1
|
Ahmad A, Zafar U, Khan A, Haq T, Mujahid T, Wali M. Effectiveness of compost inoculated with phosphate solubilizing bacteria. J Appl Microbiol 2022; 133:1115-1129. [DOI: 10.1111/jam.15633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Areesha Ahmad
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Urooj Zafar
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Adnan Khan
- Department of Geology University of Karachi Karachi‐75270 Pakistan
| | - Tooba Haq
- Centre of Environmental Studies, PCSIR labs Complex Karachi Karachi‐75280 Pakistan
| | - Talat Mujahid
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Mahreen Wali
- Dow University of Health Sciences, Ojha campus University Road Karachi‐75270 Pakistan
| |
Collapse
|
2
|
Zhu Y, Plaza N, Kojima Y, Yoshida M, Zhang J, Jellison J, Pingali SV, O’Neill H, Goodell B. Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall †. Front Microbiol 2020; 11:1389. [PMID: 32670241 PMCID: PMC7326796 DOI: 10.3389/fmicb.2020.01389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Brown rot (BR) decay mechanisms employ carbohydrate-active enzymes (CAZymes) as well as a unique non-enzymatic chelator-mediated Fenton (CMF) chemistry to deconstruct lignocellulosic materials. Unlike white rot fungi, BR fungi lack peroxidases for lignin deconstruction, and also lack some endoglucanase/cellobiohydrolase activities. The role that the CMF mechanism plays in "opening up" the wood cell wall structure in advance of enzymatic action, and any interaction between CMF constituents and the selective CAZyme suite that BRs possess, is still unclear. Expression patterns for CMF redox metabolites and lytic polysaccharide monooxygenase (LPMO-AA9 family) genes showed that some LPMO isozymes were upregulated with genes associated with CMF at early stages of brown rot by Gloeophyllum trabeum. In the structural studies, wood decayed by the G. trabeum was compared to CMF-treated wood, or CMF-treated wood followed by treatment with either the early-upregulated LPMO or a commercial CAZyme cocktail. Structural modification of decayed/treated wood was characterized using small angle neutron scattering. CMF treatment produced neutron scattering patterns similar to that of the BR decay indicating that both systems enlarged the nanopore structure of wood cell walls to permit enzyme access. Enzymatic deconstruction of cellulose or lignin in raw wood samples was not achieved via CAZyme cocktail or LPMO enzyme action alone. CMF treatment resulted in depolymerization of crystalline cellulose as attack progressed from the outer regions of individual crystallites. Multiple pulses of CMF treatment on raw wood showed a progressive increase in the spacing between the cellulose elementary fibrils (EFs), indicating the CMF eroded the matrix outside the EF bundles, leading to less tightly packed EFs. Peracetic acid delignification treatment enhanced subsequent CMF treatment effects, and allowed both enzyme systems to further increase spacing of the EFs. Moreover, even after a single pulse of CMF treatment, both enzymes were apparently able to penetrate the cell wall to further increase EF spacing. The data suggest the potential for the early-upregulated LPMO enzyme to work in association with CMF chemistry, suggesting that G. trabeum may have adopted mechanisms to integrate non-enzymatic and enzymatic chemistries together during early stages of brown rot decay.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Nayomi Plaza
- Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Yuka Kojima
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Jody Jellison
- Center for Agriculture, Food and the Environment, University of Massachusetts, Amherst, MA, United States
| | - Sai Venkatesh Pingali
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hugh O’Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Barry Goodell
- Department of Microbiology, Morrill Science Center IV-N, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
3
|
Zhang C, Wang X, Zhang F, Dong L, Wu J, Cheng Q, Qi D, Yan X, Jiang L, Fan S, Li N, Li D, Xu P, Zhang S. Phenylalanine ammonia-lyase2.1 contributes to the soybean response towards Phytophthora sojae infection. Sci Rep 2017; 7:7242. [PMID: 28775360 PMCID: PMC5543151 DOI: 10.1038/s41598-017-07832-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/16/2017] [Indexed: 01/25/2023] Open
Abstract
Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by Phytophthora sojae is a destructive disease worldwide. Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes related to plant responses to biotic and abiotic stresses. However, the molecular mechanism of PAL in soybean in response to P. sojae is largely unclear. Here, we characterize a novel member of the soybean PAL gene family, GmPAL2.1, which is significantly induced by P. sojae. Overexpression and RNA interference analysis demonstrates that GmPAL2.1 enhances resistance to P. sojae in transgenic soybean plants. In addition, the PAL activity in GmPAL2.1-OX transgenic soybean is significantly higher than that of non-transgenic plants after infection with P. sojae, while that in GmPAL2.1-RNAi soybean plants is lower. Further analyses show that the daidzein, genistein and salicylic acid (SA) levels and the relative content of glyceollins are markedly increased in GmPAL2.1-OX transgenic soybean. Taken together, these results suggest the important role of GmPAL2.1 functioning as a positive regulator in the soybean response to P. sojae infection, possibly by enhancing the content of glyceollins, daidzein, genistein and SA.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Wang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, Heilongjiang, China
| | - Feng Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, Heilongjiang, China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Dongyue Qi
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Yan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ninghui Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Dongmei Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Xu F, Deng G, Cheng S, Zhang W, Huang X, Li L, Cheng H, Rong X, Li J. Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia. Molecules 2012; 17:7810-23. [PMID: 22735783 PMCID: PMC6268330 DOI: 10.3390/molecules17077810] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 12/05/2022] Open
Abstract
Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenypropanoid pathway. A full-length cDNA of PAL gene was isolated from Juglans regia for the first time, and designated as JrPAL. The full-length cDNA of the JrPAL gene contained a 1935bp open reading frame encoding a 645-amino-acid protein with a calculated molecular weight of about 70.4 kD and isoelectric point (pI) of 6.7. The deduced JrPAL protein showed high identities with other plant PALs. Molecular modeling of JrPAL showed that the 3D model of JrPAL was similar to that of PAL protein from Petroselinum crispum (PcPAL), implying that JrPAL may have similar functions with PcPAL. Phylogenetic tree analysis revealed that JrPAL shared the same evolutionary ancestor of other PALs and had a closer relationship with other angiosperm species. Transcription analysis revealed that JrPAL was expressed in all tested tissues including roots, stems, and leaves, with the highest transcription level being found in roots. Expression profiling analyses by real-time PCR revealed that JrPAL expression was induced by a variety of abiotic and biotic stresses, including UV-B, wounding, cold, abscisic acid and salicylic acid.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- Evolution, Molecular
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Juglans/enzymology
- Juglans/genetics
- Models, Molecular
- Molecular Sequence Data
- Organ Specificity/genetics
- Phenylalanine Ammonia-Lyase/chemistry
- Phenylalanine Ammonia-Lyase/genetics
- Phenylalanine Ammonia-Lyase/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Stress, Physiological/genetics
- Structural Homology, Protein
Collapse
Affiliation(s)
- Feng Xu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
- Authors to whom correspondence should be addressed; (F.X.); (S.C.); Tel.: +86-716-8066260 (F.X.); Fax: +86-716-8066262 (F.X.)
| | - Guang Deng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuiyuan Cheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, Hubei, China
- Authors to whom correspondence should be addressed; (F.X.); (S.C.); Tel.: +86-716-8066260 (F.X.); Fax: +86-716-8066262 (F.X.)
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaohua Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Linling Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, Hubei, China
| | - Hua Cheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, Hubei, China
| | - Xiaofeng Rong
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jinbao Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|