1
|
Leptospirosis in Central America: Techniques for Diagnosis and Molecular Characterization. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
The EbpA-RpoN Regulatory Pathway of the Pathogen Leptospira interrogans Is Essential for Survival in the Environment. Appl Environ Microbiol 2017; 83:AEM.02377-16. [PMID: 27864172 DOI: 10.1128/aem.02377-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023] Open
Abstract
Leptospira interrogans is the agent of leptospirosis, a reemerging zoonotic disease. It is transmitted to humans through environmental surface waters contaminated by the urine of mammals chronically infected by pathogenic strains able to survive in water for long periods. Little is known about the regulatory pathways underlying environmental sensing and host adaptation of L. interrogans during its enzootic cycle. This study identifies the EbpA-RpoN regulatory pathway in L. interrogans In this pathway, EbpA, a σ54 activator and putative prokaryotic enhancer-binding protein (EBP), and the alternative sigma factor RpoN (σ54) control expression of at least three genes, encoding AmtB (an ammonium transport protein) and two proteins of unknown function. Electrophoresis mobility shift assay demonstrated that recombinant RpoN and EbpA bind to the promoter region and upstream of these three identified genes, respectively. Genetic disruption of ebpA in L. interrogans serovar Manilae virtually abolished expression of the three genes, including amtB in two independent ebpA mutants. Complementation of the ebpA mutant restored expression of these genes. Intraperitoneal inoculation of gerbils with the ebpA mutant did not affect mortality. However, the ebpA mutant had decreased cell length in vitro and had a significantly lowered cell density at stationary phase when grown with l-alanine as the sole nitrogen source. Furthermore, the ebpA mutant has dramatically reduced long-term survival ability in water. Together, these studies identify a regulatory pathway, the EbpA-RpoN pathway, that plays an important role in the zoonotic cycle of L. interrogans IMPORTANCE: Leptospirosis is a reemerging disease with global importance. However, our understanding of gene regulation of the spirochetal pathogen Leptospira interrogans is still in its infancy, largely due to the lack of robust tools for genetic manipulation of this spirochete. Little is known about how the pathogen achieves its long-term survival in the aquatic environment. By utilizing bioinformatic, genetic, and biochemical methods, we discovered a regulatory pathway in L. interrogans, the EbpA-RpoN pathway, and demonstrated that this pathway plays an important role in environmental survival of this pathogen.
Collapse
|
3
|
Wang Y, Zhuang X, Zhong Y, Zhang C, Zhang Y, Zeng L, Zhu Y, He P, Dong K, Pal U, Guo X, Qin J. Distribution of Plasmids in Distinct Leptospira Pathogenic Species. PLoS Negl Trop Dis 2015; 9:e0004220. [PMID: 26555137 PMCID: PMC4640553 DOI: 10.1371/journal.pntd.0004220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/19/2015] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological significance might contribute to our understanding of biology and infectivity of pathogenic spirochetes.
Collapse
Affiliation(s)
- Yanzhuo Wang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuran Zhuang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhong
- Computational Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Cuicai Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (ICDC, CCDC), Beijing, China
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping He
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Dong
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- * E-mail: (UP); (XG); (JQ)
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (UP); (XG); (JQ)
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (UP); (XG); (JQ)
| |
Collapse
|
4
|
Abstract
Recent advances in molecular genetics, such as the ability to construct defined mutants, have allowed the study of virulence factors and more generally the biology in Leptospira. However, pathogenic leptospires remain much less easily transformable than the saprophyte L. biflexa and further development and improvement of genetic tools are required. Here, we review tools that have been used to genetically manipulate Leptospira. We also describe the major advances achieved in both genomics and postgenomics technologies, including transcriptomics and proteomics.
Collapse
|
5
|
A century of Leptospira strain typing. INFECTION GENETICS AND EVOLUTION 2009; 9:760-8. [DOI: 10.1016/j.meegid.2009.06.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
6
|
Zuerner RL, Stanton TB, Minion FC, Li C, Charon NW, Trott DJ, Hampson DJ. Genetic variation in Brachyspira: chromosomal rearrangements and sequence drift distinguish B. pilosicoli from B. hyodysenteriae. Anaerobe 2007; 10:229-37. [PMID: 16701522 DOI: 10.1016/j.anaerobe.2004.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 04/19/2004] [Accepted: 05/11/2004] [Indexed: 11/15/2022]
Abstract
Brachyspira pilosicoli and B. hyodysenteriae are anaerobic pathogenic intestinal spirochetes differing in host range and disease manifestations. Little is known about the size, organization, or genetic content of the B. pilosicoli genome and only limited information is available regarding the genetic organization in B. hyodysenteriae. Both B. hyodysenteriae and B. pilosicoli exist as recombinant populations, and this may be due, in part, to an unusual phage-like gene transfer agent, VSH-1. To compare genetic organization in these two species, the number of mapped loci on an existing physical and genetic map of B. hyodysenteriae B78(T) was expanded, and a combined physical and genetic map of B. pilosicoli P43/6/78(T) was constructed. The B. pilosicoli genome size was about 2.5 Mb, nearly 750 kb smaller than the B. hyodysenteriae genome. Several chromosomal rearrangements have contributed to differences in the size, organization, and content of the two bacterial genomes, and such differences may influence the ability of these species to infect different hosts and cause disease. To evaluate these differences further, comparisons were focused on genes thought to contribute to host-parasite interactions. Four genetic loci (bit, fruBC, vspA, and vspH) were found in B. hyodysenteriae, but not in B. pilosicoli, while two genetic loci (clpX and mglB) were found in B. pilosicoli, but not in B. hyodysenteriae. Contrary to a previous study, an intact copy of the hlyA gene, encoding the B. hyodysenteriae beta-hemolysin gene was detected in B. pilosicoli. Although the hlyA genes of these two species were nearly identical, sequence variation was detected in the intergenic region upstream of hlyA that may alter transcription and translation efficiency of this gene in B. pilosicoli. In addition, divergence in genes flanking hlyA may affect the chemical composition of lipid attached to the mature B. pilosicoli HlyA protein resulting in reduced hemolytic activity.
Collapse
Affiliation(s)
- Richard L Zuerner
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, P.O. Box 70, Ames, IA 50010, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zuerner RL, Trueba GA. Characterization of IS1501 mutants of Leptospira interrogans serovar pomona. FEMS Microbiol Lett 2005; 248:199-205. [PMID: 15979822 DOI: 10.1016/j.femsle.2005.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/17/2005] [Accepted: 05/20/2005] [Indexed: 11/30/2022] Open
Abstract
Leptospira interrogans is a diverse species in which individual serovars have distinctive restriction fragment length polymorphisms that are useful in strain identification. Many of these polymorphisms can be detected using hybridization probes derived from insertion sequences; an observation that suggests these IS elements are active and can transpose in L. interrogans. Two spontaneous mutants of L. interrogans serovar Pomona strain RZ11 were isolated by immune selection and characterized. Changes in the size and antigenicity of LPS from these mutants were detected. Genetic analysis showed that both mutants have additional copies of an IS3-like element, designated IS1501, that are not present in the parental strain. One mutant, GT211, has a single additional copy of IS1501, whereas the other mutant, GT210 has three additional copies of IS1501 relative to strain RZ11. IS1501 transposition generated 3-bp direct repeats from target sequences flanking the insertion site. RT-PCR analysis of transcripts at altered loci showed IS1501 transcripts extended into adjacent sequences. These data are the first to show spontaneous transposition of an endogenous Leptospira insertion sequence, and suggest that IS1501 may be capable of gene activation.
Collapse
Affiliation(s)
- Richard L Zuerner
- National Reference Center for Leptospirosis, Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, USDA, ARS, P.O. Box 70, Ames, IA 50010, USA.
| | | |
Collapse
|
8
|
Nascimento ALTO, Ko AI, Martins EAL, Monteiro-Vitorello CB, Ho PL, Haake DA, Verjovski-Almeida S, Hartskeerl RA, Marques MV, Oliveira MC, Menck CFM, Leite LCC, Carrer H, Coutinho LL, Degrave WM, Dellagostin OA, El-Dorry H, Ferro ES, Ferro MIT, Furlan LR, Gamberini M, Giglioti EA, Góes-Neto A, Goldman GH, Goldman MHS, Harakava R, Jerônimo SMB, Junqueira-de-Azevedo ILM, Kimura ET, Kuramae EE, Lemos EGM, Lemos MVF, Marino CL, Nunes LR, de Oliveira RC, Pereira GG, Reis MS, Schriefer A, Siqueira WJ, Sommer P, Tsai SM, Simpson AJG, Ferro JA, Camargo LEA, Kitajima JP, Setubal JC, Van Sluys MA. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 2004; 186:2164-72. [PMID: 15028702 PMCID: PMC374407 DOI: 10.1128/jb.186.7.2164-2172.2004] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide O side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.
Collapse
Affiliation(s)
- A L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nascimento ALTO, Verjovski-Almeida S, Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Digiampietri LA, Harstkeerl RA, Ho PL, Marques MV, Oliveira MC, Setubal JC, Haake DA, Martins EAL. Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 2004; 37:459-77. [PMID: 15064809 PMCID: PMC2666282 DOI: 10.1590/s0100-879x2004000400003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organism's ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.
Collapse
|