in human faeces and sewage. METHODS AND RESULTS PCR primers for the nifH gene of M. smithii were designed, tested and used to detect the presence or absence of this organism in faecal and environmental samples. Specificity analysis showed that the Mnif primers amplified products only in M. smithii pure culture strains (100%), human faeces (29%), human sewage samples (93%) and sewage-contaminated water samples (100%). No amplification was observed when primers were tested against 43 bacterial stock cultures, 204 animal faecal samples, 548 environmental bacterial isolates and water samples from a bovine waste lagoon and adjacent polluted creek. Sequencing of PCR products from sewers demonstrated that a 222-bp product was the nifH gene of M. smithii. The minimal amount of total DNA required for the detection of M. smithii was 10 ng for human faeces, 10 ng for faecally contaminated water and 5 ng for sewage. Recreational water seeded with M. smithii established a lower detection limit of 13 cells ml(-1). CONCLUSIONS The Mnif assay developed during this investigation showed successful detection of M. smithii in individual human faecal samples, sewage and sewage-contaminated water but not in uncontaminated marine water or bovine-contaminated waters. The Mnif assay appears to be a potentially useful method to detect sewage-polluted coastal waters. SIGNIFICANCE AND IMPACT OF THE STUDY This study was the first to utilize methanogens as an indicator of sewage pollution. Mnif PCR detection of M. smithii was shown to be a rapid, inexpensive and reliable test for determining the presence or absence of sewage pollution in coastal recreational waters.
Collapse
Affiliation(s)
- J A Ufnar
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| | | | | | | | | | | |
Collapse
|
44
|
Skillman LC, Evans PN, Strömpl C, Joblin KN. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett Appl Microbiol 2006; 42:222-8. [PMID: 16478508 DOI: 10.1111/j.1472-765x.2005.01833.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To assess the diversity of ruminal methanogens in a grazing cow, and develop PCR primers targeting the predominant methanogens. METHODS AND RESULTS DNA was extracted from rumen contents collected from a cow grazing pasture. Archaeal 16S rRNA genes were amplified by PCR using two pairs of archaea-specific primers, and clone libraries prepared. Selected clones were sequenced. Phylogenetic analysis revealed that for one primer pair, most sequences clustered with Methanobrevibacter spp. whereas with the other primer pair most clustered with Methanosphaera stadtmanae. One sequence belonged to the Crenarcheota. PCR primers were designed to detect Msp. stadtmanae and differentiate between Mbb. ruminantium and Mbb. smithii and successfully tested. CONCLUSIONS The ruminal methanogens included Mbb. ruminantium, Mbb. smithii, Mbb. thaueri and methanogens similar to Msp.stadtmanae. The study showed that apparent methanogen diversity can be affected by selectivity from the archaea-specific primers used to create clone libraries. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed a greater diversity of ruminal methanogens in grazing cows than previously recognized. It also shows the need for care in interpreting methanogen diversity using PCR-based analyses. The new PCR primers will enable more information to be obtained on Msp. stadtmanae and Methanobrevibacter spp. in the rumen.
Collapse
Affiliation(s)
- L C Skillman
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
45
|
|
46
|
Snell-Castro R, Godon JJ, Delgenès JP, Dabert P. Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis. FEMS Microbiol Ecol 2004; 52:229-42. [PMID: 16329909 DOI: 10.1016/j.femsec.2004.11.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 11/08/2004] [Accepted: 11/11/2004] [Indexed: 11/22/2022] Open
Abstract
The microbial community structure of pig manure slurry (PMS) was determined with comparative analysis of 202 bacterial, 44 archaeal and 33 eukaryotic small subunit (SSU) rDNA partial sequences. Based on a criterion of 97% of sequence similarity, the phylogenetic analyses revealed a total of 108, eight and five phylotypes for the Bacteria, Archaea and Eukarya lineages, respectively. Only 36% of the bacterial phylotypes were closely related (>or=97% similarity) to any previously known sequence in databases. The bacterial groups most often represented in terms of phylotype and clone abundance were the Eubacterium (22% of total sequences), the Clostridium (15% of sequences), the Bacillus-Lactobacillus-Streptococcus subdivision (20% of sequences), theMycoplasma and relatives (10% of sequences) and the Flexibacter-Cytophaga-Bacteroides (20% of sequences). The global microbial community structure and phylotype diversity show a close relationship to the pig gastrointestinal tract ecosystem whereas phylotypes from the Acholeplasma-Anaeroplasma and the Clostridium purinolyticum groups appear to be better represented in manure. Archaeal diversity was dominated by three phylotypes clustering with a group of uncultured microorganisms of unknown activity and only distantly related to the Thermoplasmales and relatives. Other Archaea were methanogenic H2/CO2 utilisers. No known acetoclastic Archaea methanogen was found. Eukaryotic diversity was represented by a pluricellular nematode, two Alveolata, a Blastocystis and an Entamoebidae. Manure slurry physico-chemical characteristics were analysed. Possible inhibitory effects of acetate, sulphide and ammonia concentrations on the microbial anaerobic ecosystem are discussed.
Collapse
Affiliation(s)
- Raúl Snell-Castro
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Avenue des Etangs, 11100 Narbonne, France
| | | | | | | |
Collapse
|
47
|
Lange M, Westermann P, Ahring BK. Archaea in protozoa and metazoa. Appl Microbiol Biotechnol 2004; 66:465-74. [PMID: 15630514 DOI: 10.1007/s00253-004-1790-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/20/2004] [Accepted: 10/02/2004] [Indexed: 10/26/2022]
Abstract
The presence of Archaea is currently being explored in various environments, including extreme geographic positions and eukaryotic habitats. Methanogens are the dominating archaeal organisms found in most animals, from unicellular protozoa to humans. Many methanogens can contribute to the removal of hydrogen, thereby improving the efficiency of fermentation or the reductive capacity of energy-yielding reactions. They may also be involved in tissue damage in periodontal patients. Recent molecular studies demonstrated the presence of Archaea other than methanogens in some animals-but so far, not in humans. The roles of these microorganisms have not yet been established. In the present review, we present the state of the art regarding the archaeal microflora in animals.
Collapse
Affiliation(s)
- Marianne Lange
- BioCentrum, Technical University of Denmark, BioCentrum, Building 227, Lyngby, 2800, Denmark
| | | | | |
Collapse
|
48
|
Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 2004; 10:277-85. [PMID: 16701528 DOI: 10.1016/j.anaerobe.2004.05.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 05/18/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.
Collapse
Affiliation(s)
- Lucy C Skillman
- Rumen Biotechnology, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
49
|
Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2004; 55:541-55. [PMID: 14607398 DOI: 10.1016/j.mimet.2003.08.009] [Citation(s) in RCA: 1195] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Polymerase Chain Reaction (PCR) has facilitated the detection of unculturable microorganisms in virtually any environmental source and has thus been used extensively in the assessment of environmental microbial diversity. This technique relies on the assumption that the gene sequences present in the environment are complementary to the "universal" primers used in their amplification. The recent discovery of new taxa with 16S rDNA sequences not complementary to standard universal primers suggests that current 16S rDNA libraries are not representative of true prokaryotic biodiversity. Here we re-assess the specificity of commonly used 16S rRNA gene primers and present these data in tabular form designed as a tool to aid simple analysis, selection and implementation. In addition, we present two new primer pairs specifically designed for effective "universal" Archaeal 16S rDNA sequence amplification. These primers are found to amplify sequences from Crenarchaeote and Euryarchaeote type strains and environmental DNA.
Collapse
Affiliation(s)
- G C Baker
- Department of Biotechnology, University of the Western Cape, Bellville 7335, Cape Town, South Africa
| | | | | |
Collapse
|
50
|
Zhu XY, Joerger RD. Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes. Poult Sci 2003; 82:1242-9. [PMID: 12943294 DOI: 10.1093/ps/82.8.1242] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Six group-specific 16S rRNA-targeted oligonucleotide probes were used to investigate the composition of the microbiota of cecal content and mucus from broiler chickens. Together, the probes hybridized to as many as 94.7% of the bacteria detectable with the universal probe Bact338 in the content of the cecum of 2-d-old chicks. Fewer bacteria gave signals with these probes as the birds aged, and coverage was as low as 76% for the bacteria in cecal content of a 6-wk-old chicken. In the cecal content of 2-d-old chicks, approximately 56, 34, and 3% of the bacteria detectable with the universal probe reacted with the probes Enter1432 (enterics), Lacto722 (Lactobacillus/Streptococcus/Enterococcus), and Bif164 (bifidobacteria), respectively. Probes Clept1240 (Clostridium leptum subgroup), Erec482 (Clostridium coccoides-Eubacterium rectale), and Bacto1080 (Bacteroides groups) did not produce signals. In cecal content from 1-wk-old chicks, all six probes gave signals, and in samples from 6-wk-old birds approximately 3, 9, 6, 32, 22, and 8% of the bacteria detectable with the universal probe hybridized with the probes Enter1432, Lacto722, Bif164, Clept1240, Erec482, and Bacto1080, respectively. At this age, the six probes detected the phylogenetic groups in similar proportions in the microbiota of cecal content and cecal mucus. The exception was the enterics probe because more bacteria from the mucus fraction than from cecal content gave signals with this probe (13.4 vs. 4.4%, P<0.001).
Collapse
Affiliation(s)
- X Y Zhu
- Environmental Science and Technology Center, Gas Technology Institute, 1700 South Mount Prospect Road, Des Plaines, Illinois 60018-1804, USA
| | | |
Collapse
|