1
|
AL-Muzahmi M, Rizvi M, AL-Quraini M, AL-Muharrmi Z, AL-Jabri Z. Comparative Genomic Analysis Reveals the Emergence of ST-231 and ST-395 Klebsiella pneumoniae Strains Associated with the High Transmissibility of blaKPC Plasmids. Microorganisms 2023; 11:2411. [PMID: 37894068 PMCID: PMC10608898 DOI: 10.3390/microorganisms11102411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Conjugative transposons in Gram-negative bacteria have a significant role in the dissemination of antibiotic-resistance-conferring genes between bacteria. This study aims to genomically characterize plasmids and conjugative transposons carrying integrons in clinical isolates of Klebsiella pneumoniae. The genetic composition of conjugative transposons and phenotypic assessment of 50 multidrug-resistant K. pneumoniae isolates from a tertiary-care hospital (SQUH), Muscat, Oman, were investigated. Horizontal transferability was investigated by filter mating conjugation experiments. Whole-genome sequencing (WGS) was performed to determine the sequence type (ST), acquired resistome, and plasmidome of integron-carrying strains. Class 1 integrons were detected in 96% of isolates and, among integron-positive isolates, 18 stains contained variable regions. Horizontal transferability by conjugation confirmed the successful transfer of integrons between cells and WGS confirmed their presence in conjugative plasmids. Dihydrofolate reductase (dfrA14) was the most prevalent (34.8%) gene cassette in class 1 integrons. MLST analysis detected predominantly ST-231 and ST-395. BlaOXA-232 and blaCTX-M-15 were the most frequently detected carbapenemases and beta-lactamases in the sequenced isolates. This study highlighted the high transmissibility of MDR-conferring conjugative plasmids in clinical isolates of K. pneumoniae. Therefore, the wise use of antibiotics and the adherence to effective infection control measures are necessary to limit the further dissemination of multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Munawr AL-Quraini
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman; (M.A.-Q.); (Z.A.-M.)
| | - Zakariya AL-Muharrmi
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman; (M.A.-Q.); (Z.A.-M.)
| | - Zaaima AL-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| |
Collapse
|
2
|
Pearce SL, Oakeshott JG, Pandey G. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains. G3 (BETHESDA, MD.) 2015; 5:1081-94. [PMID: 25850427 PMCID: PMC4478539 DOI: 10.1534/g3.114.015933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
Abstract
Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed.
Collapse
Affiliation(s)
| | | | - Gunjan Pandey
- CSIRO Ecosystem Sciences, Acton, ACT-2601, Australia
| |
Collapse
|
3
|
Chaudhary AK, Dhakal D, Sohng JK. An insight into the "-omics" based engineering of streptomycetes for secondary metabolite overproduction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:968518. [PMID: 24078931 PMCID: PMC3775442 DOI: 10.1155/2013/968518] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 11/25/2022]
Abstract
Microorganisms produce a range of chemical substances representing a vast diversity of fascinating molecular architectures not available in any other system. Among them, Streptomyces are frequently used to produce useful enzymes and a wide variety of secondary metabolites with potential biological activities. Streptomyces are preferred over other microorganisms for producing more than half of the clinically useful naturally originating pharmaceuticals. However, these compounds are usually produced in very low amounts (or not at all) under typical laboratory conditions. Despite the superiority of Streptomyces, they still lack well documented genetic information and a large number of in-depth molecular biological tools for strain improvement. Previous attempts to produce high yielding strains required selection of the genetic material through classical mutagenesis for commercial production of secondary metabolites, optimizing culture conditions, and random selection. However, a profound effect on the strategy for strain development has occurred with the recent advancement of whole-genome sequencing, systems biology, and genetic engineering. In this review, we demonstrate a few of the major issues related to the potential of "-omics" technology (genomics, transcriptomics, proteomics, and metabolomics) for improving streptomycetes as an intelligent chemical factory for enhancing the production of useful bioactive compounds.
Collapse
Affiliation(s)
- Amit Kumar Chaudhary
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University, 100 Kalsan-ri, Tangjeongmyeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Dipesh Dhakal
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University, 100 Kalsan-ri, Tangjeongmyeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University, 100 Kalsan-ri, Tangjeongmyeon, Asan-si, Chungnam 336-708, Republic of Korea
| |
Collapse
|
4
|
In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Appl Microbiol Biotechnol 2012; 97:351-9. [PMID: 23143534 DOI: 10.1007/s00253-012-4550-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.
Collapse
|
5
|
Zhang X, Bao Y, Shi X, Ou X, Zhou P, Ding X. Efficient transposition of IS204-derived plasmids in Streptomyces coelicolor. J Microbiol Methods 2011; 88:67-72. [PMID: 22079690 DOI: 10.1016/j.mimet.2011.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 11/25/2022]
Abstract
In order to study functional gene expression in Streptomyces coelicolor, a mini-transposon encoding the apramycin resistance gene aac(3)IV within its inverted repeat (IR) boundaries was constructed based on IS204, which was previously identified in the genome of Nocardia asteroides YP21. The mini-transposon and IS204 transposase gene were then put on a kanamycin-resistant conjugative plasmid pDZY101 that can only replicate in Escherichia coli. After mating with S. coelicolor A3(2) M145, resistant colonies arose efficiently on both apramycin and kanamycin plates. Plasmid rescue indicated that entire plasmids were inserted into the M145 genome with cleavage at an inverted repeat junction formed by the right inverted repeat (IRR) and the last 18bp of the transposase gene, while the left inverted repeat (IRL) was untouched. Southern blot analysis of the mutants using an aac(3)IV gene probe showed that transposition of plasmid pDZY101 was genetically stable, with a single-copy insertion within the S. coelicolor M145 genome. Several mutagenesis libraries of S. coelicolor M145 were constructed using plasmid pDZY101 derivatives and the transposon insertion site was determined. The correlation between novel mutant phenotypes and previously uncharacterized genes was established and these transposon locations were widely scattered around the genome.
Collapse
Affiliation(s)
- Xincheng Zhang
- School of Pharmacy, Fudan University, Yi Xue Yuan Road 138, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
6
|
Wei M, Zhang JJ, Liu H, Wang SJ, Fu H, Zhou NY. A transposable class I composite transposon carrying mph (methyl parathion hydrolase) from Pseudomonas sp. strain WBC-3. FEMS Microbiol Lett 2009; 292:85-91. [PMID: 19222584 DOI: 10.1111/j.1574-6968.2008.01468.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas sp. strain WBC-3 utilizes methyl parathion (O,O-dimethyl O-p-nitrophenol phosphorothioate) or para-nitrophenol as the sole source of carbon, nitrogen and energy. A gene encoding methyl parathion hydrolase (MPH) had been characterized previously and found to be located on a typical class I composite transposon that comprised IS6100 (Tnmph). In this study, the transposability of this transposon was confirmed by transposition assays in two distinct mating-out systems. Tnmph was demonstrated to transpose efficiently in a random manner in Pseudomonas putida PaW340 by Southern blot and in Ralstonia sp. U2 by sequence analysis of the Tnmph insertion sites, both exhibiting MPH activity. The linkage of the mph-like gene with IS6100, together with the transposability of Tnmph, as well as its capability to transpose in other phylogenetically divergent bacterial species, suggest that Tnmph may contribute to the wide distribution of mph-like genes and the adaptation of bacteria to organophosphorus compounds.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
7
|
Sasaki M, Tsuchido T, Matsumura Y. Molecular cloning and characterization of cytochrome P450 and ferredoxin genes involved in bisphenol A degradation in Sphingomonas bisphenolicum strain AO1. J Appl Microbiol 2008; 105:1158-69. [PMID: 18492046 DOI: 10.1111/j.1365-2672.2008.03843.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To clone and characterize the genes bisdA and bisdB, encoding Ferredoxin(bisd) (Fd(bisd)) and cytochrome P450(bisd) (P450(bisd)), respectively, from the bisphenol A (BPA) degrading Sphingomonas bisphenolicum strain AO1. METHODS AND RESULTS The 3.7 kb region containing bisdA and bisdB was cloned by genome walking and colony hybridization. The deduced N-terminal amino acid sequences of bisdA and bisdB were consistent with those of Fd(bisd) and P450(bisd) proteins characterized in our previous report. Two transposase genes, tnpA1 and tnpA2, were also located upstream and downstream of bisdAB. From amino acid sequence analysis, P450(bisd) has two conserved regions corresponding to the oxygen and heme binding regions of the bacterial cytochrome P450 family. Fd(bisd) was similar to putidaredoxin-type [2Fe-2S] ferredoxins. Escherichia coli BL21 (DE3) cells bearing bisdB- and bisdAB-recombinant pET19b were able to degrade BPA. A spontaneous mutant, strain AO1L, which was unable to degrade BPA, was isolated from the stock culture, and it was confirmed that strain AO1L had no bisdAB region. CONCLUSIONS P450(bisd) monooxygenase sytem, encoded by bisdAB, is one system required for BPA hydroxylation in S. bisphenolicum strain AO1. SIGNIFICANCE AND IMPACT OF THE STUDY Our results indicate that bisdAB are key genes for BPA degradation in S. bisphenolicum strain AO1.
Collapse
Affiliation(s)
- M Sasaki
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | | | | |
Collapse
|
8
|
Ferreira P, Diez N, Faulds CB, Soliveri J, Copa-Patiño JL. Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae. BIORESOURCE TECHNOLOGY 2007; 98:1522-8. [PMID: 16920354 DOI: 10.1016/j.biortech.2006.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 06/14/2006] [Accepted: 06/15/2006] [Indexed: 05/11/2023]
Abstract
Given several promising industrial applications of ferulic acid, this study was designed to identify actinomycete strains able to release high levels of this acid from sugar beet pulp (SBP). Out of 47 strains tested, 37% were found to release free ferulic acid from the growth substrate. One strain, identified as Streptomyces tendae by 16S RNA gene sequencing, was capable of releasing 80% of the ferulic acid ester-linked to the pectin in SBP after 5 days of growth. These data suggest that some actinomycetes are able to release ferulic acid and feruloylated oligosaccharides from SBP. During growth on SBP, it seems that Streptomyces species solubilize and release feruloylated oligosaccharides by specific carbohydrase activities before de-esterification and release of free ferulic acid.
Collapse
Affiliation(s)
- P Ferreira
- Departamento de Microbiología y Parasitología, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Mormann S, Lömker A, Rückert C, Gaigalat L, Tauch A, Pühler A, Kalinowski J. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 2006; 7:205. [PMID: 16901339 PMCID: PMC1590026 DOI: 10.1186/1471-2164-7-205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/10/2006] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. RESULTS A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC 3.1.3.25). Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown essential L-histidinol-phosphate phosphatase (EC 3.1.3.15) in C. glutamicum. The cg0910 gene, renamed hisN, and its encoded enzyme have putative orthologs in almost all Actinobacteria, including mycobacteria and streptomycetes. CONCLUSION The absence of regional and sequence preferences of IS6100-transposition demonstrate that the established system is suitable for efficient genome-scale random mutagenesis in the sequenced type strain C.glutamicum ATCC 13032. The identification of the hisN gene encoding histidinol-phosphate phosphatase in C. glutamicum closed the last gap in histidine synthesis in the Actinobacteria. The system might be a valuable genetic tool also in other bacteria due to the broad host-spectrum of IS6100.
Collapse
Affiliation(s)
- Sascha Mormann
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alexander Lömker
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Christian Rückert
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Lars Gaigalat
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| |
Collapse
|
10
|
Lum AM, Huang J, Hutchinson CR, Kao CM. Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng 2004; 6:186-96. [PMID: 15256208 DOI: 10.1016/j.ymben.2003.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 12/17/2003] [Indexed: 11/23/2022]
Abstract
Transcript levels in production cultures of wildtype and classically improved strains of the actinomycete bacteria Saccharopolyspora erythraea and Streptomyces fradiae were monitored using microarrays of the sequenced actinomycete S. coelicolor. Sac. erythraea and S. fradiae synthesize the polyketide antibiotics erythromycin and tylosin, respectively, and the classically improved strains contain unknown overproduction mutations. The Sac. erythraea overproducer was found to express the entire 56-kb erythromycin gene cluster several days longer than the wildtype strain. In contrast, the S. fradiae wildtype and overproducer strains expressed the 85-kb tylosin biosynthetic gene cluster similarly, while they expressed several tens of other S. fradiae genes and S. coelicolor homologs differently, including the acyl-CoA dehydrogenase gene aco and the S. coelicolor isobutyryl-CoA mutase homolog icmA. These observations indicated that overproduction mechanisms in classically improved strains can affect both the timing and rate of antibiotic synthesis, and alter the regulation of antibiotic biosynthetic enzymes and enzymes involved in precursor metabolism.
Collapse
Affiliation(s)
- Amy M Lum
- Department of Chemical Engineering, MC 5025, Stanford University, CA 94305, USA
| | | | | | | |
Collapse
|
11
|
Bishop A, Fielding S, Dyson P, Herron P. Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 2004; 14:893-900. [PMID: 15078860 PMCID: PMC479117 DOI: 10.1101/gr.1710304] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 01/12/2004] [Indexed: 11/24/2022]
Abstract
The model organism Streptomyces coelicolor represents a genus that produces a vast range of bioactive secondary metabolites. We describe a versatile procedure for systematic and comprehensive mutagenesis of the S. coelicolor genome. The high-throughput process relies on in vitro transposon mutagenesis of an ordered cosmid library; mutagenized cosmids with fully characterized insertions are then transferred by intergeneric conjugation into Streptomyces, where gene replacement is selected. The procedure can yield insertions in upward of 90% of genes, and its application to the entire genome is underway. The methodology could be applied to many other organisms that can receive DNA via RK2/RP4-mediated intergeneric conjugation. The system permits introduction of mutations into different genetic backgrounds and qualitative measurement of the expression of disrupted genes as demonstrated in the analysis of a hybrid histidine kinase and response regulator gene pair, osaAB, involved in osmoadaptation in Streptomyces. The independently transcribed response regulator gene, osaB, is essential for osmoadaptation; when grown with supplementary osmolyte, an osaB mutant cannot erect aerial hyphae and produces up to fivefold greater antibiotic yields than the wild-type strain.
Collapse
Affiliation(s)
- Amy Bishop
- School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | |
Collapse
|
12
|
Pitman A, Herron P, Dyson P. Cointegrate resolution following transposition of Tn1792 in Streptomyces avermitilis facilitates analysis of transposon-tagged genes. J Microbiol Methods 2002; 49:89-96. [PMID: 11777586 DOI: 10.1016/s0167-7012(01)00353-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The insertion sequence IS6100, belonging to the IS6 family, normally forms a cointegrate as an end product of transposition. The IS6100-based minitransposon, Tn1792, has been developed as a genetic tool to mutagenise antibiotic-producing Streptomyces. Here, we describe resolution of Tn1792 cointegrates in Streptomyces avermitilis that can facilitate both the initial isolation of Tn1792 insertion mutants and also the subsequent rescue of Tn1792-tagged sequences. This is the first reported example of cointegrate resolution for an IS6-type transposable element. As a result of mutagenesis, several putative genes involved in morphological development and antibiotic production have been isolated.
Collapse
Affiliation(s)
- Andrew Pitman
- School of Biological Sciences, University of Wales Swansea, Singleton Park, SA2 8PP, Swansea, UK
| | | | | |
Collapse
|
13
|
Burke J, Schneider D, Westpheling J. Generalized transduction in Streptomyces coelicolor. Proc Natl Acad Sci U S A 2001; 98:6289-94. [PMID: 11353836 PMCID: PMC33461 DOI: 10.1073/pnas.101589398] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2000] [Indexed: 11/18/2022] Open
Abstract
We report the isolation of generalized transducing phages for Streptomyces species able to transduce chromosomal markers or plasmids between derivatives of Streptomyces coelicolor, the principal genetic model system for this important bacterial genus. We describe four apparently distinct phages (DAH2, DAH4, DAH5, and DAH6) that are capable of transducing multiple chromosomal markers at frequencies ranging from 10(-5) to 10(-9) per plaque-forming unit. The phages contain DNA ranging in size from 93 to 121 kb and mediate linked transfer of genetic loci at neighboring chromosomal sites sufficiently close to be packaged within the same phage particle. The key to our ability to demonstrate transduction by these phages was the establishment of conditions expected to severely reduce superinfection killing during the selection of transductants. The host range of these phages, as measured by the ability to form plaques, extends to species as distantly related as Streptomyces avermitilis and Streptomyces verticillus, which are among the most commercially important species of this genus. Transduction of plasmid DNA between S. coelicolor and S. verticillus was observed at frequencies of approximately 10(-4) transductants per colony-forming unit.
Collapse
Affiliation(s)
- J Burke
- Genetics Department, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
14
|
Gehring AM, Nodwell JR, Beverley SM, Losick R. Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci U S A 2000; 97:9642-7. [PMID: 10931952 PMCID: PMC16918 DOI: 10.1073/pnas.170059797] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous soil bacterium Streptomyces coelicolor undergoes a complex cycle of morphological differentiation involving the formation of an aerial mycelium and the production of pigmented antibiotics. We have developed a procedure for generating insertional mutants of S. coelicolor based on in vitro transposition of a plasmid library of cloned S. coelicolor DNAs. The insertionally mutated library was introduced into S. coelicolor, and transposon insertions were recovered at widely scattered locations around the chromosome. Many of the insertions revealed previously uncharacterized genes, and several caused novel mutant phenotypes, such as altered pigment production, enhanced antibiotic sensitivity, delayed or impaired formation of aerial hyphae, and a block in spore formation. The sporulation mutant harbored an insertion in one of three adjacent genes that are apparently unique to Streptomyces but are each represented by at least 20 paralogs at dispersed locations in the chromosome. Individual members of the three families often are found grouped together in a characteristic arrangement, suggesting that they have a common function.
Collapse
Affiliation(s)
- A M Gehring
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|