1
|
Sakagianni A, Koufopoulou C, Koufopoulos P, Kalantzi S, Theodorakis N, Nikolaou M, Paxinou E, Kalles D, Verykios VS, Myrianthefs P, Feretzakis G. Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions. Antibiotics (Basel) 2024; 13:1052. [PMID: 39596745 PMCID: PMC11590962 DOI: 10.3390/antibiotics13111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The emergence of antimicrobial resistance (AMR) due to the misuse and overuse of antibiotics has become a critical threat to global public health. There is a dire need to forecast AMR to understand the underlying mechanisms of resistance for the development of effective interventions. This paper explores the capability of machine learning (ML) methods, particularly unsupervised learning methods, to enhance the understanding and prediction of AMR. It aims to determine the patterns from AMR gene data that are clinically relevant and, in public health, capable of informing strategies. Methods: We analyzed AMR gene data in the PanRes dataset by applying unsupervised learning techniques, namely K-means clustering and Principal Component Analysis (PCA). These techniques were applied to identify clusters based on gene length and distribution according to resistance class, offering insights into the resistance genes' structural and functional properties. Data preprocessing, such as filtering and normalization, was conducted prior to applying machine learning methods to ensure consistency and accuracy. Our methodology included the preprocessing of data and reduction of dimensionality to ensure that our models were both accurate and interpretable. Results: The unsupervised learning models highlighted distinct clusters of AMR genes, with significant patterns in gene length, including their associated resistance classes. Further dimensionality reduction by PCA allows for clearer visualizations of relationships among gene groupings. These patterns provide novel insights into the potential mechanisms of resistance, particularly the role of gene length in different resistance pathways. Conclusions: This study demonstrates the potential of ML, specifically unsupervised approaches, to enhance the understanding of AMR. The identified patterns in resistance genes could support clinical decision-making and inform public health interventions. However, challenges remain, particularly in integrating genomic data and ensuring model interpretability. Further research is needed to advance ML applications in AMR prediction and management.
Collapse
Affiliation(s)
- Aikaterini Sakagianni
- Intensive Care Unit, Sismanogelio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece;
| | - Christina Koufopoulou
- Anesthesiology Department, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vass. Sofias 76, 11528 Athens, Greece;
| | - Petros Koufopoulos
- Department of Internal Medicine, Sismanogleio General Hospital, 15126 Marousi, Greece;
| | - Sofia Kalantzi
- Department of Internal Medicine & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece;
| | - Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Dimitris Kalles
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Pavlos Myrianthefs
- Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| |
Collapse
|
2
|
Cyriaque V, Ibarra-Chávez R, Kuchina A, Seelig G, Nesme J, Madsen JS. Single-cell RNA sequencing reveals plasmid constrains bacterial population heterogeneity and identifies a non-conjugating subpopulation. Nat Commun 2024; 15:5853. [PMID: 38997267 PMCID: PMC11245611 DOI: 10.1038/s41467-024-49793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Transcriptional heterogeneity in isogenic bacterial populations can play various roles in bacterial evolution, but its detection remains technically challenging. Here, we use microbial split-pool ligation transcriptomics to study the relationship between bacterial subpopulation formation and plasmid-host interactions at the single-cell level. We find that single-cell transcript abundances are influenced by bacterial growth state and plasmid carriage. Moreover, plasmid carriage constrains the formation of bacterial subpopulations. Plasmid genes, including those with core functions such as replication and maintenance, exhibit transcriptional heterogeneity associated with cell activity. Notably, we identify a cell subpopulation that does not transcribe conjugal plasmid transfer genes, which may help reduce plasmid burden on a subset of cells. Our study advances the understanding of plasmid-mediated subpopulation dynamics and provides insights into the plasmid-bacteria interplay.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, Mons, Belgium.
| | | | - Anna Kuchina
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Sünderhauf D, Klümper U, Gaze WH, Westra ER, van Houte S. Interspecific competition can drive plasmid loss from a focal species in a microbial community. THE ISME JOURNAL 2023; 17:1765-1773. [PMID: 37558861 PMCID: PMC10504238 DOI: 10.1038/s41396-023-01487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Plasmids are key disseminators of antimicrobial resistance genes and virulence factors, and it is therefore critical to predict and reduce plasmid spread within microbial communities. The cost of plasmid carriage is a key metric that can be used to predict plasmids' ecological fate, and it is unclear whether plasmid costs are affected by growth partners in a microbial community. We carried out competition experiments and tracked plasmid maintenance using a model system consisting of a synthetic and stable five-species community and a broad host-range plasmid, engineered to carry different payloads. We report that both the cost of plasmid carriage and its long-term maintenance in a focal strain depended on the presence of competitors, and that these interactions were species specific. Addition of growth partners increased the cost of a high-payload plasmid to a focal strain, and accordingly, plasmid loss from the focal species occurred over a shorter time frame. We propose that the destabilising effect of interspecific competition on plasmid maintenance may be leveraged in clinical and natural environments to cure plasmids from focal strains.
Collapse
Affiliation(s)
- David Sünderhauf
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK.
| | - Uli Klümper
- Department Hydrosciences, Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn, TR10 9FE, UK
| | - Edze R Westra
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK
| | - Stineke van Houte
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK.
| |
Collapse
|
4
|
Fessler M, Madsen JS, Zhang Y. Conjugative plasmids inhibit extracellular electron transfer in Geobacter sulfurreducens. Front Microbiol 2023; 14:1150091. [PMID: 37007462 PMCID: PMC10063792 DOI: 10.3389/fmicb.2023.1150091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Geobacter sulfurreducens is part of a specialized group of microbes with the unique ability to exchange electrons with insoluble materials, such as iron oxides and electrodes. Therefore, G. sulfurreducens plays an essential role in the biogeochemical iron cycle and microbial electrochemical systems. In G. sulfurreducens this ability is primarily dependent on electrically conductive nanowires that link internal electron flow from metabolism to solid electron acceptors in the extracellular environment. Here we show that when carrying conjugative plasmids, which are self-transmissible plasmids that are ubiquitous in environmental bacteria, G. sulfurreducens reduces insoluble iron oxides at much slower rates. This was the case for all three conjugative plasmids tested (pKJK5, RP4 and pB10). Growth with electron acceptors that do not require expression of nanowires was, on the other hand, unaffected. Furthermore, iron oxide reduction was also inhibited in Geobacter chapellei, but not in Shewanella oneidensis where electron export is nanowire-independent. As determined by transcriptomics, presence of pKJK5 reduces transcription of several genes that have been shown to be implicated in extracellular electron transfer in G. sulfurreducens, including pilA and omcE. These results suggest that conjugative plasmids can in fact be very disadvantageous for the bacterial host by imposing specific phenotypic changes, and that these plasmids may contribute to shaping the microbial composition in electrode-respiring biofilms in microbial electrochemical reactors.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Yifeng Zhang,
| |
Collapse
|
5
|
Li H, Dechesne A, He Z, Jensen MM, Song HL, Smets BF. Electrochemical disinfection may increase the spread of antibiotic resistance genes by promoting conjugal plasmid transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159846. [PMID: 36328265 DOI: 10.1016/j.scitotenv.2022.159846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Current in the milliampere range can be used for electrochemical inactivation of bacteria. Yet, bacteria-including antibiotic resistant bacteria (ARB) may be subjected to sublethal conditions due to imperfect mixing or energy savings measures during electrochemical disinfection. It is not known whether such sublethal current intensities have the potential to stimulate plasmid transfer from ARB. In this study, conjugal transfer of plasmid pKJK5 was investigated between Pseudomonas putida strains under conditions reflecting electrochemical disinfection. Although the abundance of culturable and membrane-intact donor and recipient cells decreased with applied current (0-60 mA), both transconjugant density and transconjugant frequency increased. Both active chlorine and superoxide radicals were generated electrolytically, and ROS generation was induced. In addition, we detected significant over expression of a core oxidative stress defense gene (ahpCF) with current. Expression of selected conjugation related genes (traE, traI, trbJ, and trbL) also significantly correlated with current intensity. ROS accumulation, SOS response and subsequent derepression of conjugation are therefore the plausible consequence of sublethal current exposure. These findings suggest that sublethal intensities of current can enhance conjugal plasmid transfer, and that it is essential that conditions of electrochemical disinfection (applied voltage, current density, time and mixing) are carefully controlled to avoid conjugal ARG transmission.
Collapse
Affiliation(s)
- Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China; Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark.
| | - Zhiming He
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark.
| | - Marlene Mark Jensen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark.
| | - Hai Liang Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark.
| |
Collapse
|
6
|
Lo HY, Martínez-Lavanchy PM, Goris T, Heider J, Boll M, Kaster AK, Müller JA. IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Environ Microbiol 2022; 24:6411-6425. [PMID: 36306376 DOI: 10.1111/1462-2920.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Paula M Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Goris
- Department of Molecular Toxicology, Intestinal Microbiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, Germany
| | - Matthias Boll
- Institute of Biology II, Albert-Ludwigs-Universität Freiburg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Wang Q, Olesen AK, Maccario L, Madsen JS. An easily modifiable conjugative plasmid for studying horizontal gene transfer. Plasmid 2022; 123-124:102649. [PMID: 36100085 DOI: 10.1016/j.plasmid.2022.102649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Horizontal gene transfer is an important mechanism in bacterial evolution and can occur at striking frequencies when mediated by mobile genetic elements. Conjugative plasmids are mobile genetic elements that are main drivers of horizontal transfer and a major facilitator in the spread of antibiotic resistance genes. However, conjugative plasmid models that readily can be genetically modified with the aim to study horizontal transfer are not currently available. The aim of this study was to develop a conjugative plasmid model where the insertion of gene cassettes such as reporter genes (e.g., fluorescent proteins) or antibiotic resistance genes would be efficient and convenient. Here, we introduced a single attTn7 site into the conjugative broad-host-range IncP-1 plasmid pKJK5 in a non-disruptive manner. Furthermore, a version with lower transfer rate and a non-conjugative version of pKJK5-attTn7 were also constructed. The advantage of having the attTn7 sites is that genes of interest can be introduced in a single step with very high success rate using the Tn7 transposition system. In addition, larger genetic fragments can be inserted. To illustrate the efficacy of the constructed pKJK5 plasmids, they were complemented with sfGFP (a gene encoding superfolder green fluorescent protein) in addition to seven different β-lactamase genes representing the four known classes of β-lactamases.
Collapse
Affiliation(s)
- Qinqin Wang
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Asmus Kalckar Olesen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Røder HL, Trivedi U, Russel J, Kragh KN, Herschend J, Thalsø-Madsen I, Tolker-Nielsen T, Bjarnsholt T, Burmølle M, Madsen JS. Biofilms can act as plasmid reserves in the absence of plasmid specific selection. NPJ Biofilms Microbiomes 2021; 7:78. [PMID: 34620879 PMCID: PMC8497521 DOI: 10.1038/s41522-021-00249-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Plasmids facilitate rapid bacterial adaptation by shuttling a wide variety of beneficial traits across microbial communities. However, under non-selective conditions, maintaining a plasmid can be costly to the host cell. Nonetheless, plasmids are ubiquitous in nature where bacteria adopt their dominant mode of life - biofilms. Here, we demonstrate that biofilms can act as spatiotemporal reserves for plasmids, allowing them to persist even under non-selective conditions. However, under these conditions, spatial stratification of plasmid-carrying cells may promote the dispersal of cells without plasmids, and biofilms may thus act as plasmid sinks.
Collapse
Affiliation(s)
- Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Thalsø-Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Pallares-Vega R, Macedo G, Brouwer MSM, Hernandez Leal L, van der Maas P, van Loosdrecht MCM, Weissbrodt DG, Heederik D, Mevius D, Schmitt H. Temperature and Nutrient Limitations Decrease Transfer of Conjugative IncP-1 Plasmid pKJK5 to Wild Escherichia coli Strains. Front Microbiol 2021; 12:656250. [PMID: 34349732 PMCID: PMC8326584 DOI: 10.3389/fmicb.2021.656250] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmid-mediated dissemination of antibiotic resistance among fecal Enterobacteriaceae in natural ecosystems may contribute to the persistence of antibiotic resistance genes in anthropogenically impacted environments. Plasmid transfer frequencies measured under laboratory conditions might lead to overestimation of plasmid transfer potential in natural ecosystems. This study assessed differences in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings were performed under optimal laboratory conditions (rich LB medium and 37°C) and environmentally relevant temperatures (25, 15 and 9°C) or nutrient regimes mimicking environmental conditions and limitations (synthetic wastewater and soil extract). Under optimal nutrient conditions and temperature, two recipients yielded high transfer frequencies (5 × 10-1) while the conjugation frequency of the third strain was 1000-fold lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer frequencies, albeit all three strains conjugated under all the tested temperatures. Low nutritive media caused significant decreases in transconjugants (-3 logs for synthetic wastewater; -6 logs for soil extract), where only one of the strains was able to produce detectable transconjugants. Collectively, this study highlights that despite less-than-optimal conditions, fecal organisms may transfer plasmids in the environment, but the transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions.
Collapse
Affiliation(s)
- Rebeca Pallares-Vega
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Department Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Gonçalo Macedo
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Michael S. M. Brouwer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Lucia Hernandez Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Peter van der Maas
- Van Hall Larenstein, University of Applied Sciences, Leeuwarden, Netherlands
| | | | - David G. Weissbrodt
- Department Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Dik Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Cyriaque V, Madsen JS, Fievez L, Leroy B, Hansen LH, Bureau F, Sørensen SJ, Wattiez R. Lead Drives Complex Dynamics of a Conjugative Plasmid in a Bacterial Community. Front Microbiol 2021; 12:655903. [PMID: 34122370 PMCID: PMC8195591 DOI: 10.3389/fmicb.2021.655903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Plasmids carrying metal resistance genes (MRGs) have been suggested to be key ecological players in the adaptation of metal-impacted microbial communities, making them promising drivers of bio-remediation processes. However, the impact of metals on plasmid-mediated spread of MRGs through selection, plasmid loss, and transfer is far from being fully understood. In the present study, we used two-member bacterial communities to test the impact of lead on the dispersal of the IncP plasmid pKJK5 from a Pseudomonas putida KT2440 plasmid donor and two distinct recipients, Variovorax paradoxus B4 or Delftia acidovorans SPH-1 after 4 and 10 days of mating. Two versions of the plasmid were used, carrying or not carrying the lead resistance pbrTRABCD operon, to assess the importance of fitness benefit and conjugative potential for the dispersal of the plasmid. The spread dynamics of metal resistance conveyed by the conjugative plasmid were dependent on the recipient and the lead concentration: For V. paradoxus, the pbr operon did not facilitate neither lead resistance nor variation in plasmid spread. The growth gain brought by the pbr operon to D. acidovorans SPH-1 and P. putida KT2440 at 1 mM Pb enhanced the spread of the plasmid. At 1.5 mM Pb after 4 days, the proteomics results revealed an oxidative stress response and an increased abundance of pKJK5-encoded conjugation and partitioning proteins, which most likely increased the transfer of the control plasmid to D. acidovorans SPH-1 and ensured plasmid maintenance. As a consequence, we observed an increased spread of pKJK5-gfp. Conversely, the pbr operon reduced the oxidative stress response and impeded the rise of conjugation- and partitioning-associated proteins, which slowed down the spread of the pbr carrying plasmid. Ultimately, when a fitness gain was recorded in the recipient strain, the spread of MRG-carrying plasmids was facilitated through positive selection at an intermediate metal concentration, while a high lead concentration induced oxidative stress with positive impacts on proteins encoding plasmid conjugation and partitioning.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laurence Fievez
- Cellular and Molecular Immunology Service, GIGA Research, University of Liège (ULG), Liège, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Lars H Hansen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fabrice Bureau
- Cellular and Molecular Immunology Service, GIGA Research, University of Liège (ULG), Liège, Belgium
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
11
|
Kottara A, Hall JPJ, Brockhurst MA. The proficiency of the original host species determines community-level plasmid dynamics. FEMS Microbiol Ecol 2021; 97:6134752. [PMID: 33580956 DOI: 10.1093/femsec/fiab026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmids are common in natural bacterial communities, facilitating bacterial evolution via horizontal gene transfer. Bacterial species vary in their proficiency to host plasmids: whereas plasmids are stably maintained in some species regardless of selection for plasmid-encoded genes, in other species, even beneficial plasmids are rapidly lost. It is, however, unclear how this variation in host proficiency affects plasmid persistence in communities. Here, we test this using multispecies bacterial soil communities comprising species varying in their proficiency to host a large conjugative mercury resistance plasmid, pQBR103. The plasmid reached higher community-level abundance where beneficial and when introduced to the community in a more proficient host species. Proficient plasmid host species were also better able to disseminate the plasmid to a wider diversity of host species. These findings suggest that the dynamics of plasmids in natural bacterial communities depend not only upon the plasmid's attributes and the selective environment but also upon the proficiency of their host species.
Collapse
Affiliation(s)
- Anastasia Kottara
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Michael A Brockhurst
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2020; 96:5766226. [PMID: 32109282 PMCID: PMC7189800 DOI: 10.1093/femsec/fiaa031] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms in water environments are thought to be hot spots for horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). ARGs can be spread via HGT, though mechanisms are known and have been shown to depend on the environment, bacterial communities and mobile genetic elements. Classically, HGT mechanisms include conjugation, transformation and transduction; more recently, membrane vesicles (MVs) have been reported as DNA reservoirs implicated in interspecies HGT. Here, we review the current knowledge on the HGT mechanisms with a focus on the role of MVs and the methodological innovations in the HGT research.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577 Japan
| |
Collapse
|
13
|
Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME JOURNAL 2020; 14:1170-1181. [PMID: 32020051 DOI: 10.1038/s41396-020-0596-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
The current epidemic of antibiotic resistance has been facilitated by the wide and rapid horizontal dissemination of antibiotic resistance genes (ARGs) in microbial communities. Indeed, ARGs are often located on plasmids, which can efficiently shuttle genes across diverse taxa. While the existence conditions of plasmids have been extensively studied in a few model bacterial populations, their fate in complex bacterial communities is poorly understood. Here, we coupled plasmid transfer assays with serial growth experiments to investigate the persistence of the broad-host-range IncP-1 plasmid pKJK5 in microbial communities derived from a sewage treatment plant. The cultivation conditions combined different nutrient and oxygen levels, and were non-selective and non-conducive for liquid-phase conjugal transfer. Following initial transfer, the plasmid persisted in almost all conditions during a 10-day serial growth experiment (equivalent to 60 generations), with a transient transconjugant incidence up to 30%. By combining cell enumeration and sorting with amplicon sequencing, we mapped plasmid fitness effects across taxa of the microbial community. Unexpected plasmid fitness benefits were observed in multiple phylotypes of Aeromonas, Enterobacteriaceae, and Pseudomonas, which resulted in community-level plasmid persistence. We demonstrate, for the first time, that plasmid fitness effects across community members can be estimated in high-throughput without prior isolation. By gaining a fitness benefit when carrying plasmids, members within complex microbial communities might have a hitherto unrecognised potential to maintain plasmids for long-term community-wide access.
Collapse
|
14
|
Measuring Plasmid Conjugation Using Fluorescent Reporters. Methods Mol Biol 2019. [PMID: 31584157 DOI: 10.1007/978-1-4939-9877-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescence-based methods are increasingly popular because they (1) offer a faster alternative to labor-intensive traditional methods, (2) enable the development of automated high-throughput screening procedures, and (3) allow direct visualization of biological processes. Here we describe three fluorescence-based methods applicable for the detection and quantitation of plasmid conjugation. The first method uses flow cytometry as a fast and reliable alternative to traditional plating methods. A second one employs fluorescence expression for high-throughput analysis of plasmid conjugation. Finally we review a third method that enables direct visualization of plasmid transfer under the microscope.
Collapse
|
15
|
|
16
|
Roe K. Stopping Untreatable Pathogen Infections Using Peptide Ligands to Sabotage Pathogenic Cell Surface Proteins. Mol Biotechnol 2019; 61:602-609. [PMID: 31161299 DOI: 10.1007/s12033-019-00189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Specifically targeted peptide ligands can sabotage pathogenic cell surface proteins and stop increasingly untreatable pathogen infections. Different approaches might be used to sabotage pathogenic cell surface proteins to stop infections. A conjugation treatment uses carefully selected genetically modified plasmids prepared in advance to activate a secondary immune system response neutralizing pathogens with a new, much larger cascade of antibodies. Non-conjugation treatment introduces genetically modified cells into the center of localized pathogen infections to produce peptide ligands; and another non-conjugation treatment introduces only the peptide ligands into the center of localized pathogen infections to sabotage pathogenic cell surface proteins used to specifically infect mammalian cells. Extensive and meticulous plasmid transfer experiments by two separate groups firmly support the feasibility of extremely rapid and thorough plasmid transfer necessary for the conjugation treatment. A third independent group introduced genetically modified bacteria into mammals, including several human volunteers, with safe and effective experimental results, which also firmly supports the feasibility of the first non-conjugation treatment. These three approaches offer several profound advantages compared to treatments using new antibiotics.
Collapse
|
17
|
Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0424. [PMID: 29061896 DOI: 10.1098/rstb.2016.0424] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
In biological systems, evolutionary innovations can spread not only from parent to offspring (i.e. vertical transmission), but also 'horizontally' between individuals, who may or may not be related. Nowhere is this more apparent than in bacteria, where novel ecological traits can spread rapidly within and between species through horizontal gene transfer (HGT). This important evolutionary process is predominantly a by-product of the infectious spread of mobile genetic elements (MGEs). We will discuss the ecological conditions that favour the spread of traits by HGT, the evolutionary and social consequences of sharing traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, Arthur Willis Environment Centre, University of Sheffield, 1 Maxfield Avenue, Sheffield S10 1AE, UK
| |
Collapse
|
18
|
Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 2017; 8:1689. [PMID: 29162798 PMCID: PMC5698434 DOI: 10.1038/s41467-017-01532-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
In the absence of antibiotic-mediated selection, sensitive bacteria are expected to displace their resistant counterparts if resistance genes are costly. However, many resistance genes persist for long periods in the absence of antibiotics. Horizontal gene transfer (primarily conjugation) could explain this persistence, but it has been suggested that very high conjugation rates would be required. Here, we show that common conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics in Escherichia coli. The notion is applicable to nine plasmids from six major incompatibility groups and mixed populations carrying multiple plasmids. These results suggest that reducing antibiotic use alone is likely insufficient for reversing resistance. Therefore, combining conjugation inhibition and promoting plasmid loss would be an effective strategy to limit conjugation-assisted persistence of antibiotic resistance. It is unclear whether the transfer of plasmids carrying antibiotic resistance genes can explain their persistence when antibiotics are not present. Here, Lopatkin et al. show that conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Hannah R Meredith
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jaydeep K Srimani
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Connor Pfeiffer
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rick Durrett
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Hall JPJ, Brockhurst MA, Dytham C, Harrison E. The evolution of plasmid stability: Are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid 2017; 91:90-95. [PMID: 28461121 DOI: 10.1016/j.plasmid.2017.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Conjugative plasmids are widespread and play an important role in bacterial evolution by accelerating adaptation through horizontal gene transfer. However, explaining the long-term stability of plasmids remains challenging because segregational loss and the costs of plasmid carriage should drive the loss of plasmids though purifying selection. Theoretical and experimental studies suggest two key evolutionary routes to plasmid stability: First, the evolution of high conjugation rates would allow plasmids to survive through horizontal transmission as infectious agents, and second, compensatory evolution to ameliorate the cost of plasmid carriage can weaken purifying selection against plasmids. How these two evolutionary strategies for plasmid stability interact is unclear. Here, we summarise the literature on the evolution of plasmid stability and then use individual based modelling to investigate the evolutionary interplay between the evolution of plasmid conjugation rate and cost amelioration. We find that, individually, both strategies promote plasmid stability, and that they act together to increase the likelihood of plasmid survival. However, due to the inherent costs of increasing conjugation rate, particularly where conjugation is unlikely to be successful, our model predicts that amelioration is the more likely long-term solution to evolving stable bacteria-plasmid associations. Our model therefore suggests that bacteria-plasmid relationships should evolve towards lower plasmid costs that may forestall the evolution of highly conjugative, 'infectious' plasmids.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Calvin Dytham
- Department of Biology, University of York, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
20
|
Werisch M, Berger U, Berendonk TU. Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids. Plasmid 2017; 91:96-104. [PMID: 28461122 DOI: 10.1016/j.plasmid.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/27/2022]
Abstract
Some plasmids can be transferred by conjugation to other bacterial hosts. But almost half of the plasmids are non-transmissible. These plasmid types can only be transmitted to the daughter cells of their host after bacterial fission. Previous studies suggest that non-transmissible plasmids become extinct in the absence of selection of their encoded traits, as plasmid-free bacteria are more competitive. Here, we aim to identify mechanisms that enable non-transmissible plasmids to persist, even if they are not beneficial. For this purpose, an individual-based model for plasmid population dynamics was set up and carefully tested for structural consistency and plausibility. Our results demonstrate that non-transmissible plasmids can be stably maintained in a population, even if they impose a substantial burden on their host cells growth. A prerequisite is the co-occurrence of an incompatible and costly conjugative plasmid type, which indirectly facilitates the preservation of the non-transmissible type. We suggest that this constellation might be considered as a potential mechanism maintaining plasmids and associated antibiotic resistances. It should be investigated in upcoming laboratory experiments.
Collapse
Affiliation(s)
- Martin Werisch
- Technische Universität Dresden, Department of Forest Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt 01735, Germany.
| | - Uta Berger
- Technische Universität Dresden, Department of Forest Sciences, Institute of Forest Growth and Forest Computer Sciences, Tharandt 01735, Germany
| | - Thomas U Berendonk
- Technische Universität Dresden, Department of Hydro Sciences, Institute of Hydrobiology, Dresden 01217, Germany
| |
Collapse
|
21
|
Malwade A, Nguyen A, Sadat-Mousavi P, Ingalls BP. Predictive Modeling of a Batch Filter Mating Process. Front Microbiol 2017; 8:461. [PMID: 28377756 PMCID: PMC5359259 DOI: 10.3389/fmicb.2017.00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/06/2017] [Indexed: 01/21/2023] Open
Abstract
Quantitative characterizations of horizontal gene transfer are needed to accurately describe gene transfer processes in natural and engineered systems. A number of approaches to the quantitative description of plasmid conjugation have appeared in the literature. In this study, we seek to extend that work, motivated by the question of whether a mathematical model can accurately predict growth and conjugation dynamics in a batch process. We used flow cytometry to make time-point observations of a filter-associated mating between two E. coli strains, and fit ordinary differential equation models to the data. A model comparison analysis identified the model formulation that is best supported by the data. Identifiability analysis revealed that the parameters were estimated with acceptable accuracy. The predictive power of the model was assessed by comparison with test data that demanded extrapolation from the training experiments. This study represents the first attempt to assess the quality of model predictions for plasmid conjugation. Our successful application of this approach lays a foundation for predictive modeling that can be used both in the study of natural plasmid transmission and in model-based design of engineering approaches that employ conjugation, such as plasmid-mediated bioaugmentation.
Collapse
Affiliation(s)
- Akshay Malwade
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| | - Angel Nguyen
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| | | | - Brian P Ingalls
- Department of Applied Mathematics, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
22
|
Abstract
Biofilms dominate microbial life, and their importance for human health and the environment can no longer be dismissed. Nevertheless many of the processes governing this form of microbial growth are still poorly understood. This includes the horizontal exchange of genetic information, which is a major driver in bacterial evolution and rapid adaptation, exemplified by the alarming spread of multi-drug resistance among pathogens mediated by plasmids. Biofilms are often considered hot spot for horizontal gene transfer, yet several studies have shown that plasmid transfer is limited to the outer layers. On the basis of results from decades of research we analyse this paradox and discuss the mechanisms by which biofilm growth can promote the initial transfer of some plasmids, but also limit further plasmid invasion into the population or community. If we want to adequately promote or combat horizontal gene spread in biofilms, we need to gain better insight into the physicochemical and biological mechanisms that control this process.
Collapse
Affiliation(s)
- Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | - Eva Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| |
Collapse
|
23
|
Enhanced plasmid loss in bacterial populations exposed to the antimicrobial compound irgasan delivered from interpenetrating polymer network silicone hydrogels. Plasmid 2016; 87-88:72-78. [DOI: 10.1016/j.plasmid.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 08/24/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022]
|
24
|
Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc Natl Acad Sci U S A 2016; 113:8260-5. [PMID: 27385827 DOI: 10.1073/pnas.1600974113] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability.
Collapse
|
25
|
Carraro N, Libante V, Morel C, Charron-Bourgoin F, Leblond P, Guédon G. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. MICROBIOLOGY-SGM 2016; 162:622-632. [PMID: 26825653 DOI: 10.1099/mic.0.000219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements encoding their own excision from a replicon of their bacterial host, transfer by conjugation to a recipient bacterium and reintegration for maintenance. The conjugation, recombination and regulation modules of ICEs of the ICESt3 family are grouped together in a region called the ICE 'core region'. In addition to this core region, elements belonging to this family carry a highly variable region including cargo genes that could be involved in bacterial adaptation or in the maintenance of the element. Although ICEs are a major class of mobile elements through bacterial genomes, the functionality of an element encoding only its excision, transfer, integration and regulation has never been demonstrated experimentally. We engineered MiniICESt3, an artificial ICE derived from ICESt3, devoid of its cargo genes and thus only harbouring the core region. The functionality of this minimal element was assessed. MiniICESt3 was found to be able to excise at a rate of 3.1 %, transfer with a frequency of 1.0 × 10- 5 transconjugants per donor cell and stably maintain by site-specific integration into the 3' end of the fda gene, the same as ICESt3. Furthermore, MiniICESt3 was found in ∼10 copies per chromosome, this multicopy state likely contributing to its stability for >100 generations even in the absence of selection. Therefore, although ICEs were primarily assumed to only replicate along with the chromosome, our results uncovered extrachromosomal rolling-circle replicating plasmid-like forms of MiniICESt3.
Collapse
Affiliation(s)
- Nicolas Carraro
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Virginie Libante
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Catherine Morel
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Florence Charron-Bourgoin
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Pierre Leblond
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Gérard Guédon
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
26
|
Carraro N, Poulin D, Burrus V. Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner. PLoS Genet 2015; 11:e1005298. [PMID: 26061412 PMCID: PMC4489591 DOI: 10.1371/journal.pgen.1005298] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/23/2015] [Indexed: 02/07/2023] Open
Abstract
Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs.
Collapse
Affiliation(s)
- Nicolas Carraro
- Laboratory of bacterial molecular genetics, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Poulin
- Laboratory of bacterial molecular genetics, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Burrus
- Laboratory of bacterial molecular genetics, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
27
|
Norman A, Riber L, Luo W, Li LL, Hansen LH, Sørensen SJ. An improved method for including upper size range plasmids in metamobilomes. PLoS One 2014; 9:e104405. [PMID: 25116381 PMCID: PMC4130580 DOI: 10.1371/journal.pone.0104405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022] Open
Abstract
Two recently developed isolation methods have shown promise when recovering pure community plasmid DNA (metamobilomes/plasmidomes), which is useful in conducting culture-independent investigations into plasmid ecology. However, both methods employ multiple displacement amplification (MDA) to ensure suitable quantities of plasmid DNA for high-throughput sequencing. This study demonstrates that MDA greatly favors smaller circular DNA elements (<10 Kbp), which, in turn, leads to stark underrepresentation of upper size range plasmids (>10 Kbp). Throughout the study, we used two model plasmids, a 4.4 Kbp cloning vector (pBR322), and a 56 Kbp conjugative plasmid (pKJK10), to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose the addition of an electroelution step that separates different plasmid size ranges prior to MDA in order to reduce size-dependent competition during incubation. Subsequent analyses of metamobilome data from wastewater spiked with the model plasmids showed in silica recovery of pKJK10 to be very poor with the established method and a 1,300-fold overrepresentation of pBR322. Conversely, complete recovery of pKJK10 was enabled with the new modified protocol although considerable care must be taken during electroelution to minimize cross-contamination between samples. For further validation, non-spiked wastewater metamobilomes were mapped to more than 2,500 known plasmid genomes. This displayed an overall recovery of plasmids well into the upper size range (median size: 30 kilobases) with the modified protocol. Analysis of de novo assembled metamobilome data also suggested distinctly better recovery of larger plasmids, as gene functions associated with these plasmids, such as conjugation, was exclusively encoded in the data output generated through the modified protocol. Thus, with the suggested modification, access to a large uncharacterized pool of accessory elements that reside on medium-to-large plasmids has been improved.
Collapse
Affiliation(s)
- Anders Norman
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Leise Riber
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenting Luo
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Li Li Li
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hestbjerg Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- * E-mail:
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
|
29
|
Chagnot C, Zorgani MA, Astruc T, Desvaux M. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 2013; 4:303. [PMID: 24133488 PMCID: PMC3796261 DOI: 10.3389/fmicb.2013.00303] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/22/2013] [Indexed: 01/30/2023] Open
Abstract
Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.
Collapse
Affiliation(s)
- Caroline Chagnot
- UR454 Microbiologie, INRA Saint-Genès Champanelle, France ; UR370 Qualité des Produits Animaux, INRA Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
30
|
Dunon V, Sniegowski K, Bers K, Lavigne R, Smalla K, Springael D. High prevalence of IncP-1 plasmids and IS1071 insertion sequences in on-farm biopurification systems and other pesticide-polluted environments. FEMS Microbiol Ecol 2013; 86:415-31. [PMID: 23802695 DOI: 10.1111/1574-6941.12173] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/22/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022] Open
Abstract
Mobile genetic elements (MGEs) are considered as key players in the adaptation of bacteria to degrade organic xenobiotic recalcitrant compounds such as pesticides. We examined the prevalence and abundance of IncP-1 plasmids and IS1071, two MGEs that are frequently linked with organic xenobiotic degradation, in laboratory and field ecosystems with and without pesticide pollution history. The ecosystems included on-farm biopurification systems (BPS) processing pesticide-contaminated wastewater and soil. Comparison of IncP-1/IS1071 prevalence between pesticide-treated and nontreated soil and BPS microcosms suggested that both IncP-1 and IS1071 proliferated as a response to pesticide treatment. The increased prevalence of IncP-1 plasmids and IS1071-specific sequences in treated systems was accompanied by an increase in the capacity to mineralize the applied pesticides. Both elements were also encountered in high abundance in field BPS ecosystems that were in operation at farmyards and that showed the capacity to degrade/mineralize a wide range of chlorinated aromatics and pesticides. In contrast, IS1071 and especially IncP-1, MGE were less abundant in field ecosystems without pesticide history although some of them still showed a high IS1071 abundance. Our data suggest that MGE-containing organisms were enriched in pesticide-contaminated environments like BPS where they might contribute to spreading of catabolic genes and to pathway assembly.
Collapse
Affiliation(s)
- Vincent Dunon
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
31
|
del Castillo CS, Jang HB, Hikima JI, Jung TS, Morii H, Hirono I, Kondo H, Kurosaka C, Aoki T. Comparative analysis and distribution of pP9014, a novel drug resistance IncP-1 plasmid from Photobacterium damselae subsp. piscicida. Int J Antimicrob Agents 2013; 42:10-8. [DOI: 10.1016/j.ijantimicag.2013.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 10/26/2022]
|
32
|
Røder HL, Hansen LH, Sørensen SJ, Burmølle M. The impact of the conjugative IncP-1 plasmid pKJK5 on multispecies biofilm formation is dependent on the plasmid host. FEMS Microbiol Lett 2013; 344:186-92. [PMID: 23659318 DOI: 10.1111/1574-6968.12175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/27/2022] Open
Abstract
Horizontal gene transfer by conjugation has been reported to increase overall biofilm formation. Biofilm is considered a hot spot for plasmid transfer, and it has been found that social interactions during biofilm formation can increase the biomass. In this study, we demonstrate a contrast to previous studies by showing that the conjugative IncP-1 plasmid pKJK5 influences biofilm formation negatively. The results showed that a co-culture (Pseudomonas putida, Kluyvera sp., and Escherichia coli) formed significantly more biofilm than the strains did individually. When pKJK5 was inserted into P. putida, biofilm formation was significantly reduced compared with the co-culture without plasmid. A nonconjugative version of pKJK5 was also used, and the biofilm formation was restored. Visualization with the BioFlux 1000 facility showed that the presence of pKJK5-containing P. putida in the co-culture led to a changed biofilm structure, where the cells showed a higher tendency to attach to other cells rather than surfaces. This study thus indicates that the presence of conjugative plasmids in some species may decrease the surface-associated biofilm formation of a mixed co-culture by facilitating cell-cell attachment with reduced surface attachment as the consequence.
Collapse
|
33
|
Varela AR, Manaia CM. Human health implications of clinically relevant bacteria in wastewater habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3550-3569. [PMID: 23508533 DOI: 10.1007/s11356-013-1594-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | | |
Collapse
|
34
|
Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. ACTA ACUST UNITED AC 2012; 65:183-95. [PMID: 22444301 DOI: 10.1111/j.1574-695x.2012.00960.x] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 12/24/2022]
Abstract
Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states. Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids are independent replicons that enhance their own success by promoting inter-bacterial interactions. They typically also carry genes that heighten their hosts' direct fitness. Furthermore, current research shows that the so-called mafia traits encoded on mobile genetic elements can enforce bacteria to maintain stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic elements and social evolution of bacteria.
Collapse
|
35
|
Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) 2011; 106:1-10. [PMID: 20332804 PMCID: PMC3183850 DOI: 10.1038/hdy.2010.24] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/28/2010] [Accepted: 02/02/2010] [Indexed: 01/22/2023] Open
Abstract
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes.
Collapse
Affiliation(s)
- D J Rankin
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
36
|
Heuer H, Ebers J, Weinert N, Smalla K. Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiol Ecol 2010; 73:190-6. [PMID: 20455941 DOI: 10.1111/j.1574-6941.2010.00880.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Phytopathogenic populations need genetic flexibility to adapt to continually improving plant defences. The gene pool transferred by broad-host-range plasmids provides genetic variation for the population. However, a population has to balance this benefit with the risk of acquiring deleterious foreign DNA. This could be achieved by modulating the ratio of individuals with high or low permissiveness to broad-host-range plasmids. We investigated whether plasmid uptake varied among genetically indistinguishable isolates of Dickeya sp. from a 400 m(2) field plot. The transfer frequencies of broad-host-range IncP-1 plasmids from Escherichia coli to Dickeya differed significantly among isolates. The transfer frequencies for plasmids pTH10 and pB10 of the divergent alpha- and beta-subgroups of IncP-1, respectively, correlated well. Strains that differed in permissiveness for these plasmids by orders of magnitude were not distinguishable by other phenotypic traits analysed, by genomic fingerprints or hrpN gene sequences. Such strains were isolated in close vicinity and from different plots of the field, indicating a reasonably fast genetic mechanism of switching between low and high permissiveness.
Collapse
Affiliation(s)
- Holger Heuer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, Braunschweig, Germany.
| | | | | | | |
Collapse
|
37
|
Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275-89. [PMID: 19571247 DOI: 10.1098/rstb.2009.0037] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic 'individual' can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as 'backbone modules' to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of 'accessory elements' that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized 'private genes'.
Collapse
Affiliation(s)
- Anders Norman
- Department of Biology, Section for Evolution and Microbiology, University of Copenhagen, Copenhagen K, Denmark.
| | | | | |
Collapse
|
38
|
Abstract
Conjugative plasmids of Gram-negative bacteria have both vertical and horizontal modes of transmission: they are segregated to daughter cells during division, and transferred between hosts by plasmid-encoded conjugative machinery. Despite maintaining horizontal mobility, many plasmids carry fertility inhibition (fin) systems that repress their own conjugative transfer. To assess the ecological basis of self-transfer repression, we compared the invasion of bacterial populations by fin(+) and fin(-) variants of the plasmid R1 using a computational model and co-culture competitions. We observed that the fin(+) variant had a modest cost to the host (measured by reduction in growth rate), while the fin(-) variant incurred a larger cost. In simulations and empirical competitions the fin(-) plasmid invaded cultures quickly, but was subsequently displaced by the fin(+) plasmid. This indicated a competitive advantage to reducing horizontal transmission and allowing increased host replication. Computational simulations predicted that the advantage associated with reduced cost to the host would be maintained over a wide range of environmental conditions and plasmid costs. We infer that vertical transmission in concert with competitive exclusion favour decreased horizontal mobility of plasmids. Similar dynamics may exert evolutionary pressure on parasites, such as temperate bacteriophages and vertically transmitted animal viruses, to limit their rates of horizontal transfer.
Collapse
|
39
|
Abstract
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid-free cells. Finally, various molecular adaptations of plasmids to better match the genetic background of their bacterial host cell will be described.
Collapse
|
40
|
Bahl MI, Oregaard G, Sørensen SJ, Hansen LH. Construction and use of flow cytometry optimized plasmid-sensor strains. Methods Mol Biol 2009; 532:257-68. [PMID: 19271190 DOI: 10.1007/978-1-60327-853-9_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Determining the stability of plasmids in bacterial populations is traditionally performed by isolating a large number of clones followed by screening for the presence of plasmids by replica transfer to plasmid-selective agar plates. This is often a laborious task, especially when the intrinsic stability of the plasmid is high. The method presented here relies on a phenotypic (green fluorescence protein) marker, which is switched on if the host bacteria loses the residing plasmid. The incorporation of flow cytometry for single-cell detection and discrimination between plasmid-free and plasmid-harboring cells in a bacterial population facilitates a very high throughput of cells and thus provides excellent sensitivity and statistics toward detecting even very low levels of plasmid instability.
Collapse
Affiliation(s)
- Martin Iain Bahl
- Department of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
41
|
Heuer H, Abdo Z, Smalla K. Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty. FEMS Microbiol Ecol 2008; 65:361-71. [DOI: 10.1111/j.1574-6941.2008.00539.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Fox RE, Zhong X, Krone SM, Top EM. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME JOURNAL 2008; 2:1024-39. [PMID: 18528415 DOI: 10.1038/ismej.2008.53] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p(+)) cells as low as 10(-7). To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p(+) fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids.
Collapse
Affiliation(s)
- Randal E Fox
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | |
Collapse
|
43
|
Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob Agents Chemother 2008; 52:1472-80. [PMID: 18268088 PMCID: PMC2292564 DOI: 10.1128/aac.00982-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA sequence analysis of five IncW plasmids (R388, pSa, R7K, pIE321, and pIE522) demonstrated that they share a considerable portion of their genomes and allowed us to define the IncW backbone. Among these plasmids, the backbone is stable and seems to have diverged recently, since the overall identity among its members is higher than 95%. The only gene in which significant variation was observed was trwA; the changes in the coding sequence correlated with parallel changes in the corresponding TrwA binding sites at oriT, suggesting a functional connection between both sets of changes. The present IncW plasmid diversity is shaped by the acquisition of antibiotic resistance genes as a consequence of the pressure exerted by antibiotic usage. Sequence comparisons pinpointed the insertion events that differentiated the five plasmids analyzed. Of greatest interest is that a single acquisition of a class I integron platform, into which different gene cassettes were later incorporated, gave rise to plasmids R388, pIE522, and pSa, while plasmids R7K and pIE321 do not contain the integron platform and arose in the antibiotic world because of the insertion of several antibiotic resistance transposons.
Collapse
|
44
|
Abstract
The conditions under which plasmids are predicted to persist remain controversial. Here, we reevaluate the ordinary differential equations used previously to model plasmid persistence and conclude that the parameter space required for maintenance is far less stringent than has been supposed. Strikingly, our model demonstrates that purely parasitic plasmids may persist, even in the absence of heterogeneity in the host population, and that this persistence is expressed by oscillations or damped oscillations between the plasmid-bearing and the plasmid-free class.
Collapse
Affiliation(s)
- Loukia N Lili
- Department of Mathematical Sciences , University of Bath, BA2 7AY, Bath, United Kingdom
| | | | | |
Collapse
|
45
|
Schlüter A, Szczepanowski R, Pühler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 2007; 31:449-77. [PMID: 17553065 DOI: 10.1111/j.1574-6976.2007.00074.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|