1
|
Ma MJ, Yu WC, Sun HY, Dong BC, Hu GA, Zhou ZY, Hua Y, Basnet BB, Yu YL, Wang H, Wei B. Genus-specific secondary metabolome in Allokutzneria and Kibdelosporangium. Synth Syst Biotechnol 2024; 9:381-390. [PMID: 39351149 PMCID: PMC11440094 DOI: 10.1016/j.synbio.2024.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 10/04/2024] Open
Abstract
Rare actinomycete genera are highly recognized as a promising source of structurally diverse and bioactive natural products. Among these genera, Allokutzneria and Kibdelosporangium are two phylogenetically closely related and have been reported to encode some valuable biosynthetic enzymes and secondary metabolites. However, there is currently no relevant systematic research available to outline the linkage of genomic and metabolomics for specific secondary metabolites in these two promising genera. In this study, we first investigated the genus-specific secondary metabolic potential in Allokutzneria and Kibdelosporangium by comparing the diversity and novelty of their secondary metabolite biosynthetic gene clusters (BGCs). The specific secondary metabolites produced by two representative strains of these genera were comprehensively investigated using untargeted metabolomics techniques. The findings unveiled that the majority (95.4%) of the gene cluster families (GCFs) encoded by Allokutzneria and Kibdelosporangium were genus-specific, including NRPS GCFs encoding siderophores. The untargeted metabolomics analysis revealed that the metabolic profiles of two representative strains exhibit extensive specificity, with the culture medium having a big impact on the metabolic profiles. Besides, an MS-cluster featuring a series of hydroxamate-type siderophores was identified from Allokutzneria albata JCM 9917, with two of them, including a novel one (N-deoxy arthrobactin A), being experimentally validated. The present study offers valuable insights for the targeted discovery of genus-specific natural products from microorganisms.
Collapse
Affiliation(s)
- Man-Jing Ma
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Chao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huai-Ying Sun
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bing-Cheng Dong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gang-Ao Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Hua
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Buddha Bahadur Basnet
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | - Yan-Lei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Bakhti A, Shokouhi Z, Mohammadipanah F. Modulation of proteins by rare earth elements as a biotechnological tool. Int J Biol Macromol 2024; 258:129072. [PMID: 38163500 DOI: 10.1016/j.ijbiomac.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Zahra Shokouhi
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
3
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
4
|
Song A, Peng J, Si Z, Xu D, Sun M, Zhang J, Wang S, Wang E, Bi J, Chong F, Fan F. Metagenomics reveals the increased antibiotics resistome through prokaryote rather than virome after overuse of rare earth element compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160704. [PMID: 36481142 DOI: 10.1016/j.scitotenv.2022.160704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Rare earth elements (REE) are extensively exploited in the agricultural ecosystems due to their various beneficial roles on plant growth. However, the ecotoxicological effects and environmental risk of REE are poorly assessed. Here, we investigated the effects of lanthanum and cerium nitrate on soil prokaryote and viral metal resistance genes (MRGs) and antibiotics resistance genes (ARGs) using a metagenomic-based approach. We found that relative abundances of prokaryote phyla Bacteroidetes and Chloroflexi decreased with increasing of both REE compounds. In addition, low level REE nitrate (0.05 and 0.1 mmol kg-1 soil) inhibited the viral family Phycodanaviridae, Rudiviridae, Schitoviridae, whereas high level (0.16 and 0.32 mmol kg-1 soil) REE nitrate suppressed the viral family Herelleviridae, Iridoviridae, Podoviridae. ARGs were not significantly affected by low level of REE nitrate. However, high level of both REEs nitrate increased the abundances of dominant prokaryote genes resisting to most of the drug classes, such as aminoglycoside, elfamycin, fluoroquinolone, macrolide, rifamycin. Abundance of MRGs in prokaryote did not change consistently with REE nitrate compound type and input rate. MRGs were only partially detected in the virome in some of the treatments, while ARGs was not detected in virome. Together, we demonstrated that overuse of REE nitrate in agriculture would increase the risk of dissemination of ARGs through prokaryotes but not virus, although viral community was substantially shifted.
Collapse
Affiliation(s)
- Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Peng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Si
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Duanyang Xu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Miaomiao Sun
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Enzhao Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fayao Chong
- China North Rare Earth Hi Tech Co., Ltd., Baotou 014030, China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
6
|
Harunari E, Yago N, Igarashi Y. Induced production of a new antioxidant phenylpropanoid from Streptomyces sp. by protoplast formation/regeneration. J Antibiot (Tokyo) 2022; 75:698-701. [PMID: 36171489 DOI: 10.1038/s41429-022-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Streptomyces sp. RD007556 regenerated from protoplast was found to produce p-coumaric acid 3,4-dihydroxybenzoate, propla acid (1) which is not observed in the wild-type strain. The structure of 1 was determined by NMR and MS analyses. Compound 1 showed antioxidant activities in DPPH and superoxide dismutase-like assays.
Collapse
Affiliation(s)
- Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Nodoka Yago
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
7
|
Syrvatka V, Rabets A, Gromyko O, Luzhetskyy A, Fedorenko V. Scandium-microorganism interactions in new biotechnologies. Trends Biotechnol 2022; 40:1088-1101. [PMID: 35346528 DOI: 10.1016/j.tibtech.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Scandium (Sc) plays a special role in high-tech industries because of its wide application in green, space, and defense technologies. However, Sc mining and purification are problematic due to political, technological, and environmental difficulties. The deficit of this element limits global technological development. One sustainable solution to this problem is to use microorganisms to extract Sc from ore and waste, as well as to concentrate and separate it from other elements. Sc also demonstrates attractive metabolic effects on microbes that is of great interest in white biotechnology. Sc increases the production of proteins and secondary metabolites and activates poorly expressed genes. This review offers a comprehensive analysis of current knowledge on the application of Sc-microorganism interactions in promising biotechnologies, its perspectives, and future challenges.
Collapse
Affiliation(s)
- Vasyl Syrvatka
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrii Rabets
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Oleksandr Gromyko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Victor Fedorenko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine.
| |
Collapse
|
8
|
Effects of scandium chloride on osteogenic and adipogenic differentiation of mesenchymal stem cells. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Naureen Z, Gilani SA, Benny BK, Sadia H, Hafeez FY, Khanum A. Metabolomic Profiling of Plant Growth-Promoting Rhizobacteria for Biological Control of Phytopathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
A Glossary for Chemical Approaches towards Unlocking the Trove of Metabolic Treasures in Actinomycetes. Molecules 2021; 27:molecules27010142. [PMID: 35011373 PMCID: PMC8746466 DOI: 10.3390/molecules27010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Actinobacterial natural products showed a critical basis for the discovery of new antibiotics as well as other lead secondary metabolites. Varied environmental and physiological signals touch the antibiotic machinery that faced a serious decline in the last decades. The reason was exposed by genomic sequencing data, which revealed that Actinomycetes harbor a large portion of silent biosynthetic gene clusters in their genomes that encrypt for secondary metabolites. These gene clusters are linked with a great reservoir of yet unknown molecules, and arranging them is considered a major challenge for biotechnology approaches. In the present paper, we discuss the recent strategies that have been taken to augment the yield of secondary metabolites via awakening these cryptic genes in Actinomycetes with emphasis on chemical signaling molecules used to induce the antibiotics biosynthesis. The rationale, types, applications and mechanisms are discussed in detail, to reveal the productive path for the unearthing of new metabolites, covering the literature until the end of 2020.
Collapse
|
11
|
Caesar LK, Montaser R, Keller NP, Kelleher NL. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat Prod Rep 2021; 38:2041-2065. [PMID: 34787623 PMCID: PMC8691422 DOI: 10.1039/d1np00036e] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2010 to 2021Organisms in nature have evolved into proficient synthetic chemists, utilizing specialized enzymatic machinery to biosynthesize an inspiring diversity of secondary metabolites. Often serving to boost competitive advantage for their producers, these secondary metabolites have widespread human impacts as antibiotics, anti-inflammatories, and antifungal drugs. The natural products discovery field has begun a shift away from traditional activity-guided approaches and is beginning to take advantage of increasingly available metabolomics and genomics datasets to explore undiscovered chemical space. Major strides have been made and now enable -omics-informed prioritization of chemical structures for discovery, including the prospect of confidently linking metabolites to their biosynthetic pathways. Over the last decade, more integrated strategies now provide researchers with pipelines for simultaneous identification of expressed secondary metabolites and their biosynthetic machinery. However, continuous collaboration by the natural products community will be required to optimize strategies for effective evaluation of natural product biosynthetic gene clusters to accelerate discovery efforts. Here, we provide an evaluative guide to scientific literature as it relates to studying natural product biosynthesis using genomics, metabolomics, and their integrated datasets. Particular emphasis is placed on the unique insights that can be gained from large-scale integrated strategies, and we provide source organism-specific considerations to evaluate the gaps in our current knowledge.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Rana Montaser
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
12
|
Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Nat Prod Rep 2021; 38:2083-2099. [PMID: 34693961 DOI: 10.1039/d1np00044f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol 2021; 48:6119915. [PMID: 33825906 PMCID: PMC9113425 DOI: 10.1093/jimb/kuaa001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023]
Abstract
Actinomycetes are a rich source of bioactive natural products important for novel drug leads. Recent genome mining approaches have revealed an enormous number of secondary metabolite biosynthetic gene clusters (smBGCs) in actinomycetes. However, under standard laboratory culture conditions, many smBGCs are silent or cryptic. To activate these dormant smBGCs, several approaches, including culture-based or genetic engineering-based strategies, have been developed. Above all, coculture is a promising approach to induce novel secondary metabolite production from actinomycetes by mimicking an ecological habitat where cryptic smBGCs may be activated. In this review, we introduce coculture studies that aim to expand the chemical diversity of actinomycetes, by categorizing the cases by the type of coculture partner. Furthermore, we discuss the current challenges that need to be overcome to support the elicitation of novel bioactive compounds from actinomycetes.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Groom JD, Lidstrom ME. Cultivation techniques to study lanthanide metal interactions in the haloalkaliphilic Type I methanotroph "Methylotuvimicrobium buryatense" 5GB1C. Methods Enzymol 2021; 650:237-259. [PMID: 33867024 DOI: 10.1016/bs.mie.2021.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lanthanide metals are commonly used in technological devices including batteries, computers, catalysts and magnets. Despite their important properties, mining difficulties and pollution concerns limit the number of mines worldwide. Because of these concerns, biometallurgy is an attractive possibility for lanthanide extraction from recycled materials or from contaminated sites. Methylotrophs, bacteria that grow on reduced carbon substrates like methane and methanol, utilize lanthanides for a central reaction in their metabolisms. They must have some mechanism for uptake or trafficking, and are therefore excellent candidates for applying small molecules or proteins for selective lanthanide metal recycling. The haloalkaliphilic methanotroph "Methylotuvimicrobium buryatense" 5GB1C is the fastest growing methanotroph isolated to date, and thus has great industrial potential. The MxaFI enzyme complex uses calcium as a Lewis acid in conjunction with the pyroquinoline quinone cofactor to oxidize methanol, while the alternative enzyme XoxF uses lanthanide metals (e.g. lanthanum and cerium) for the same function. Lanthanide metals, abundant in the earth's crust, strongly repress the transcription of mxaF yet activate the transcription of xoxF, implying that XoxF may be the predominant methanol dehydrogenase in the bacterium's native environment. It may be that lanthanum interaction mechanisms are different from those in other microorganisms. In addition, the facile genetics in this strain and existing background information make it a good study organism for biological lanthanum uptake. The interesting physiology of this organism required empirical work to develop cultivation methods that allow robust assays of gene expression and measurement of lanthanum associated with cell biomass. In this chapter, we show that altering the metal chelator increased the availability of lanthanum to the cell as measured by the specific gene expression response. We also made further alterations to prevent lanthanum precipitation in medium for the growth of haloalkaliphiles.
Collapse
Affiliation(s)
- Joseph D Groom
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States.
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States; Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Discovery of lanthanide-dependent methylotrophy and screening methods for lanthanide-dependent methylotrophs. Methods Enzymol 2021; 650:1-18. [PMID: 33867018 DOI: 10.1016/bs.mie.2021.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lanthanide elements (Lns) affect the physiology and growth of certain microorganisms known as "Ln-responsive microorganisms." Among them, in 2011, it was first reported that strains of Methylobacterium exhibited high methanol dehydrogenase (MDH) activity when grown in the presence of Lns; the purified Ln-inducible MDH was identified as XoxF-type MDH, whose catalytic function had previously been unknown. XoxF was the first enzyme to be identified as Ln-dependent, and its function in methylotrophy is more fundamental and important than that of the corresponding Ca2+-dependent MDH MxaFI. XoxF is encoded in the genomes of methylotrophic as well as non-methylotrophic bacteria. Thus, Lns are among the most fascinating and important growth factors for bacteria that potentially utilize methanol. Bacteria that require Lns for methanol growth are called "Ln-dependent methylotrophs." Recent findings indicate that these microorganisms comprise an "Ln-dependent ecosystem" that we have not been able to reconstruct under laboratory conditions without Lns. In this chapter, we summarize methods for (1) screening of Ln-responsive microorganisms, (2) purification of native XoxFs from Ln-dependent methylotrophs, and (3) screening of Ln-dependent methylotrophs from natural environments, while providing a history of the discovery of the Ln-dependent methylotrophs.
Collapse
|
17
|
Takao R, Sakai K, Koshino H, Osada H, Takahashi S. Identification of the kinanthraquinone biosynthetic gene cluster by expression of an atypical response regulator. Biosci Biotechnol Biochem 2021; 85:714-721. [DOI: 10.1093/bbb/zbaa082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
Abstract
ABSTRACT
Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.
Collapse
Affiliation(s)
- Risa Takao
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Katsuyuki Sakai
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Shunji Takahashi
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
18
|
S. Alneyadi S. Mini Review: Antioxidant Application of Metal-Organic Frameworks and Their Composites. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Wang Y, Zhang X, Lu C, Li X, Zhou J, Wang J. Lanthanum: A novel inducer for enhancement of fungal laccase production by Shiraia bambusicola. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Samples RM, Balunas MJ. Bridging the Gap: Plant-Endophyte Interactions as a Roadmap to Understanding Small-Molecule Communication in Marine Microbiomes. Chembiochem 2020; 21:2708-2721. [PMID: 32324967 DOI: 10.1002/cbic.202000064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Probing the composition of the microbiome and its association with health and disease states is more accessible than ever due to the rise of affordable sequencing technology. Despite advances in our ability to identify members of symbiont communities, untangling the chemical signaling that they use to communicate with host organisms remains challenging. In order to gain a greater mechanistic understanding of how the microbiome impacts health, and how chemical ecology can be leveraged to advance small-molecule drug discovery from microorganisms, the principals governing communication between host and symbiont must be elucidated. Herein, we review common modes of interkingdom small-molecule communication in terrestrial and marine environments, describe the differences between these environments, and detail the advantages and disadvantages for studies focused on the marine environment. Finally, we propose the use of plant-endophyte interactions as a stepping stone to a greater understanding of similar interactions in marine invertebrates, and ultimately in humans.
Collapse
Affiliation(s)
- Robert M Samples
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA.,Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
21
|
Guo L, Zhang L, Yang Q, Xu B, Fu X, Liu M, Li Z, Zhang S, Xie Z. Antibacterial and Cytotoxic Bridged and Ring Cleavage Angucyclinones From a Marine Streptomyces sp. Front Chem 2020; 8:586. [PMID: 32850626 PMCID: PMC7417440 DOI: 10.3389/fchem.2020.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
Chemical investigation of a marine-derived Streptomyces sp. KCB-132, cultivated in liquid ISP2 medium, had led to the discovery of three C-ring cleavage angucyclinone N-heterocycles, pratensilins A–C, with a novel spiro indolinone-naphthofuran skeleton. Addition of 50 μM LaCl3 to the same medium and subsequent chemical analysis of this strain returned a new member of this rare class, pratensilin D (1), along with two new angucyclinone derivatives, featuring ether-bridged (2) and A-ring cleavage (3) structural properties. Their structures and absolute configurations were assigned by spectroscopic analysis, single-crystal X-ray diffractions, and equivalent circulating density (ECD) calculations. (+)- and (–)-1, a pair of enantiomeric nitrogen-containing angucyclinones, exhibited different strengths of antibacterial and cytotoxic activities.
Collapse
Affiliation(s)
- Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qiaoli Yang
- College of Life Sciences, Yantai University, Yantai, China
| | - Bo Xu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xinzhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhi Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shumin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
22
|
Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol 2020; 69:1040-1048. [PMID: 32692643 PMCID: PMC7642979 DOI: 10.1099/jmm.0.001232] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Given the increased reporting of multi-resistant bacteria and the shortage of newly approved medicines, researchers have been looking towards extreme and unusual environments as a new source of antibiotics. Streptomyces currently provides many of the world's clinical antibiotics, so it comes as no surprise that these bacteria have recently been isolated from traditional medicine. Given the wide array of traditional medicines, it is hoped that these discoveries can provide the much sought after core structure diversity that will be required of a new generation of antibiotics. This review discusses the contribution of Streptomyces to antibiotics and the potential of newly discovered species in traditional medicine. We also explore how knowledge of traditional medicines can aid current initiatives in sourcing new and chemically diverse antibiotics.
Collapse
Affiliation(s)
- Gerry A. Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Aiya M. Banat
- Department of Orthopaedics, Altnagelvin Hospital, Londonderry, Northern Ireland, UK
| | - Alyaa M. Abdelhameed
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Ibrahim M. Banat
- Centre for Molecular Biosciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
23
|
Mohammadipanah F, Kermani F, Salimi F. Awakening the Secondary Metabolite Pathways of Promicromonospora kermanensis Using Physicochemical and Biological Elicitors. Appl Biochem Biotechnol 2020; 192:1224-1237. [PMID: 32715413 DOI: 10.1007/s12010-020-03361-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The drug discovery rate is dramatically decreasing due to the rediscovery of known compounds. Genome mining approaches have revealed that a large portion of the actinobacterial genome that encodes bioactive metabolites is cryptic and not expressed under standard lab conditions. In the present study, we aimed to induce antibiotic encoding biosynthetic genes in a member of Micrococcales as a new species of Promicromonospora, Promicromonospora kermanensis, by chemical and biological elicitors as it was considered to produce numerous valuable bioactive metabolites based on the whole genome results. Induction has been done via chemical (antibiotics, histone deacetylase inhibitors (HDAIs), rare earth elements (REEs), fatty acid synthesis inhibitors, and extreme pH changes) and biological elicitors (live and dead Gram-positive and negative bacteria). The results showed that valproic acid (as HDAIs), DMSO, lanthanum chloride (as REE), triclosan (as fatty acid synthesis inhibitors), alkaline pH, and supernatant of Pseudomonas aeruginosa UTMC 1404 culture could act as stimuli to provoke antibacterial synthetic pathways in Promicromonospora kermanensis DSM 45485. Moreover, it was revealed that eliciting agents in cell filtrated of P. aeruginosa culture is resistant to detergent, acidic, and basic condition and have amphipathic nature. The inducing effect of alkaline pH on metabolite induction of Actinobacteria was first reported in this study. In the follow-up studies, the induced antibacterial producing clusters can be subjected to the characterization, and the implemented approach in this study can be used for metabolites induction in other selected species.
Collapse
Affiliation(s)
- Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| | - Fatemeh Kermani
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
24
|
Osorio-Toribio G, Velásquez-Hernández MDJ, Mileo PGM, Zárate JA, Aguila-Rosas J, Leyva-Gómez G, Sánchez-Sánchez R, Magaña JJ, Pérez-Díaz MA, Lázaro IA, Forgan RS, Maurin G, Lima E, Ibarra IA. Controlled Transdermal Release of Antioxidant Ferulate by a Porous Sc(III) MOF. iScience 2020; 23:101156. [PMID: 32450520 PMCID: PMC7251947 DOI: 10.1016/j.isci.2020.101156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
The Sc(III) MOF-type MFM-300(Sc) is demonstrated in this study to be stable under physiological conditions (PBS), biocompatible (to human skin cells), and an efficient drug carrier for the long-term controlled release (through human skin) of antioxidant ferulate. MFM-300(Sc) also preserves the antioxidant pharmacological effects of ferulate while enhancing the bio-preservation of dermal skin fibroblasts, during the delivery process. These discoveries pave the way toward the extended use of Sc(III)-based MOFs as drug delivery systems (DDSs).
Collapse
Affiliation(s)
- Génesis Osorio-Toribio
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | | - J Antonio Zárate
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Azcapotzalco, Ciudad de México, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, Mexico
| | - Mario Alberto Pérez-Díaz
- Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Isabel Abánades Lázaro
- Universidad de Valencia (ICMol), Catedrático José Beltrán-2, Paterna, Spain; WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Ross S Forgan
- WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | | | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
25
|
Panthee S, Kito N, Hayashi T, Shimizu T, Ishikawa J, Hamamoto H, Osada H, Takahashi S. β-carboline chemical signals induce reveromycin production through a LuxR family regulator in Streptomyces sp. SN-593. Sci Rep 2020; 10:10230. [PMID: 32576869 PMCID: PMC7311520 DOI: 10.1038/s41598-020-66974-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Actinomycetes bacteria produce diverse bioactive molecules that are useful as drug seeds. To improve their yield, researchers often optimize the fermentation medium. However, exactly how the extracellular chemicals present in the medium activate secondary metabolite gene clusters remains unresolved. BR-1, a β-carboline compound, was recently identified as a chemical signal that enhanced reveromycin A production in Streptomyces sp. SN-593. Here we show that BR-1 specifically bound to the transcriptional regulator protein RevU in the reveromycin A biosynthetic gene cluster, and enhanced RevU binding to its promoter. RevU belongs to the LuxR family regulator that is widely found in bacteria. Interestingly, BR-1 and its derivatives also enhanced the production of secondary metabolites in other Streptomyces species. Although LuxR-N-acyl homoserine lactone systems have been characterized in Gram-negative bacteria, we revealed LuxR-β-carboline system in Streptomyces sp. SN-593 for the production of secondary metabolites. This study might aid in understanding hidden chemical communication by β-carbolines.
Collapse
Affiliation(s)
- Suresh Panthee
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan.,Teikyo University Institute of Medical Mycology, Otsuka 359, Hachioji, Tokyo, Japan
| | - Naoko Kito
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan
| | - Teruo Hayashi
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan
| | - Takeshi Shimizu
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, Otsuka 359, Hachioji, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan.
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan.
| |
Collapse
|
26
|
Shen W, Wang D, Wei L, Zhang Y. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Appl Microbiol Biotechnol 2020; 104:4471-4482. [DOI: 10.1007/s00253-020-10564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/26/2022]
|
27
|
Xia H, Li X, Li Z, Zhan X, Mao X, Li Y. The Application of Regulatory Cascades in Streptomyces: Yield Enhancement and Metabolite Mining. Front Microbiol 2020; 11:406. [PMID: 32265866 PMCID: PMC7105598 DOI: 10.3389/fmicb.2020.00406] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Streptomyces is taken as an important resource for producing the most abundant antibiotics and other bio-active natural products, which have been widely used in pharmaceutical and agricultural areas. Usually they are biosynthesized through secondary metabolic pathways encoded by cluster situated genes. And these gene clusters are stringently regulated by interweaved transcriptional regulatory cascades. In the past decades, great advances have been made to elucidate the regulatory mechanisms involved in antibiotic production in Streptomyces. In this review, we summarized the recent advances on the regulatory cascades of antibiotic production in Streptomyces from the following four levels: the signals triggering the biosynthesis, the global regulators, the pathway-specific regulators and the feedback regulation. The production of antibiotic can be largely enhanced by rewiring the regulatory networks, such as overexpression of positive regulators, inactivation of repressors, fine-tuning of the feedback and ribosomal engineering in Streptomyces. The enormous amount of genomic sequencing data implies that the Streptomyces has potential to produce much more antibiotics for the great diversities and wide distributions of biosynthetic gene clusters in Streptomyces genomes. Most of these gene clusters are defined cryptic for unknown or undetectable natural products. In the synthetic biology era, activation of the cryptic gene clusters has been successfully achieved by manipulation of the regulatory genes. Chemical elicitors, rewiring regulatory gene and ribosomal engineering have been employed to crack the potential of cryptic gene clusters. These have been proposed as the most promising strategy to discover new antibiotics. For the complex of regulatory network in Streptomyces, we proposed that the discovery of new antibiotics and the optimization of industrial strains would be greatly promoted by further understanding the regulatory mechanism of antibiotic production.
Collapse
Affiliation(s)
- Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xuming Mao
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. ACTA ACUST UNITED AC 2019; 46:1381-1400. [DOI: 10.1007/s10295-019-02198-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Abstract
Abstract
Natural products (NPs) produced by bacteria and fungi are often used as therapeutic agents due to their complex structures and wide range of bioactivities. Enzymes that build NPs are encoded by co-localized biosynthetic gene clusters (BGCs), and genome sequencing has recently revealed that many BGCs are “silent” under standard laboratory conditions. There are numerous methods used to activate “silent” BGCs that rely either upon altering culture conditions or genetic modification. In this review, we discuss several recent microbial cultivation methods that have been used to expand the scope of NPs accessible in the laboratory. These approaches are divided into three categories: addition of a physical scaffold, addition of small molecule elicitors, and co-cultivation with another microbe.
Collapse
|
29
|
Wakabayashi T, Nakano Y. Stress Responses Against Rare Earth Ions Are Mediated by the JNK and p38 MAPK Pathways in Caenorhabditis elegans. Biol Trace Elem Res 2019; 190:550-555. [PMID: 30443708 DOI: 10.1007/s12011-018-1577-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Rare earth (RE) ions at high concentrations are toxic to many organisms as they induce oxidative stress and cause improper incorporation of the ions into calcium-binding proteins. Although the mechanism of action underlying the toxicity of REs has been identified, intracellular signaling pathways involved in stress responses against RE ions still remain unclear. In Caenorhabditis elegans, cellular responses against heavy metal stresses are primarily regulated by the c-Jun N-terminal kinase (JNK)-like mitogen-activated protein kinase (MAPK) pathway with a minor contribution of the p38-like MAPK pathway. In this study, we found that both JNK- and p38-like MAPK pathways were involved in stress responses against RE. Unlike heavy metal responses, mutations in both the JNK and p38 pathways caused similar hypersensitivity to RE ions. Although the signaling pathways used for these stress responses were found to be similar, the degree of their respective contribution slightly differed between heavy metal and RE ions.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan.
| | - Yuta Nakano
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| |
Collapse
|
30
|
Lu C, Ma Y, Wang J. Lanthanum elicitation on hypocrellin A production in mycelium cultures of Shiraia bambusicola is mediated by ROS generation. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Bodhaguru M, Santhiyagu P, Lakshmanan M, Ramasamy R, Kumari AN, Ethiraj K, Arunachalam P, Grasian I. In vitro biomedicinal properties of Pyrrolidine-2,4-Dione derived from a novel actinobacterium Streptomyces rochei, a green approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Demir Z, Bayraktar A, Tunca S. One Extra Copy of lon Gene Causes a Dramatic Increase in Actinorhodin Production by Streptomyces coelicolor A3(2). Curr Microbiol 2019; 76:1045-1054. [PMID: 31214822 DOI: 10.1007/s00284-019-01719-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
ATP-dependent Lon protease plays important roles in different physiological processes, including cellular differentiation of the bacteria and is a part of an important stress response regulon (HspR/HAIR). In Streptomyces, biosynthesis of secondary metabolites starts with cellular differentiation and stress is one of the factor that affect metabolite production. To clarify the effect of Lon protease on secondary metabolite production, we constructed a recombinant strain of Streptomyces coelicolor A3(2) that has one extra copy of lon gene with its own promoter and transcriptional terminator in its genome. Expression of lon gene in the recombinant strain was determined by quantitative real time (RT-qPCR). Actinorhodin and undecylprodigiosin production of the recombinant cell was measured in liquid R2YE and it was found to produce about 34 times more actinorhodin and 9 times more undecylprodigiosin than the wild-type at 168 h of growth. Development of stable Streptomyces strains capable of producing high amounts of secondary metabolites is valuable for biotechnology industry. One extra copy of lon gene is enough to boost antibiotic production by S. coelicolor A3(2) and this change do not cause any metabolic burden in the cell.
Collapse
Affiliation(s)
- Zeynep Demir
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Aslı Bayraktar
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Sedef Tunca
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
33
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
34
|
β-carboline biomediators induce reveromycin production in Streptomyces sp. SN-593. Sci Rep 2019; 9:5802. [PMID: 30967594 PMCID: PMC6456619 DOI: 10.1038/s41598-019-42268-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
The biosynthetic potential of soil-dwelling actinomycetes to produce diverse bioactive molecules that are useful as drug seeds has been achieved in the laboratory by modifying culture conditions. Availability of a small molecule that can induce secondary metabolism in these microbes can greatly facilitate the exploration of bioactive natural products. In this manuscript, through the screening of natural products and chemical modification, we demonstrated that the presence of the β-carboline compound, BR-1, enhanced reveromycin A production in Streptomyces sp. SN-593. BR-1 induced reveromycins production at the wide range of concentrations without affecting cell growth. Our study indicates that BR-1 might serve as an alternative to activate specialized metabolite biosynthesis without genetic engineering.
Collapse
|
35
|
Li X, Li X, Zhu J, Wang H, Lu C. Carbamothioic S-acid derivative and kigamicins, the activated production of silent metabolites in Amycolatopsis alba DSM 44262Δ abm9 elicited by N-acetyl-D-glucosamine. Nat Prod Res 2019; 34:3514-3521. [PMID: 30784305 DOI: 10.1080/14786419.2019.1574783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One new carbamothioic S-acid derivative (1) and five known kigamicin derivatives (2-6) were isolated from the fermentation extract of Amycolatopsis alba DSM 44262Δabm9 elicited by N-acetyl-D-glucosamine. HPLC-DAD-UV analyses indicated that the DSM 44262Δabm9 strain did not produce these metabolites originally and the production of 1-6 was induced by adding 25 mM N-acetyl-D-glucosamine in the culture medium. The structures of 1-6 were identified on the basis of NMR spectroscopic data and high-resolution ESIMS. These results highlight that addition of N-acetyl-D-glucosamine in the microbial culture medium could activate cryptic gene expression, induce and increase the production of new or known secondary metabolites.
Collapse
Affiliation(s)
- Xiaomei Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiaoman Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
36
|
Covington BC, Spraggins JM, Ynigez-Gutierrez AE, Hylton ZB, Bachmann BO. Response of Secondary Metabolism of Hypogean Actinobacterial Genera to Chemical and Biological Stimuli. Appl Environ Microbiol 2018; 84:e01125-18. [PMID: 30030223 PMCID: PMC6146984 DOI: 10.1128/aem.01125-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Microorganisms within microbial communities respond to environmental challenges by producing biologically active secondary metabolites, yet the majority of these small molecules remain unidentified. We have previously demonstrated that secondary metabolite biosynthesis in actinomycetes can be activated by model environmental chemical and biological stimuli, and metabolites can be identified by comparative metabolomics analyses under different stimulus conditions. Here, we surveyed the secondary metabolite productivity of a group of 20 phylogenetically diverse actinobacteria isolated from hypogean (cave) environments by applying a battery of stimuli consisting of exposure to antibiotics, metals, and mixed microbial culture. Comparative metabolomics was used to reveal secondary metabolite responses from stimuli. These analyses revealed substantial changes in global metabolomic dynamics, with over 30% of metabolomic features increasing more than 10-fold under at least one stimulus condition. Selected features were isolated and identified via nuclear magnetic resonance (NMR), revealing several known secondary metabolite families, including the tetarimycins, aloesaponarins, hypogeamicins, actinomycins, and propeptins. One prioritized metabolite was identified to be a previously unreported aminopolyol polyketide, funisamine, produced by a cave isolate of Streptosporangium when exposed to mixed culture. The production of funisamine was most significantly increased in mixed culture with Bacillus species. The biosynthetic gene cluster responsible for the production of funisamine was identified via genomic sequencing of the producing strain, Streptosporangium sp. strain KDCAGE35, which facilitated a deduction of its biosynthesis. Together, these data demonstrate that comparative metabolomics can reveal the stimulus-induced production of natural products from diverse microbial phylogenies.IMPORTANCE Microbial secondary metabolites are an important source of biologically active and therapeutically relevant small molecules. However, much of this active molecular diversity is challenging to access due to low production levels or difficulty in discerning secondary metabolites within complex microbial extracts prior to isolation. Here, we demonstrate that ecological stimuli increase secondary metabolite production in phylogenetically diverse actinobacteria isolated from understudied hypogean environments. Additionally, we show that comparative metabolomics linking stimuli to metabolite response data can effectively reveal secondary metabolites within complex biological extracts. This approach highlighted secondary metabolites in almost all observed natural product classes, including low-abundance analogs of biologically relevant metabolites, as well as a new linear aminopolyol polyketide, funisamine. This study demonstrates the generality of activating stimuli to potentiate secondary metabolite production across diverse actinobacterial genera.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Zachary B Hylton
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
37
|
Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth Syst Biotechnol 2018; 3:163-178. [PMID: 30345402 PMCID: PMC6190515 DOI: 10.1016/j.synbio.2018.09.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Microbial natural products are a tremendous source of new bioactive chemical entities for drug discovery. Next generation sequencing has revealed an unprecedented genomic potential for production of secondary metabolites by diverse micro-organisms found in the environment and in the microbiota. Genome mining has further led to the discovery of numerous uncharacterized 'cryptic' metabolic pathways in the classical producers of natural products such as Actinobacteria and fungi. These biosynthetic gene clusters may code for improved biologically active metabolites, but harnessing the full genetic potential has been hindered by the observation that many of the pathways are 'silent' under laboratory conditions. Here we provide an overview of the various biotechnological methodologies, which can be divided to pleiotropic, biosynthetic gene cluster specific, and targeted genome-wide approaches that have been developed for the awakening of microbial secondary metabolic pathways.
Collapse
Affiliation(s)
| | | | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014, Turku, Finland
| |
Collapse
|
38
|
Shentu XP, Cao ZY, Xiao Y, Tang G, Ochi K, Yu XP. Substantial improvement of toyocamycin production in Streptomyces diastatochromogenes by cumulative drug-resistance mutations. PLoS One 2018; 13:e0203006. [PMID: 30161195 PMCID: PMC6117005 DOI: 10.1371/journal.pone.0203006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/13/2018] [Indexed: 12/03/2022] Open
Abstract
Toyocamycin is a member of the nucleoside antibiotic family and has been recognized as a promising fungicide for the control of plant diseases. However, low productivity of toyocamycin remains an important bottleneck in its industrial production. Therefore, dramatic improvements of strains for overproduction of toyocamycin are of great interest in applied microbiology research. In this study, we sequentially selected for mutations for multiple drug resistance to promote the overproduction of toyocamycin by Streptomyces diastatochromogenes 1628. The triple mutant strain, SD3145 (str str par), was obtained through sequential screenings. This strain showed an enhanced capacity to produce toyocamycin (1500 mg/L), 24-fold higher than the wild type in GYM liquid medium. This dramatic overproduction was attributed at least partially to the acquisition of an rsmG mutation and increased gene expression of toyA, which encodes a LuxR-family transcriptional regulator for toyocamycin biosynthesis. The expression of toyF and toyG, probably directly involved in toyocamycin biosynthesis, was also enhanced, contributing to toyocamycin overproduction. By addition of a small amount of scandium (ScCl3·6H2O), the mutant strain, SD3145, produced more toyocamycin (2664 mg/L) in TPM medium, which was the highest toyocamycin level produced in shake-flask fermentation by a streptomycete so far. We demonstrated that introduction of combined drug resistance mutations into S. diastatochromogenes 1628 resulted in an obvious increase in the toyocamycin production. The triple mutant strain, SD3145, generated in our study could be useful for improvement of industrial production of toyocamycin.
Collapse
Affiliation(s)
- Xu-Ping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhen-Yan Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yin Xiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Gu Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
39
|
Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1351-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
40
|
Nai C, Meyer V. From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. Trends Microbiol 2018; 26:538-554. [DOI: 10.1016/j.tim.2017.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
|
41
|
Xu D, Han L, Li C, Cao Q, Zhu D, Barrett NH, Harmody D, Chen J, Zhu H, McCarthy PJ, Sun X, Wang G. Bioprospecting Deep-Sea Actinobacteria for Novel Anti-infective Natural Products. Front Microbiol 2018; 9:787. [PMID: 29760684 PMCID: PMC5936781 DOI: 10.3389/fmicb.2018.00787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
The global prevalence of drug resistance has created an urgent need for the discovery of novel anti-infective drugs. The major source of antibiotics in current clinical practice is terrestrial actinobacteria; the less-exploited deep-sea actinobacteria may serve as an unprecedented source of novel natural products. In this study, we evaluated 50 actinobacteria strains derived from diverse deep water sponges and environmental niches for their anti-microbial activities against a panel of pathogens including Candida albicans, Clostridium difficile, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. More than half of the tested strains (27) were identified as active in at least one assay. The rare earth salt lanthanum chloride (LaCl3) was shown to be as an effective elicitor. Among the 27 strains, the anti-microbial activity of 15 were induced or enhanced by the addition of LaCl3. This part of study focused on one strain R818, in which potent antifungal activity was induced by the addition of LaCl3. We found that the LaCl3-activated metabolites in R818 are likely antimycin-type compounds. One of them, compound 1, has been purified. Spectroscopic analyses including HR-MS and 1D NMR indicated that this compound is urauchimycin D. The antifungal activity of compound 1 was confirmed with a minimal inhibitory concentration (MIC) of 25 μg/mL; the purified compound also showed a moderate activity against C. difficile. Additional notable strains are: strain N217 which showed both antifungal and antibacterial (including P. aeruginosa) activities and strain M864 which showed potent activity against C. difficile with an MIC value (0.125 μg/mL) lower than those of vancomycin and metronidazole. Our preliminary studies show that deep-sea actinobacteria is a promising source of anti-infective natural products.
Collapse
Affiliation(s)
- Dongbo Xu
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Linna Han
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Chunhui Li
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Cao
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Duolong Zhu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Nolan H Barrett
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Dedra Harmody
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Peter J McCarthy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| |
Collapse
|
42
|
Palazzotto E, Weber T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol 2018; 45:109-116. [PMID: 29656009 DOI: 10.1016/j.mib.2018.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Natural products produced by microorganisms represent the main source of bioactive molecules. The development of high-throughput (omics) techniques have importantly contributed to the renaissance of new antibiotic discovery increasing our understanding of complex mechanisms controlling the expression of biosynthetic gene clusters (BGCs) encoding secondary metabolites. In this context this review highlights recent progress in the use and integration of 'omics' approaches with focuses on genomics, transcriptomics, proteomics metabolomics meta-omics and combined omics as powerful strategy to discover new antibiotics.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet bygning 220, 2800 Kgs., Lyngby, Denmark
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet bygning 220, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
43
|
Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev 2017; 38:1255-1294. [PMID: 29064108 DOI: 10.1002/med.21474] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Natural product libraries contain specialized metabolites derived from plants, animals, and microorganisms that play a pivotal role in drug discovery due to their immense structural diversity and wide variety of biological activities. The strategies to greatly extend natural product scaffolds through available biological and chemical approaches offer unique opportunities to access a new series of natural product analogues, enabling the construction of diverse natural product-like libraries. The affordability of these structurally diverse molecules has been a crucial step in accelerating drug discovery. This review provides an overview of various approaches to exploit the diversity of compounds for natural product-based drug development, drawing upon a series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.,Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
44
|
Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074. Sci Rep 2017; 7:9784. [PMID: 28852167 PMCID: PMC5575351 DOI: 10.1038/s41598-017-10316-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
A large majority of genome-encrypted chemical diversity in actinobacteria remains to be discovered, which is related to the low level of secondary metabolism genes expression. Here, we report the application of a reporter-guided screening strategy to activate cryptic polycyclic tetramate macrolactam gene clusters in Streptomyces albus J1074. The analysis of the S. albus transcriptome revealed an overall low level of secondary metabolism genes transcription. Combined with transposon mutagenesis, reporter-guided screening resulted in the selection of two S. albus strains with altered secondary metabolites production. Transposon insertion in the most prominent strain, S. albus ATGSal2P2::TN14, was mapped to the XNR_3174 gene encoding an unclassified transcriptional regulator. The mutant strain was found to produce the avenolide-like compound butenolide 4. The deletion of the gene encoding a putative acyl-CoA oxidase, an orthologue of the Streptomyces avermitilis avenolide biosynthesis enzyme, in the S. albus XNR_3174 mutant caused silencing of secondary metabolism. The homologues of XNR_3174 and the butenolide biosynthesis genes were found in the genomes of multiple Streptomyces species. This result leads us to believe that the discovered regulatory elements comprise a new condition-dependent system that controls secondary metabolism in actinobacteria and can be manipulated to activate cryptic biosynthetic pathways.
Collapse
|
45
|
Li Y, Tan H. Biosynthesis and molecular regulation of secondary metabolites in microorganisms. SCIENCE CHINA-LIFE SCIENCES 2017; 60:935-938. [DOI: 10.1007/s11427-017-9115-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 01/24/2023]
|
46
|
Wang D, Wei L, Zhang Y, Zhang M, Gu S. Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Appl Microbiol Biotechnol 2017; 101:6705-6712. [DOI: 10.1007/s00253-017-8440-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
|
47
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
48
|
Guzmán-Trampe S, Ceapa CD, Manzo-Ruiz M, Sánchez S. Synthetic biology era: Improving antibiotic’s world. Biochem Pharmacol 2017; 134:99-113. [DOI: 10.1016/j.bcp.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
|
49
|
The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. Trends Microbiol 2017; 25:280-292. [DOI: 10.1016/j.tim.2016.12.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023]
|
50
|
Dinesh R, Srinivasan V, T E S, Anandaraj M, Srambikkal H. Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol 2017; 43:546-566. [PMID: 28358596 DOI: 10.1080/1040841x.2016.1270895] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endophytic actinobacteria, which reside in the inner tissues of host plants, are gaining serious attention due to their capacity to produce a plethora of secondary metabolites (e.g. antibiotics) possessing a wide variety of biological activity with diverse functions. This review encompasses the recent reports on endophytic actinobacterial species diversity, in planta habitats and mechanisms underlying their mode of entry into plants. Besides, their metabolic potential, novel bioactive compounds they produce and mechanisms to unravel their hidden metabolic repertoire by activation of cryptic or silent biosynthetic gene clusters (BGCs) for eliciting novel secondary metabolite production are discussed. The study also reviews the classical conservative techniques (chemical/biological/physical elicitation, co-culturing) as well as modern microbiology tools (e.g. next generation sequencing) that are being gainfully employed to uncover the vast hidden scaffolds for novel secondary metabolites produced by these endophytes, which would subsequently herald a revolution in drug engineering. The potential role of these endophytes in the agro-environment as promising biological candidates for inhibition of phytopathogens and the way forward to thoroughly exploit this unique microbial community by inducing expression of cryptic BGCs for encoding unseen products with novel therapeutic properties are also discussed.
Collapse
Affiliation(s)
- Raghavan Dinesh
- a ICAR-Indian Institute of Spices Research , Kozhikode, Kerala , India
| | | | - Sheeja T E
- a ICAR-Indian Institute of Spices Research , Kozhikode, Kerala , India
| | | | - Hamza Srambikkal
- a ICAR-Indian Institute of Spices Research , Kozhikode, Kerala , India
| |
Collapse
|