1
|
Ramírez-Rodríguez GB, Sabio L, Cerezo-Collado L, Garcés V, Domínguez-Vera JM, Delgado-López JM. Probiotic-Based Mineralized Living Materials to Produce Antimicrobial Yogurts. Adv Healthc Mater 2024:e2402793. [PMID: 39648506 DOI: 10.1002/adhm.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Indexed: 12/10/2024]
Abstract
Mineralization of living cells represents an evolutionary adaptation that enhances cellular resilience to physicochemical stress. Inspired by this strategy, we have here developed hybrid living materials (HLMs), incorporating probiotics into mineralized collagen 3D matrices, with the aim of protecting and promoting the successful oral delivery of the bacteria. Collagen fibrils are simultaneously self-assembled and mineralized in the presence of the probiotics (Lactobacillus acidophilus, La, was used as model), resulting in the integration of the probiotics into the hybrid matrix (i.e., bulk encapsulation). During this process, probiotics are also coated with a nanofilm of apatite mineral (single-cell encapsulation), which provides them with extra protection and reinforces their viability and activity. In fact, the resulting HLM is metabolically active, and maintain the capacity to ferment milk into yogurt with antibacterial activity against the two major foodborne pathogens Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa). Interestingly, the HLM provides probiotics an additional protection in the gastrointestinal environment (i.e., simulated gastric fluid), which is of special interest for healthcare materials for oral administration. The results pave the way for the creation of innovative healthcare materials with enhanced functionalities and the potential to produce probiotic foods with notable antimicrobial properties.
Collapse
Affiliation(s)
- Gloria B Ramírez-Rodríguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Laura Sabio
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laura Cerezo-Collado
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Víctor Garcés
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Jose M Domínguez-Vera
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - José M Delgado-López
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| |
Collapse
|
2
|
Kanauchi M. Separation of Lactic Acid Bacteria Using Blue-Native (BN) Polyacrylamide Gel Electrophoresis (PAGE) and Analyses of Lipopolysaccharide-Elimination Protein. Methods Mol Biol 2024; 2851:193-199. [PMID: 39210183 DOI: 10.1007/978-1-0716-4096-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Some gram-negative bacteria such as Escherichia coli and Salmonella spp. among intestinal bacteria might induce inflammation of human intestines. However, lactic acid bacteria (LAB) display anti-inflammatory activity, which improves the intestinal environment. Particularly, the cell surface protein on Pediococcus pentosaceus exhibits high LPS elimination activity, which is expected to provide anti-inflammatory activity in the intestines. This chapter describes that surface proteins are separable using Blue-Native PAGE, which relies upon the theory that protein binds with Coomassie brilliant blue to produce a negative charge for easy separation.
Collapse
Affiliation(s)
- Makoto Kanauchi
- Department of Food Management, Miyagi University, Sendai, Japan.
| |
Collapse
|
3
|
Fermentation of Clementine Juice with Lactobacillus salivarius spp. salivarius CECT 4063: Effect of Trehalose Addition and High-Pressure Homogenization on Antioxidant Properties, Mucin Adhesion, and Shelf Life. FERMENTATION 2022. [DOI: 10.3390/fermentation8110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fermentation of fruit juices with lactic acid bacteria enhances their antioxidant properties to a different extent depending on the microbial strain and the growing media composition, which can be modified by adding certain ingredients or applying a homogenization step. This study analyzed the effect of trehalose addition (10%, w/w) and homogenization at 100 MPa before or after Lactobacillus salivarius spp. salivarius CECT 4063 inoculation on the antioxidant profile and the microbiological properties of commercial clementine juice during 96 h fermentation. Antioxidant properties and viable cell count of 24 h-fermented juices during refrigerated storage (30 days at 4 °C) were also evaluated. Fermentation over 24 h reduced the microbial population and antioxidant content of clementine juice. Homogenizing the juice before inoculation enhanced the microbial growth but favored antioxidant degradation. Adding trehalose (10%, w/w) to the juice formulation and/or homogenizing at the fermented juice at 100 MPa for 24 h had a negative impact on viable counts and did not improve the microbial adhesion to intestinal mucosa. However, both techniques prevented antioxidant oxidation and cell decay during the storage of fermented juice under refrigeration, which should not last more than 15 days.
Collapse
|
4
|
Srivastava P, Sondak T, Sivashanmugam K, Kim KS. A Review of Immunomodulatory Reprogramming by Probiotics in Combating Chronic and Acute Diabetic Foot Ulcers (DFUs). Pharmaceutics 2022; 14:2436. [PMID: 36365254 PMCID: PMC9699442 DOI: 10.3390/pharmaceutics14112436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 08/29/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are characterized by a lack of angiogenesis and distal limb diabetic neuropathy. This makes it possible for opportunistic pathogens to protect the biofilm-encased micro-communities, causing a delay in wound healing. The acute and chronic phases of DFU-associated infections are distinguished by the differential expression of innate proinflammatory cytokines and tumor necrosis factors (TNF-α and -β). Efforts are being made to reduce the microbial bioburden of wounds by using therapies such as debridement, hyperbaric oxygen therapy, shock wave therapy, and empirical antibiotic treatment. However, the constant evolution of pathogens limits the effectiveness of these therapies. In the wound-healing process, continuous homeostasis and remodeling processes by commensal microbes undoubtedly provide a protective barrier against diverse pathogens. Among commensal microbes, probiotics are beneficial microbes that should be administered orally or topically to regulate gut-skin interaction and to activate inflammation and proinflammatory cytokine production. The goal of this review is to bridge the gap between the role of probiotics in managing the innate immune response and the function of proinflammatory mediators in diabetic wound healing. We also highlight probiotic encapsulation or nanoformulations with prebiotics and extracellular vesicles (EVs) as innovative ways to tackle target DFUs.
Collapse
Affiliation(s)
- Prakhar Srivastava
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Tesalonika Sondak
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Karthikeyan Sivashanmugam
- School of Biosciences and Technology, High Throughput Screening Lab, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
5
|
Steinberg RS, Silva LCSE, de Souza MR, Reis RB, Bicalho AF, Nunes JPS, Dias AAM, Nicoli JR, Neumann E, Nunes ÁC. Prospecting of potentially probiotic lactic acid bacteria from bovine mammary ecosystem: imminent partners from bacteriotherapy against bovine mastitis. Int Microbiol 2021; 25:189-206. [PMID: 34498226 DOI: 10.1007/s10123-021-00209-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Mastitis is one of the most important causes of loss of cattle production, burdening producers due to the increased cost of milk production and decreased herd productivity. The development of alternative methods for the treatment and prevention of mastitis other than traditional chemical antibiotic therapy needs to be implemented to meet international pressures to reduce the use of these drugs and promote the elimination of multiresistant microbial strains from the environment. Treatment with probiotic bacteria or yeast strains offers a possible strategy for the control of mastitis. The objective of this work was to isolate, identify, and characterize lactic bacteria from milk and the intramammary duct of Gyr, Guzerat, Girolando 1/2, and Holstein cattle breeds from Brazil. Samples of 115 cows were taken, a total of 192 bacteria isolates belonging to 30 species were obtained, and 81 were selected to evaluate their probiotic potential in in vitro characterization tests. In general, bacteria isolated from the mammary gland have low autoaggregation, cell surface hydrophobicity, and co-aggregation with mastitis etiological bacteria Staphylococcus aureus and Escherichia coli. Also, they have biofilm assembly capacity, inability to produce exopolysaccharides, high production of H2O2, and strong antagonism against mastitis pathogens. Ten lactic bacteria isolates were used in co-culture with human MDA-MB-231 breast epithelial cells to assess their adhesion capacity and impairment of the S. aureus invasion. Our results, therefore, contribute to the future production of new prevention and treatment tools for bovine mastitis.
Collapse
Affiliation(s)
- Raphael S Steinberg
- Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Rodovia Bambuí/Medeiros - km 05, Caixa Postal 05, Bambuí, MG, 38900-000, Brazil.
| | - Lilian C Silva E Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo R de Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ronaldo B Reis
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriano F Bicalho
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João P S Nunes
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana A M Dias
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Álvaro C Nunes
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Protective function of surface layer protein from Lactobacillus casei fb05 against intestinal pathogens in vitro. Biochem Biophys Res Commun 2021; 546:15-20. [PMID: 33561743 DOI: 10.1016/j.bbrc.2021.01.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
Escherichia coli and Salmonella are common pathogenic bacteria in human intestine, which can infect epithelial cells and cause diseases. Adhesion to intestinal tissue is the first step of pathogen infection. This work was to investigate the protective function of surface layer protein (SLP) from Lactobacillus casei fb05 against the harmful effects of E. coli and Salmonella on intestinal tissue (collagen and HT-29 cells). The SLP of L. casei fb05 was identified by transmission electron microscopy and SDS-PAGE. The purified SLP could reduce the adhesion of E. coli and Salmonella to collagen and HT-29 cells as observed by light microscope. The flow cytometry results showed that the L. casei fb05 SLP decreased the two pathogens-induced apoptosis of HT-29 cells by about 45%-49%. In addition, the activation of caspase-9 and caspase-3 caused by the two pathogens was significantly declined by the interference of the L. casei fb05 SLP. All the findings demonstrated that the L. casei fb05 SLP could decrease the deleterious effects of E. coli and Salmonella on intestinal tract in two ways: reducing pathogen adhesion and inhibiting pathogen-induced apoptosis. The potential of L. casei fb05 SLP in the treatment of intestinal diseases might be explored in this work.
Collapse
|
7
|
Martín C, Fernández-Vega I, Suárez JE, Quirós LM. Adherence of Lactobacillus salivarius to HeLa Cells Promotes Changes in the Expression of the Genes Involved in Biosynthesis of Their Ligands. Front Immunol 2020; 10:3019. [PMID: 31998306 PMCID: PMC6962182 DOI: 10.3389/fimmu.2019.03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The attachment of a variety of Lactobacilli to the mucosal surfaces is accomplished through the interaction of OppA, a superficial bacterial protein also involved in oligopeptide internalization, and the glycosaminoglycan moiety of the proteoglycans that form the epithelial cell glycocalyx. Upon the interaction of the vaginal isolate Lactobacillus salivarius Lv72 and HeLa cell cultures, the expression of oppA increased more than 50-fold over the following 30 min, with the overexpression enduring, albeit at a lower rate, for up to 24 h. Conversely, transcriptional analysis of 62 genes involved in proteoglycan biosynthesis revealed generalized repression of genes whose products catalyze different steps of the whole pathway. This led to decreases in the superficial concentration of heparan (60%) and chondroitin sulfate (40%), although the molecular masses of these glycosaminoglycans were higher than those of the control cultures. Despite this lowering in the concentration of the receptor, attachment of the Lactobacilli proceeded, and completely overlaid the underlying HeLa cell culture.
Collapse
Affiliation(s)
- Carla Martín
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan E Suárez
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
| | - Luis M Quirós
- Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
8
|
Tang C, Lu Z. Health promoting activities of probiotics. J Food Biochem 2019; 43:e12944. [PMID: 31368544 DOI: 10.1111/jfbc.12944] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
In recent years, probiotics have received increasing attention and become one type of popular functional food because of their many biological functions. Among these desirable biological functions, the immune regulation, antioxidative activities, and antimicrobial effects are essential properties to maintain host health. Probiotics can regulate the immune system and improve the antioxidative system by producing microbial components and metabolites. Meanwhile, probiotics also possess antimicrobial abilities owing to their competition for nutrient requirements and mucus adherence, reducing pathogenic toxins, producing antimicrobial metabolites (short-chain fatty acids, bacteriocins, reuterin, linoleic acid, and secondary bile acids) and enhancing intestinal, or systemic immunity. Therefore, probiotics could be used to alleviate heavy metal toxicity and metabolic disorders by improving immunity, the antioxidative system, and intestinal micro-environment. This comprehensive review mainly highlights the potential health promoting activities of probiotics based on their antioxidative, antimicrobial, and immune regulatory effects. PRACTICAL APPLICATIONS: The antioxidative defense and the immune system are essential to maintain human health. However, many factors may result in microbial dysbiosis in the gut, which subsequently leads to pathogenic expansion, oxidative stress, and inflammatory responses. Therefore, it is important to explore beneficial foods to prevent or suppress these abnormal responses. Successful application of probiotics in the functional foods has attracted increasing attention due to their immune regulatory, antioxidative, and antimicrobial properties. The aim of this review is to introduce immune regulatory antioxidative and antimicrobial effects of probiotics, which provides some basic theories for scientific research and development of potential functional foods.
Collapse
Affiliation(s)
- Chao Tang
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Martín C, Escobedo S, Suárez J, Quirós L. Widespread use of Lactobacillus OppA, a surface located protein, as an adhesin that recognises epithelial cell surface glycosaminoglycans. Benef Microbes 2019; 10:463-472. [DOI: 10.3920/bm2018.0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Specific adherence is the first requisite that a microorganism has to fulfil to become established onto a mucosal surface. It was previously shown that the OppA surface protein of Lactobacillus salivarius Lv72 bound HeLa cell cultures through interaction with glycosaminoglycans (GAGs). To determine whether this is a peculiarity of that strain or whether it can be extended to other lactobacilli, 12 strains, belonging to six species, were confronted with HeLa-cell cultures in the presence of soluble GAGs. Interference was observed to six of them, heparan sulphate and chondroitin sulphate C being more interfering than chondroitin sulphate A or chondroitin sulphate B. Furthermore, inhibition of the biosynthesis of GAGs or their elimination from the cell surface with specific enzymes also resulted in reduced adherence. Analysis of the surface proteome of Lactobacillus crispatus Lv25 and of Lactobacillus reuteri RC14 revealed single proteins that immunoreacted with antibodies raised against OppA, the main adhesin of L. salivarius Lv72. Upon MALDI-TOF-TOF analysis, they were identified as OppA-like proteins, thus indicating that these proteins participate as adhesins in attachment of diverse lactobacilli to the surface of human epithelial cells.
Collapse
Affiliation(s)
- C. Martín
- Área de Microbiología, Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Av. Doctores Fernández Vega 34, 33012 Oviedo, Spain
| | - S. Escobedo
- Área de Microbiología, Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain
| | - J.E. Suárez
- Área de Microbiología, Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain
| | - L.M. Quirós
- Área de Microbiología, Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Av. Doctores Fernández Vega 34, 33012 Oviedo, Spain
| |
Collapse
|
10
|
Banić M, Uroić K, Leboš Pavunc A, Novak J, Zorić K, Durgo K, Petković H, Jamnik P, Kazazić S, Kazazić S, Radović S, Scalabrin S, Hynӧnen U, Šušković J, Kos B. Characterization of S-layer proteins of potential probiotic starter culture Lactobacillus brevis SF9B isolated from sauerkraut. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Wang J, Zeng Y, Wang S, Liu H, Zhang D, Zhang W, Wang Y, Ji H. Swine-Derived Probiotic Lactobacillus plantarum Inhibits Growth and Adhesion of Enterotoxigenic Escherichia coli and Mediates Host Defense. Front Microbiol 2018; 9:1364. [PMID: 29997590 PMCID: PMC6028558 DOI: 10.3389/fmicb.2018.01364] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/05/2018] [Indexed: 01/28/2023] Open
Abstract
Weaning stress renders piglets susceptible to pathogen infection, which leads to post-weaning diarrhea, a severe condition characterized by heavy diarrhea and mortality in piglets. Enterotoxigenic Escherichia coli (ETEC) is one of typical strains associated with post-weaning diarrhea. Thus, prevention and inhibition of ETEC infection are of great concern. Probiotics possess anti-pathogenic activity and can counteract ETEC infection; however, their underlying mechanisms and modes of action have not yet been clarified. In the present study, the direct and indirect protective effects of Lactobacillus plantarum ZLP001 against ETEC infection were investigated by different methods. We found that bacterial culture and culture supernatant of L. plantarum ZLP001 prevented ETEC growth by the Oxford cup method, and ETEC growth inhibition was observed in a co-culture assay as well. This effect was suggested to be caused mainly by antimicrobial metabolites produced by L. plantarum ZLP001. In addition, adhesion capacity of L. plantarum ZLP001 to IPEC-J2 cells were observed using microscopy and counting. L. plantarum ZLP001 also exhibited a concentration-dependent ability to inhibit ETEC adhesion to IPEC-J2 cells, which mainly occurred via exclusion and competition mode. Furthermore, quantitative real time polymerase chain reaction (qPCR) analysis showed that L. plantarum ZLP001 upregulated the expression of host defense peptides (HDPs) but did not trigger an inflammatory response. In addition, L. plantarum ZLP001 induced HDP secretion, which enhanced the potential antimicrobial activity of IPEC-J2 cell-culture supernatant after incubation with L. plantarum ZLP001. Our findings demonstrate that L. plantarum ZLP001, an intestinal Lactobacillus species associated with piglet health, possesses anti-ETEC activity. L. plantarum ZLP001 might prevent ETEC growth, inhibit ETEC adhesion to the intestinal mucosa, and activate the innate immune response to secret antimicrobial peptides. L. plantarum ZLP001 is worth investigation as a potential probiotics.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxia Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
12
|
Identification and analysis of the function of surface layer proteins from three Lactobacillus strains. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1335-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Kiňová Sepová H, Florová B, Bilková A, Drobná E, Březina V. Evaluation of adhesion properties of lactobacilli probiotic candidates. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-2135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Bengoa AA, Zavala L, Carasi P, Trejo SA, Bronsoms S, Serradell MDLÁ, Garrote GL, Abraham AG. Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Res Int 2017; 103:462-467. [PMID: 29389636 DOI: 10.1016/j.foodres.2017.09.093] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Gastrointestinal conditions along the digestive tract are the main stress to which probiotics administrated orally are exposed because they must survive these adverse conditions and arrive alive to the intestine. Adhesion to epithelium has been considered one of the key criteria for the characterization of probiotics because it extends their residence time in the intestine and as a consequence, can influence the health of the host by modifying the local microbiota or modulating the immune response. Nevertheless, there are very few reports on the adhesion properties to epithelium and mucus of microorganisms after passing through the gastrointestinal tract. In the present work, we evaluate the adhesion ability in vitro of L. paracasei strains isolated from kefir grains after acid and bile stress and we observed that they survive simulated gastrointestinal passage in different levels depending on the strain. L. paracasei CIDCA 8339, 83120 and 83123 were more resistant than L. paracasei CIDCA 83121 and 83124, with a higher susceptibility to simulated gastric conditions. Proteomic analysis of L. paracasei subjected to acid and bile stress revealed that most of the proteins that were positively regulated correspond to the glycolytic pathway enzymes, with an overall effect of stress on the activation of the energy source. Moreover, it is worth to remark that after gastrointestinal passage, L. paracasei strains have increased their ability to adhere to mucin and epithelial cells in vitro being this factor of relevance for maintenance of the strain in the gut environment to exert its probiotic action.
Collapse
Affiliation(s)
- Ana Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina
| | - Lucía Zavala
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina
| | - Paula Carasi
- Cátedra de Microbiología, Dpto. Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Buenos Aires, Argentina
| | - Sebastián Alejandro Trejo
- Instituto Multidisciplinario de Biología Celular (IMBICE); Universidad Nacional de La Plata, CONICET CCT La Plata, CIC; 526 y Camino Gral Belgrano, La Plata, Buenos Aires, Argentina; Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | | | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Dpto. Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Buenos Aires, Argentina
| | - Graciela Liliana Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina
| | - Analía Graciela Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina; Área Bioquímica y Control de Alimentos, Dpto. Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata; 47 y 115, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Veljović K, Popović N, Miljković M, Tolinački M, Terzić-Vidojević A, Kojić M. Novel Aggregation Promoting Factor AggE Contributes to the Probiotic Properties of Enterococcus faecium BGGO9-28. Front Microbiol 2017; 8:1843. [PMID: 29018422 PMCID: PMC5622976 DOI: 10.3389/fmicb.2017.01843] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023] Open
Abstract
The understanding of mechanisms of interactions between various bacterial cell surface proteins and host receptors has become imperative for the study of the health promoting features of probiotic enterococci. This study, for the first time, describes a novel enterococcal aggregation protein, AggE, from Enterococcus faecium BGGO9-28, selected from a laboratory collection of enterococcal isolates with auto-aggregation phenotypes. Among them, En. faecium BGGO9-28 showed the strongest auto-aggregation, adhesion to components of ECM and biofilm formation. Novel aggregation promoting factor AggE, a protein of 178.1 kDa, belongs to the collagen-binding superfamily of proteins and shares similar architecture with previously discovered aggregation factors from lactic acid bacteria (LAB). Its expression in heterologous enterococcal and lactococcal hosts demonstrates that the aggE gene is sufficient for cell aggregation. The derivatives carrying aggE exhibited the ten times higher adhesion ability to collagen and fibronectin, possess about two times higher adhesion to mucin and contribute to the increase of biofilm formation, comparing to the control strains. Analysis for the presence of virulence factors (cytolysin and gelatinase production), antibiotic resistance (antibiotic susceptibility) and genes (cylA, agg, gelE, esp, hylN, ace, efaAfs, and efaAfm) showed that BGGO9-28 was sensitive to all tested antibiotics, without hemolytic or gelatinase activity. This strain does not carry any of the tested genes encoding for known virulence factors. Results showed that BGGO9-28 was resistant to low pH and high concentrations of bile salts. Also, it adhered strongly to the Caco-2 human epithelial cell line. In conclusion, the results of this study indicate that the presence of AggE protein on the cell surface in enterococci is a desirable probiotic feature.
Collapse
Affiliation(s)
- Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Yadav AK, Tyagi A, Kumar A, Panwar S, Grover S, Saklani AC, Hemalatha R, Batish VK. Adhesion of Lactobacilli and their anti-infectivity potential. Crit Rev Food Sci Nutr 2017; 57:2042-2056. [PMID: 25879917 DOI: 10.1080/10408398.2014.918533] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The probiotic potential of lactic acid bacteria primarily point toward colonizing ability of Lactobacilli as the most important attribute for endowing all the known beneficial effects in a host. Lactobacillus species exert health-promoting function in the gastrointestinal tract through various mechanisms such as pathogen exclusion, maintenance of microbial balance, immunomodulation, and other crucial functions. It has been seen that many surface layer proteins are involved in host adhesion, and play significant role in the modification of some signaling pathways within the host cells. Interaction between different bacterial cell surface proteins and host receptor has been imperative for a better understanding of the mechanism through which Lactobacilli exert their health-promoting functions.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India.,b Centre for Molecular Biology, Central University of Jammu , Samba , Jammu & Kashmir , India
| | - Ashish Tyagi
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Ashwani Kumar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India.,e Department of Nutrition Biology , Central University of Haryana , Mahendergarh , Haryana , India
| | - Surbhi Panwar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India
| | - Sunita Grover
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | | | - Rajkumar Hemalatha
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India
| | - Virender Kumar Batish
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
17
|
Volstatova T, Marsik P, Rada V, Geigerova M, Havlik J. Effect of apple extracts and selective polyphenols on the adhesion of potential probiotic strains of Lactobacillus gasseri R and Lactobacillus casei FMP. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
18
|
Abstract
Accurate knowledge of the composition and ecology of the vaginal microbial environment in healthy women is necessary for understanding lactobacilli-dominated normal microbiota and the mechanisms by which it reduces disease risk. The vagina and its microbiota form a balanced ecosystem; any movement outside the normal range for this ecosystem of obligate and/or facultative microbes, termed dysbacteriosis, can lead to infection and disease. This review summarizes recent research on the vaginal ecosystem, the Lactobacillus species that dominate it, and the means by which they suppress the growth, development, and/or proliferation of pathogenic microbial species. Lactobacilli colonization is believed to be beneficial since it prevents other microorganisms from colonizing the vaginal epithelium via competitive adhesion, interactions with the local immunity and plasminogen-plasmin system, and the production of lactic acid, hydrogen peroxide, and antibacterial substances. In addition, lactobacilli also constitute an important part of the urogenital tract microbiota and the lactobacilli-dominated vaginal microbiome is a major determinant for female urogenital health.
Collapse
Affiliation(s)
- S Kovachev
- a Department of General and Oncogynecology , Military Medical Academy , Sofia , Bulgaria
| |
Collapse
|
19
|
Yu X, Åvall-Jääskeläinen S, Koort J, Lindholm A, Rintahaka J, von Ossowski I, Palva A, Hynönen U. A Comparative Characterization of Different Host-sourced Lactobacillus ruminis Strains and Their Adhesive, Inhibitory, and Immunomodulating Functions. Front Microbiol 2017; 8:657. [PMID: 28450859 PMCID: PMC5390032 DOI: 10.3389/fmicb.2017.00657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Lactobacillus ruminis, an autochthonous member of the gastrointestinal microbiota of humans and many animals, is a less characterized but interesting species for many reasons, including its intestinal prevalence and possible positive roles in host–microbe crosstalk. In this study, we isolated a novel L. ruminis strain (GRL 1172) from porcine feces and analyzed its functional characteristics and niche adaptation factors in parallel with those of three other L. ruminis strains (a human isolate, ATCC 25644, and two bovine isolates, ATCC 27780 and ATCC 27781). All the strains adhered to fibronectin, type I collagen, and human colorectal adenocarcinoma cells (HT-29), but poorly to type IV collagen, porcine intestinal epithelial cells (IPEC-1), and human colon adenocarcinoma cells (Caco-2). In competition assays, all the strains were able to inhibit the adhesion of Yersinia enterocolitica and enterotoxigenic Escherichia coli (ETEC, F4+) to fibronectin, type I; collagen, IPEC-1, and Caco-2 cells, and the inhibition rates tended to be higher than in exclusion assays. The culture supernatants of the tested strains inhibited the growth of six selected pathogens to varying extents. The inhibition was solely based on the low pH resulting from acid production during growth. All four L. ruminis strains supported the barrier function maintenance of Caco-2 cells, as shown by the modest increase in trans-epithelial electrical resistance and the prevention of dextran diffusion during co-incubation. However, the strains could not prevent the barrier damage caused by ETEC in the Caco-2 cell model. All the tested strains and their culture supernatants were able to provoke Toll-like receptor (TLR) 2-mediated NF-κB activation and IL-8 production in vitro to varying degrees. The induction of TLR5 signaling revealed that flagella were expressed by all the tested strains, but to different extents. Flagella and pili were observed by electron microscopy on the newly isolated strain GRL 1172.
Collapse
Affiliation(s)
- Xia Yu
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Silja Åvall-Jääskeläinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Joanna Koort
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Agneta Lindholm
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Johanna Rintahaka
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of HelsinkiHelsinki, Finland
| |
Collapse
|
20
|
Rodriguez Ayala F, Bauman C, Bartolini M, Saball E, Salvarrey M, Leñini C, Cogliati S, Strauch M, Grau R. Transcriptional regulation of adhesive properties ofBacillus subtilisto extracellular matrix proteins through the fibronectin-binding protein YloA. Mol Microbiol 2017; 104:804-821. [DOI: 10.1111/mmi.13666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Carlos Bauman
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Marco Bartolini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Ester Saball
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Marcela Salvarrey
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Cecilia Leñini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Sebastián Cogliati
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Mark Strauch
- Biomedical Sciences Department, Dental School; University of Maryland; Baltimore MD USA
| | - Roberto Grau
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| |
Collapse
|
21
|
Wang L, Si W, Xue H, Zhao X. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cell Microbiol 2017; 19. [PMID: 28125161 DOI: 10.1111/cmi.12731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus (S. aureus) is a frequent cause of infections in both humans and animals. Probiotics are known to inhibit colonization of pathogens on host tissues. However, mechanisms for the inhibition are still elusive due to complex host-microbe and microbe-microbe interactions. Here, we show that reduced abilities of S. aureus to infect mammary glands in the presence of Weissella cibaria (W. cibaria) were correlated with its poor adherence to mammary epithelial cells. Such inhibition by W. cibaria isolates was at least partially attributed to a fibronectin-binding protein (FbpA) on this lactic acid bacterium. Three W. cibaria isolates containing fbpA had higher inhibitory abilities than other three LAB isolates without the gene. The fbpA-deficient mutant of W. cibaria isolate LW1, LW1ΔfbpA, lost the inhibitory activity to reduce the adhesion of S. aureus to mammary epithelial cells and was less able to reduce the colonization of S. aureus in mammary glands. Expression of FbpA to the surface of LW1ΔfbpA reversed its inhibitory activities. Furthermore, addition of purified FbpA inhibited S. aureus biofilm formation. Our results suggest that W. cibaria FbpA hinders S. aureus colonization and infection through interfering with the S. aureus invasion pathway mediated by fibronectin-binding proteins and inhibiting biofilm formation of S. aureus.
Collapse
Affiliation(s)
- Liangliang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Wei Si
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China.,Department of Animal Science, McGill University, Quebec, Canada
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China.,Department of Animal Science, McGill University, Quebec, Canada
| |
Collapse
|
22
|
Miljkovic M, Bertani I, Fira D, Jovcic B, Novovic K, Venturi V, Kojic M. Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb Protein Switches Its Activity from Auto-aggregation to Biofilm Formation. Front Microbiol 2016; 7:1422. [PMID: 27660628 PMCID: PMC5014864 DOI: 10.3389/fmicb.2016.01422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022] Open
Abstract
AggLb is the largest (318.6 kDa) aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains) and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody), an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III, and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.
Collapse
Affiliation(s)
- Marija Miljkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Iris Bertani
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park Trieste, Italy
| | - Djordje Fira
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia; Department of Biochemistry, Faculty of Biology, University of BelgradeBelgrade, Serbia
| | - Branko Jovcic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia; Department of Biochemistry, Faculty of Biology, University of BelgradeBelgrade, Serbia
| | - Katarina Novovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park Trieste, Italy
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| |
Collapse
|
23
|
Carbohydrate-binding specificities of potential probiotic Lactobacillus strains in porcine jejunal (IPEC-J2) cells and porcine mucin. J Microbiol 2016; 54:510-9. [DOI: 10.1007/s12275-016-6168-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
|
24
|
Guigas C, Faulhaber K, Duerbeck D, Neve H, Heller KJ. Prophage-mediated modulation of interaction of Streptococcus thermophilus J34 with human intestinal epithelial cells and its competition against human pathogens. Benef Microbes 2015; 7:289-97. [PMID: 26689226 DOI: 10.3920/bm2015.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human intestinal microbiota plays an important role in human health. While adhesion to gastrointestinal mucosa is a prerequisite for colonisation, inhibition of adhesion is a property which may prevent or reduce infections by food borne pathogens. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus represent the two lactic bacteria constituting the yoghurt culture. These starter cultures have been claimed to be probiotic. In our study we compared two S. thermophilus strains (i.e. lysogenic strain J34 and corresponding non-lysogenic [prophage-cured] strain J34-6), with respect to (1) their in vitro adhesion properties to HT29 cells and (2) their cell surface hydrophobicities. Effects of the two strains on inhibition of adhesion of the pathogens Listeria monocytogenes Scott A, Staphylococcus aureus 6732 and Salmonella enteritidis S489 were studied in vitro with HT29 cell cultures. Lysogenic strain J34 was shown to be considerably more effective than the non-lysogenic derivative strain J34-6.
Collapse
Affiliation(s)
- C Guigas
- 1 Department of Microbiology and Biotechnology, Max Rubner Institut (Federal Research Institute of Nutrition and Health), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - K Faulhaber
- 2 Chair Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen University, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - D Duerbeck
- 3 BAV-Institut für Hygiene und Qualitätssicherung, Hanns-Martin-Schleyer-Str. 25, 77656 Offenburg, Germany
| | - H Neve
- 1 Department of Microbiology and Biotechnology, Max Rubner Institut (Federal Research Institute of Nutrition and Health), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - K J Heller
- 1 Department of Microbiology and Biotechnology, Max Rubner Institut (Federal Research Institute of Nutrition and Health), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| |
Collapse
|
25
|
Mukherjee S, Ramesh A. Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy. J Med Microbiol 2015; 64:1514-1526. [DOI: 10.1099/jmm.0.000181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
26
|
Miljkovic M, Strahinic I, Tolinacki M, Zivkovic M, Kojic S, Golic N, Kojic M. AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp. paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro. PLoS One 2015; 10:e0126387. [PMID: 25955159 PMCID: PMC4425601 DOI: 10.1371/journal.pone.0126387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/01/2015] [Indexed: 11/18/2022] Open
Abstract
Eleven Lactobacillus strains with strong aggregation abilities were selected from a laboratory collection. In two of the strains, genes associated with aggregation capability were plasmid located and found to strongly correlate with collagen binding. The gene encoding the auto-aggregation-promoting protein (AggLb) of Lactobacillus paracasei subsp. paracasei BGNJ1-64 was cloned using a novel, wide-range-host shuttle cloning vector, pAZILSJ. The clone pALb35, containing a 11377-bp DNA fragment, was selected from the SacI plasmid library for its ability to provide carriers with the aggregation phenotype. The complete fragment was sequenced and four potential ORFs were detected, including the aggLb gene and three surrounding transposase genes. AggLb is the largest known cell-surface protein in lactobacilli, consisting of 2998 aa (318,611 Da). AggLb belongs to the collagen-binding superfamily and its C-terminal region contains 20 successive repeats that are identical even at the nucleotide level. Deletion of aggLb causes a loss of the capacity to form cell aggregates, whereas overexpression increases cellular aggregation, hydrophobicity and collagen-binding potential. PCR screening performed with three sets of primers based on the aggLb gene of BGNJ1-64 enabled detection of the same type of aggLb gene in five of eleven selected aggregation-positive Lactobacillus strains. Heterologous expression of aggLb confirmed the crucial role of the AggLb protein in cell aggregation and specific collagen binding, indicating that AggLb has a useful probiotic function in effective colonization of host tissue and prevention of pathogen colonization.
Collapse
Affiliation(s)
- Marija Miljkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, 11010, Belgrade, Serbia
| | - Ivana Strahinic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, 11010, Belgrade, Serbia
| | - Maja Tolinacki
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, 11010, Belgrade, Serbia
| | - Milica Zivkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, 11010, Belgrade, Serbia
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, 11010, Belgrade, Serbia
| | - Natasa Golic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, 11010, Belgrade, Serbia
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, 11010, Belgrade, Serbia
| |
Collapse
|
27
|
Fernández Ramírez MD, Smid EJ, Abee T, Nierop Groot MN. Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. Int J Food Microbiol 2015; 207:23-9. [PMID: 25965141 DOI: 10.1016/j.ijfoodmicro.2015.04.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 04/19/2015] [Indexed: 12/25/2022]
Abstract
Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates. Biofilm formation as quantified by crystal violet staining and colony forming units was largely affected by the medium composition, growth temperature and maturation time and by strain specific features. All strains showed highest biofilm formation in Brain Heart Infusion medium supplemented with manganese and glucose. For L. plantarum biofilms the crystal violet (CV) assay, that is routinely used to quantify total biofilm formation, correlates poorly with the number of culturable cells in the biofilm. This can in part be explained by cell death and lysis resulting in CV stainable material, conceivably extracellular DNA (eDNA), contributing to the extracellular matrix. The strain to strain variation may in part be explained by differences in levels of eDNA, likely as result of differences in lysis behaviour. In line with this, biofilms of all strains tested, except for one spoilage isolate, were sensitive to DNase treatment. In addition, biofilms were highly sensitive to treatment with Proteinase K suggesting a role for proteins and/or proteinaceous material in surface colonisation. This study shows the impact of a range of environmental factors and enzyme treatments on biofilm formation capacity for selected L. plantarum isolates associated with food spoilage, and may provide clues for disinfection strategies in food industry.
Collapse
Affiliation(s)
- Mónica D Fernández Ramírez
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University and Research Centre, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands
| | - Eddy J Smid
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University and Research Centre, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands
| | - Tjakko Abee
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University and Research Centre, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands.
| | - Masja N Nierop Groot
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Wageningen UR Food and Biobased Research, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
28
|
Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Yadav AK, Tyagi A, Kumar A, Saklani AC, Grover S, Batish VK. Adhesion of indigenous Lactobacillus plantarum to gut extracellular matrix and its physicochemical characterization. Arch Microbiol 2014; 197:155-64. [PMID: 25212764 DOI: 10.1007/s00203-014-1034-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 01/01/2023]
Abstract
Adhesion to the human intestinal epithelial cell is considered as one of the important selection criteria of lactobacilli for probiotic attributes. Sixteen Lactobacillus plantarum strains from human origins were subjected for adhesion to extracellular matrix (ECM) components, and their physiochemical characterization, incubation time course and effect of different pH on bacterial adhesion in vitro were studied. Four strains showed significant binding to both fibronectin and mucin. After pretreatment with pepsin and trypsin, the bacterial adhesion to ECM reduced to the level of 50 % and with lysozyme significantly decreased by 65-70 %. Treatment with LiCl also strongly inhibited (90 %) the bacterial adhesion to ECM. Tested strains showed highest binding efficacy at time course of 120 and 180 min. Additionally, the binding of Lp91 to ECM was highest at pH 6 (155 ± 2.90 CFU/well). This study proved that surface layer components are proteinaceous in nature, which contributed in adhesion of lactobacillus strains. Further, the study can provide a better platform for introduction of new indigenous probiotic strains having strong adhesion potential for future use.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad, India,
| | | | | | | | | | | |
Collapse
|
30
|
The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie van Leeuwenhoek 2014; 106:751-62. [PMID: 25090959 PMCID: PMC4158178 DOI: 10.1007/s10482-014-0245-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/23/2014] [Indexed: 11/08/2022]
Abstract
The aim of this study was to analyze the cell envelope components and surface properties of two phenotypes of Lactobacillus rhamnosus isolated from the human gastrointestinal tract. The ability of the bacteria to adhere to human intestinal cells and to aggregate with other bacteria was determined. L. rhamnosus strains E/N and PEN differed with regard to the presence of exopolysaccharides (EPS) and specific surface proteins. Transmission electron microscopy showed differences in the structure of the outer cell surface of the strains tested. Bacterial surface properties were analyzed by Fourier transform infrared spectroscopy, fatty acid methyl esters and hydrophobicity assays. Aggregation capacity and adhesion of the tested strains to the human colon adenocarcinoma cell line HT29 was determined. The results indicated a high adhesion and aggregation ability of L. rhamnosus PEN, which possessed specific surface proteins, had a unique fatty acid content, and did not synthesize EPS. Adherence of L. rhamnosus was dependent on specific interactions and was promoted by surface proteins (42–114 kDa) and specific fatty acids. Polysaccharides likely hindered bacterial adhesion and aggregation by masking protein receptors. This study provides information on the cell envelope constituents of lactobacilli that influence bacterial aggregation and adhesion to intestinal cells. This knowledge will help to understand better their specific contribution in commensal–host interactions and adaptation to this ecological niche.
Collapse
|
31
|
Salaheen S, White B, Bequette BJ, Biswas D. Peanut fractions boost the growth of Lactobacillus casei that alters the interactions between Campylobacter jejuni and host epithelial cells. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Meng J, Zhu X, Gao SM, Zhang QX, Sun Z, Lu RR. Characterization of surface layer proteins and its role in probiotic properties of three Lactobacillus strains. Int J Biol Macromol 2014; 65:110-4. [DOI: 10.1016/j.ijbiomac.2014.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
|
33
|
Bulatović ML, Krunić TŽ, Vukašinović-Sekulić MS, Zarić DB, Rakin MB. Quality attributes of a fermented whey-based beverage enriched with milk and a probiotic strain. RSC Adv 2014. [DOI: 10.1039/c4ra08905g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Milk andL. rhamnosusincrease the probiotic character and stability of a beverage and greatly improve its viscosity and syneresis. The first use of ABY-6 culture in whey fermentation was successfully performed.
Collapse
Affiliation(s)
- Maja Lj. Bulatović
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade, Serbia
| | - Tanja Ž. Krunić
- Innovation center Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade, Serbia
| | | | - Danica B. Zarić
- IHIS Techno Experts d.o.o. Research Development Center
- 11000 Belgrade, Serbia
| | - Marica B. Rakin
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade, Serbia
| |
Collapse
|
34
|
Abstract
Lactobacilli are a subdominant component of the human intestinal microbiota that are also found in other body sites, certain foods, and nutrient-rich niches in the free environment. They represent the types of microorganisms that mammalian immune systems have learned not to react to, which is recognized as a potential driving force in the evolution of the human immune system. Co-evolution of lactobacilli and animals provides a rational basis to postulate an association with health benefits. To further complicate a description of their host interactions, lactobacilli may rarely cause opportunistic infections in compromised subjects. In this review, we focus primarily on human-Lactobacillus interactions. We overview the microbiological complexity of this extraordinarily diverse genus, we describe where lactobacilli are found in or on humans, what responses their presence elicits, and what microbial interaction and effector molecules have been identified. The rare cases of Lactobacillus septicaemia are explained in terms of the host impairment required for such an outcome. We discuss possibilities for exploitation of lactobacilli for therapeutic delivery and mucosal vaccination.
Collapse
|
35
|
Wong SS, Quan Toh Z, Dunne EM, Mulholland EK, Tang MLK, Robins-Browne RM, Licciardi PV, Satzke C. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG. BMC Res Notes 2013; 6:135. [PMID: 23561014 PMCID: PMC3641997 DOI: 10.1186/1756-0500-6-135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/01/2013] [Indexed: 12/14/2022] Open
Abstract
Background Colonization of the nasopharynx by Streptococcus pneumoniae is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. Probiotic bacteria can influence disease outcomes through various mechanisms, including inhibition of pathogen colonization. Here, we examine the effect of the probiotic Lactobacillus rhamnosus GG (LGG) on S. pneumoniae colonization of human epithelial cells using an in vitro model. We investigated the effects of LGG administered before, at the same time as, or after the addition of S. pneumoniae on the adherence of four pneumococcal isolates. Results LGG significantly inhibited the adherence of all the pneumococcal isolates tested. The magnitude of inhibition varied with LGG dose, time of administration, and the pneumococcal isolate used. Inhibition was most effective when a higher dose of LGG was administered prior to establishment of pneumococcal colonization. Mechanistic studies showed that LGG binds to epithelial cells but does not affect pneumococcal growth or viability. Administration of LGG did not lead to any significant changes in host cytokine responses. Conclusions These findings demonstrate that LGG can inhibit pneumococcal colonization of human epithelial cells in vitro and suggest that probiotics could be used clinically to prevent the establishment of pneumococcal carriage.
Collapse
Affiliation(s)
- Sook-San Wong
- Pneumococcal Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013; 2013:237921. [PMID: 23576850 PMCID: PMC3610365 DOI: 10.1155/2013/237921] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health.
Collapse
|
37
|
Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Appl Environ Microbiol 2012. [PMID: 23183972 DOI: 10.1128/aem.03323-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen.
Collapse
|
38
|
Banwo K, Sanni A, Tan H. Technological properties and probiotic potential of Enterococcus faecium strains isolated from cow milk. J Appl Microbiol 2012; 114:229-41. [PMID: 23035976 DOI: 10.1111/jam.12031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/29/2012] [Accepted: 09/29/2012] [Indexed: 11/29/2022]
Abstract
AIM To identify enterococci from the fermentation of milk for the production of nono, an African fermented dairy product, to determine the technological properties for suitability as starter cultures and safety as probiotics. METHODS AND RESULTS Enterococcus faecium CM4 and Enterococcus faecium 2CM1 were isolated from raw cow's milk. The strains were phenotypically and genotypically identified. Technological properties, safety investigations, in vitro adherence properties and antimicrobial characteristics were carried out. Strong acidification and tolerance to bile salts were recorded. The strains were bile salts hydrolytic positive and no haemolysis. There was no resistance to clinically relevant antibiotics. The strains exhibited adherence to human collagen type IV, human fibrinogen and fibronectin. The bacteriocins were active against Bacillus cereus DSM 2301, Bacillus subtilis ATCC 6633, Micrococcus luteus and Listeria monocytogenes. Bacteriocins were stable at pH 4-9 and on treatment with lipase, catalase, α-amylase and pepsin, while their activity was lost on treatment with other proteases. The bacteriocins produced were heat stable at 100°C for 10 min. The bacteriocin produced by the strains was identified as enterocin A. CONCLUSIONS The E. faecium strains in this study exhibited probiotic activity, and the safety investigations indicate their suitability as good candidates for a starter culture fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY The use of bacteriocin-producing E. faecium strains as starter cultures in fermented foods is beneficial but, however, their safety investigations as probiotics must be greatly emphasized.
Collapse
Affiliation(s)
- K Banwo
- Department of Microbiology, University of Ibadan, P.M.B 1 Ibadan, Oyo State, Nigeria.
| | | | | |
Collapse
|
39
|
Djukić-Vuković AP, Mojović LV, Vukašinović-Sekulić MS, Rakin MB, Nikolić SB, Pejin JD, Bulatović ML. Effect of different fermentation parameters on l-lactic acid production from liquid distillery stillage. Food Chem 2012; 134:1038-43. [DOI: 10.1016/j.foodchem.2012.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 03/05/2012] [Indexed: 11/15/2022]
|
40
|
Grimm A, Cho GS, Hanak A, Dorn A, Huch M, Franz CMAP. Characterization of Putative Adhesion Genes in the Potentially Probiotic Strain Lactobacillus plantarum BFE 5092. Probiotics Antimicrob Proteins 2011; 3:204-13. [DOI: 10.1007/s12602-011-9082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
CHENG SHAN, LIU CHENG, LI SHIFENG, SHEN QUN, ZHENG WEI. EFFECT OF CHEMICAL, PHYSICAL AND ENZYMATIC TREATMENTS ON LACTOCOCCUS LACTIS' SURFACE AGGLUTININ AND ITS PRECIPITATING ABILITY. J FOOD PROCESS ENG 2011. [DOI: 10.1111/j.1745-4530.2008.00354.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Lin WH, Wu CR, Fang TJ, Lee MS, Lin KL, Chen HC, Huang SY, Hseu YC. Adherent Properties and Macrophage Activation Ability of 3 Strains of Lactic Acid Bacteria. J Food Sci 2010; 76:M1-7. [DOI: 10.1111/j.1750-3841.2010.01875.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Influence of gallic acid and catechin polyphenols on probiotic properties of Streptococcus thermophilus CHCC 3534 strain. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0393-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Deepika G, Charalampopoulos D. Surface and adhesion properties of lactobacilli. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:127-52. [PMID: 20359456 DOI: 10.1016/s0065-2164(10)70004-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface properties of lactobacilli are of significant technological importance as they determine the interaction of the bacterial cells with the gastrointestinal mucosa, and therefore influence their location in the gut and their functionality. Studying the surface of the bacteria is critical for understanding the adhesion process better. This review compiles the knowledge from studies on the characterization Lactobacillus surfaces and evaluates the potential relationship between the cells' physicochemical characteristics and their adhesive abilities. It also discusses the effect that the production processes, such as fermentation and drying, can exert on the surface properties and adhesion abilities of lactobacilli.
Collapse
Affiliation(s)
- G Deepika
- Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, UK
| | | |
Collapse
|
45
|
Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA. The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010. [PMID: 20088967 DOI: 10.1111/j.1574-6976.2009.00208.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli belong to the lactic acid bacteria, which play a key role in industrial and artisan food raw-material fermentation, including a large variety of fermented dairy products. Next to their role in fermentation processes, specific strains of Lactobacillus are currently marketed as health-promoting cultures or probiotics. The last decade has witnessed the completion of a large number of Lactobacillus genome sequences, including the genome sequences of some of the probiotic species and strains. This development opens avenues to unravel the Lactobacillus-associated health-promoting activity at the molecular level. It is generally considered likely that an important part of the Lactobacillus effector molecules that participate in the proposed health-promoting interactions with the host (intestinal) system resides in the bacterial cell envelope. For this reason, it is important to accurately predict the Lactobacillus exoproteomes. Extensive annotation of these exoproteomes, combined with comparative analysis of species- or strain-specific exoproteomes, may identify candidate effector molecules, which may support specific effects on host physiology associated with particular Lactobacillus strains. Candidate health-promoting effector molecules of lactobacilli can then be validated via mutant approaches, which will allow for improved strain selection procedures, improved product quality control criteria and molecular science-based health claims.
Collapse
|
46
|
Muñoz-Provencio D, Pérez-Martínez G, Monedero V. Characterization of a fibronectin-binding protein from Lactobacillus casei BL23. J Appl Microbiol 2009; 108:1050-1059. [PMID: 19735320 DOI: 10.1111/j.1365-2672.2009.04508.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS To characterize the functionality of the Lactobacillus casei BL23 fbpA gene encoding a putative fibronectin-binding protein. METHODS AND RESULTS Adhesion tests showed that L. casei BL23 binds immobilized and soluble fibronectin in a protease-sensitive manner. A mutant with inactivated fbpA showed a decrease in binding to immobilized fibronectin and a strong reduction in the surface hydrophobicity as reflected by microbial adhesion to solvents test. However, minor effects were seen on adhesion to the human Caco-2 or HT-29 cell lines. Purified 6X(His)FbpA bound to immobilized fibronectin in a dose-dependent manner. Western blot experiments with FbpA-specific antibodies showed that FbpA could be extracted from the cell surface by LiCl treatment and that protease digestion of the cells reduced the amount of extracted FbpA. Furthermore, surface exposition of FbpA was detected in other L. casei strains by LiCl extraction and whole-cell ELISA. CONCLUSIONS FbpA can be found at the L. casei BL23 surface and participates in cell attachment to immobilized fibronectin. We showed that FbpA is an important, but not the only, factor contributing to fibronectin binding in BL23 strain. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report showing the involvement of FbpA in fibronectin binding in L. casei BL23 and represents a new contribution to the study of attachment factors in probiotic bacteria.
Collapse
Affiliation(s)
- D Muñoz-Provencio
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, Burjassot, Valencia, Spain
| | - G Pérez-Martínez
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, Burjassot, Valencia, Spain
| | - V Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, Burjassot, Valencia, Spain
| |
Collapse
|
47
|
Beck HC, Madsen SÃM, Glenting J, Petersen JÃ, Israelsen H, Nørrelykke MR, Antonsson M, Hansen AM. Proteomic analysis of cell surface-associated proteins from probioticLactobacillus plantarum. FEMS Microbiol Lett 2009; 297:61-6. [DOI: 10.1111/j.1574-6968.2009.01662.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Deepika G, Green R, Frazier R, Charalampopoulos D. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J Appl Microbiol 2009; 107:1230-40. [DOI: 10.1111/j.1365-2672.2009.04306.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Princivalli M, Paoletti C, Magi G, Palmieri C, Ferrante L, Facinelli B. Lactobacillus rhamnosusGG inhibits invasion of cultured human respiratory cells byprtF1-positive macrolide-resistant group A streptococci. Lett Appl Microbiol 2009; 48:368-72. [DOI: 10.1111/j.1472-765x.2008.02540.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact 2009; 8:14. [PMID: 19220903 PMCID: PMC2654425 DOI: 10.1186/1475-2859-8-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/16/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lactic acid bacteria of the genus Lactobacillus and Bifidobacterium are one of the most important health promoting groups of the human intestinal microbiota. Their protective role within the gut consists in out competing invading pathogens for ecological niches and metabolic substrates. Among the features necessary to provide health benefits, commensal microorganisms must have the ability to adhere to human intestinal cells and consequently to colonize the gut. Studies on mechanisms mediating adhesion of lactobacilli to human intestinal cells showed that factors involved in the interaction vary mostly among different species and strains, mainly regarding interaction between bacterial adhesins and extracellular matrix or mucus proteins. We have investigated the adhesive properties of Lactobacillus plantarum, a member of the human microbiota of healthy individuals. RESULTS We show the identification of a Lactobacillus plantarum LM3 cell surface protein (48 kDa), which specifically binds to human fibronectin (Fn), an extracellular matrix protein. By means of mass spectrometric analysis this protein was identified as the product of the L. plantarum enoA1 gene, coding the EnoA1 alfa-enolase. Surface localization of EnoA1 was proved by immune electron microscopy. In the mutant strain LM3-CC1, carrying the enoA1 null mutation, the 48 kDa adhesin was not anymore detectable neither by anti-enolase Western blot nor by Fn-overlay immunoblotting assay. Moreover, by an adhesion assay we show that LM3-CC1 cells bind to fibronectin-coated surfaces less efficiently than wild type cells, thus demonstrating the significance of the surface displaced EnoA1 protein for the L. plantarum LM3 adhesion to fibronectin. CONCLUSION Adhesion to host tissues represents a crucial early step in the colonization process of either pathogens or commensal bacteria. We demonstrated the involvement of the L. plantarum Eno A1 alfa-enolase in Fn-binding, by studying LM3 and LM3-CC1 surface proteins. Isolation of LM3-CC1 strain was possible for the presence of expressed enoA2 gene in the L. plantarum genome, giving the possibility, for the first time to our knowledge, to quantitatively compare adhesion of wild type and mutant strain, and to assess doubtless the role of L. plantarum Eno A1 as a fibronectin binding protein.
Collapse
|