1
|
Terranova ML. Physiological Roles of Eumelanin- and Melanogenesis-Associated Diseases: A Look at the Potentialities of Engineered and Microbial Eumelanin in Clinical Practice. Bioengineering (Basel) 2024; 11:756. [PMID: 39199714 PMCID: PMC11351163 DOI: 10.3390/bioengineering11080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
This paper aims to highlight the physiological actions exerted by eumelanin present in several organs/tissues of the human body and to rationalise the often conflicting functional roles played by this biopolymer on the basis of its peculiar properties. Besides pigmentary disorders, a growing number of organ injuries and degenerative pathologies are presently ascribed to the modification of physiological eumelanin levels in terms of alterations in its chemical/structural features, and of a partial loss or uneven distribution of the pigment. The present review analyses the more recent research dedicated to the physiological and pathological actions of eumelanin and provides an insight into some melanogenesis-associated diseases of the skin, eye, ear, and brain, including the most significant neurodegenerative disorders. Also described are the potentialities of therapies based on the localised supply of exogeneous EU and the opportunities that EU produced via synthetic biology offers in order to redesign therapeutical and diagnostic applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dip.to di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
2
|
Koch SM, Freidank-Pohl C, Siontas O, Cortesao M, Mota A, Runzheimer K, Jung S, Rebrosova K, Siler M, Moeller R, Meyer V. Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity. Front Microbiol 2023; 14:1233740. [PMID: 37547691 PMCID: PMC10399693 DOI: 10.3389/fmicb.2023.1233740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (PyoFun) in A. niger by inducing overproduction of the pigment using L-tyrosine in a recombinant ΔhmgA mutant strain (OS4.3). The PyoFun pigment was characterized using three spectroscopic methods, and its antioxidant properties were assessed using a DPPH-assay. Additionally, we evaluated the protective effect of PyoFun against non-ionizing radiation (monochromatic UV-C) and compared its efficacy to a synthetically produced control pyomelanin (PyoSyn). The results confirmed successful production of PyoFun in A. niger through inducible overproduction. Characterization using spectroscopic methods confirmed the presence of PyoFun, and the DPPH-assay demonstrated its strong antioxidant properties. Moreover, PyoFun exhibited a highly protective effect against radiation-induced stress, surpassing the protection provided by PyoSyn. The findings of this study suggest that PyoFun has significant potential as a biological shield against harmful radiation. Notably, PyoFun is synthesized extracellularly, differing it from other fungal melanins (such as L-DOPA- or DHN-melanin) that require cell lysis for pigment purification. This characteristic makes PyoFun a valuable resource for biotechnology, biomedicine, and the space industry. However, further research is needed to evaluate its protective effect in a dried form and against ionizing radiation.
Collapse
Affiliation(s)
- Stella Marie Koch
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Carsten Freidank-Pohl
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Oliver Siontas
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marta Cortesao
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Afonso Mota
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Katharina Runzheimer
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Sascha Jung
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Katarina Rebrosova
- Department of Microbiology, Faculty of Medicine, Masaryk University (MUNI) and St. Anne's Faculty Hospital, Brno, Czechia
| | - Martin Siler
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Ralf Moeller
- Radiation Biology Department, Aerospace Microbiology Research Group, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Abou Zeid AA, Mohamed AH, El-Sayed AS, EL-Shawadfy AM. Biochemical, molecular and anti-tumor characterization of L-methionine gamma lyase produced by local Pseudomonas sp. in Egypt. Saudi J Biol Sci 2023; 30:103682. [PMID: 37305655 PMCID: PMC10248269 DOI: 10.1016/j.sjbs.2023.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
A soil inhabiting Pseudomonas sp. has been examined for producing L- methionine gamma-lyase enzyme. The identity of the tested bacteria was verified by VITEK2, and MALDI-TOF analysis in addition to molecular confirmation by 16S rDNA sequence and submitted in Genbank under accession number ON993898.1. Production of the targeted enzyme was done using a commercial medium including L-methionine, as the main substrate. This obtained enzyme was precipitated using acetone (1:1v/v) followed by purification with Sephadex G100 and sepharose columns. The specific activity of the purified enzyme (105.8 µmol/ mg/min) increased by 1.89 folds after the purification steps. The peptide fingerprint of the native MGL was verified from the proteomics analysis, with identical conserved active site domains with database-deposited MGLs. The molecular mass of the pure MGL denatured subunit was (>40 kDa) and that of the native enzyme was (>150 kDa) ensuring their homotetrameric identity. The purified enzyme showed absorption spectra at 280 nm and 420 nm for the apo-MGL and PLP coenzyme, respectively. Amino acids suicide analogues analysis by DTNB, hydroxylamine, iodoacetate, MBTH, mercaptoethanol and guanidine thiocyanate reduced the relative activity of purified MGL. From the kinetic properties, the catalytic effectiveness (Kcat/km) of Pseudomonas sp. MGL was 10.8 mM -1 S-1 for methionine and 5.51 mM -1 S-1 for cysteine, respectively. The purified MGL showed highly significant antiproliferative activity towards the liver carcinoma cell line (HEPG-2) and breast carcinoma cell line (MCF-7) with half inhibitory concentration values (IC50) 7.23 U/ml and 21.14 U/ml, respectively. No obvious signs of toxicity on liver and kidney functions in the examined animal models were observed.
Collapse
Affiliation(s)
- Azza A. Abou Zeid
- Corresponding author at: Botany and Microbiology Deparetment, Faculy of Science, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
4
|
Beeson W, Gabriel K, Cornelison C. Fungi as a source of eumelanin: current understanding and prospects. J Ind Microbiol Biotechnol 2023; 50:kuad014. [PMID: 37336591 PMCID: PMC10569377 DOI: 10.1093/jimb/kuad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Melanins represent a diverse collection of pigments with a variety of structures and functions. One class of melanin, eumelanin, is recognizable to most as the source of the dark black color found in cephalopod ink. Sepia officinalis is the most well-known and sought-after source of non-synthetic eumelanin, but its harvest is limited by the availability of cuttlefish, and its extraction from an animal source brings rise to ethical concerns. In recent years, these limitations have become more pressing as more applications for eumelanin are developed-particularly in medicine and electronics. This surge in interest in the applications of eumelanin has also fueled a rise in the interest of alternative, bio-catalyzed production methods. Many culinarily-utilized fungi are ideal candidates in this production scheme, as examples exist which have been shown to produce eumelanin, their growth at large scales is well understood, and they can be cultivated on recaptured waste streams. However, much of the current research on the fungal production of eumelanin focuses on pathogenic fungi and eumelanin's role in virulence. In this paper, we will review the potential for culinary fungi to produce eumelanin and provide suggestions for new research areas that would be most impactful in the search for improved fungal eumelanin producers.
Collapse
Affiliation(s)
- William Beeson
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| | - Kyle Gabriel
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| | - Christopher Cornelison
- Department of Molecular and Cellular Biology, Kennesaw State
University, 1000 Chastain Road NW, Kennesaw, GA
30144, USA
| |
Collapse
|
5
|
Lorquin F, Piccerelle P, Orneto C, Robin M, Lorquin J. New insights and advances on pyomelanin production: from microbial synthesis to applications. J Ind Microbiol Biotechnol 2022; 49:6575554. [PMID: 35482661 PMCID: PMC9338888 DOI: 10.1093/jimb/kuac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022]
Abstract
Pyomelanin is a brown-black phenolic polymer and results from the oxidation of homogentisic acid (HGA) in the L-tyrosine pathway. As part of the research for natural and active ingredients issued from realistic bioprocesses, this work re-evaluates the HGA pigment and makes an updated inventory of its syntheses, microbial pathways, and properties, with tracks and recent advances for its large-scale production. The mechanism of the HGA polymerization is also well documented. In alkaptonuria, pyomelanin formation leads to connective tissue damages and arthritis, most probably due to the ROS issued from HGA oxidation. While UV radiation on human melanin may generate degradation products, pyomelanin is not photodegradable, is hyperthermostable, and has other properties better than the L-Dopa melanin. This review aims to raise awareness about the potential of this pigment for various applications, not only for skin coloring and protection but also for other cells, materials, and as a promising (semi)conductor for bioelectronics and energy.
Collapse
Affiliation(s)
- Faustine Lorquin
- Aix-Marseille Université, Mediterranean Institute of Oceanology (MIO), 163 avenue de Luminy, 13288 Marseille Cedex 9, France.,Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Philippe Piccerelle
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Caroline Orneto
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Maxime Robin
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Jean Lorquin
- Aix-Marseille Université, Mediterranean Institute of Oceanology (MIO), 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
6
|
Singh S, Nimse SB, Mathew DE, Dhimmar A, Sahastrabudhe H, Gajjar A, Ghadge VA, Kumar P, Shinde PB. Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications. Biotechnol Adv 2021; 53:107773. [PMID: 34022328 DOI: 10.1016/j.biotechadv.2021.107773] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
Melanin is a common name for a group of biopolymers with the dominance of potential applications in medical sciences, cosmeceutical, bioremediation, and bioelectronic applications. The broad distribution of these pigments suggests their role to combat abiotic and biotic stresses in diverse life forms. Biosynthesis of melanin in fungi and bacteria occurs by oxidative polymerization of phenolic compounds predominantly by two pathways, 1,8-dihydroxynaphthalene [DHN] or 3,4-dihydroxyphenylalanine [DOPA], resulting in different kinds of melanin, i.e., eumelanin, pheomelanin, allomelanin, pyomelanin, and neuromelanin. The enzymes responsible for melanin synthesis belong mainly to tyrosinase, laccase, and polyketide synthase families. Studies have shown that manipulating culture parameters, combined with recombinant technology, can increase melanin yield for large-scale production. Despite significant efforts, its low solubility has limited the development of extraction procedures, and heterogeneous structural complexity has impaired structural elucidation, restricting effective exploitation of their biotechnological potential. Innumerable studies have been performed on melanin pigments from different taxa of life in order to advance the knowledge about melanin pigments for their efficient utilization in diverse applications. These studies prompted an urgent need for a comprehensive review on melanin pigments isolated from microorganisms, so that such review encompassing biosynthesis, bioproduction, characterization, and potential applications would help researchers from diverse background to understand the importance of microbial melanins and to utilize the information from the review for planning studies on melanin. With this aim in mind, the present report compares conventional and modern ideas for environment-friendly extraction procedures for melanin. Furthermore, the characteristic parameters to differentiate between eumelanin and pheomelanin are also mentioned, followed by their biotechnological applications forming the basis of industrial utilization. There lies a massive scope of work to circumvent the bottlenecks in their isolation and structural elucidation methodologies.
Collapse
Affiliation(s)
- Sanju Singh
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satish B Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Republic of Korea
| | - Doniya Elze Mathew
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India
| | - Asmita Dhimmar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harshal Sahastrabudhe
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Apexa Gajjar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal A Ghadge
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Kumar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pramod B Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Lorquin F, Ziarelli F, Amouric A, Di Giorgio C, Robin M, Piccerelle P, Lorquin J. Production and properties of non-cytotoxic pyomelanin by laccase and comparison to bacterial and synthetic pigments. Sci Rep 2021; 11:8538. [PMID: 33879803 PMCID: PMC8058095 DOI: 10.1038/s41598-021-87328-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/15/2021] [Indexed: 11/09/2022] Open
Abstract
Pyomelanin is a polymer of homogentisic acid synthesized by microorganisms. This work aimed to develop a production process and evaluate the quality of the pigment. Three procedures have been elaborated and optimized, (1) an HGA-Mn2+ chemical autoxidation (PyoCHEM yield 0.317 g/g substrate), (2) an induced bacterial culture of Halomonas titanicae through the 4-hydroxyphenylacetic acid-1-hydroxylase route (PyoBACT, 0.55 g/L), and (3) a process using a recombinant laccase extract with the highest level produced (PyoENZ, 1.25 g/g substrate) and all the criteria for a large-scale prototype. The chemical structures had been investigated by 13C solid-state NMR (CP-MAS) and FTIR. Car-Car bindings predominated in the three polymers, Car-O-Car (ether) linkages being absent, proposing mainly C3-C6 (α-bindings) and C4-C6 (β-bindings) configurations. This work highlighted a biological decarboxylation by the laccase or bacterial oxidase(s), leading to the partly formation of gentisyl alcohol and gentisaldehyde that are integral parts of the polymer. By comparison, PyoENZ exhibited an Mw of 5,400 Da, was hyperthermostable, non-cytotoxic even after irradiation, scavenged ROS induced by keratinocytes, and had a highly DPPH-antioxidant and Fe3+-reducing activity. As a representative pigment of living cells and an available standard, PyoENZ might also be useful for applications in extreme conditions and skin protection.
Collapse
Affiliation(s)
- Faustine Lorquin
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France.,Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Fabio Ziarelli
- Fédération Sciences Chimiques de Marseille, Aix-Marseille Université, 52 Avenue Escadrille Normandie Niemen, 13397, Marseille, France
| | - Agnès Amouric
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France
| | - Carole Di Giorgio
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Philippe Piccerelle
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Jean Lorquin
- Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, 163 avenue de Luminy, 13288, Marseille Cedex 9, France.
| |
Collapse
|
8
|
Biochemical Properties of Tyrosinase from Aspergillus terreus and Penicillium copticola; Undecanoic Acid from Aspergillus flavus, an Endophyte of Moringa oleifera, Is a Novel Potent Tyrosinase Inhibitor. Molecules 2021; 26:molecules26051309. [PMID: 33804376 PMCID: PMC7957516 DOI: 10.3390/molecules26051309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/31/2023] Open
Abstract
Tyrosinase is a copper-containing monooxygenase catalyzing the O-hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine then to dopaquinone that is profoundly involved in melanin synthesis in eukaryotes. Overactivation of tyrosinase is correlated with hyperpigmentation that is metabolically correlated with severe pathological disorders, so, inhibition of this enzyme is the most effective approach in controlling the overproduction of melanin and its hazardous effects. Thus, searching for a powerful, selective inhibitor of human tyrosinase to limit the hyper-synthesis of melanin is a challenge. Unlike the difficulty of overexpression of human tyrosinase, using fungal tyrosinase as a model enzyme to the human one to evaluate the mechanistics of enzyme inhibition in response to various compounds is the most feasible strategy. Thus, the purification of highly catalytic-efficient fungal tyrosinase, exploring a novel inhibitor, and evaluating the mechanistics of enzyme inhibition are the main objectives of this work. Aspergillus terreus and Penicillium copticola were reported as the most potential tyrosinase producers. The biochemical properties suggest that this enzyme displays a higher structural and catalytic proximity to human tyrosinase. Upon nutritional bioprocessing by Plackett–Burman design, the yield of tyrosinase was increased by about 7.5-folds, compared to the control. The purified tyrosinase was strongly inhibited by kojic acid and A. flavus DCM extracts with IC50 values of 15.1 and 12.6 µg/mL, respectively. From the spectroscopic analysis, the main anti-tyrosinase compounds of A. flavus extract was resolved, and verified as undecanoic acid. Further studies are ongoing to unravel the in vivo effect and cytotoxicity of this compound in fungi and human, that could be a novel drug to various diseases associated with hyperpigmentation by melanin.
Collapse
|
9
|
Biological activities of melanin pigment extracted from Bombyx mori gut-associated yeast Cryptococcus rajasthanensis KY627764. World J Microbiol Biotechnol 2020; 36:159. [PMID: 32974753 DOI: 10.1007/s11274-020-02924-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Melanin pigment has been produced and extracted from a wide variety of living forms ranging from microorganisms to higher organisms. Owing to the therapeutic nature of the pigment, various microbial populations have been explored for its production. Hence, we isolated a melanin producing yeast from the insect Bombyx mori gut microflora and identified it as Cryptococcus rajasthanensis based on the molecular characterization. The isolated yeast produced enhanced melanin pigment when cultured in the minimal L-tyrosine broth as compared to the Saboraud medium. The pigment was extracted and characterized as melanin based on UV-Visible spectroscopy, FTIR (Fourier-transform infrared) spectroscopy and 1H NMR (Nuclear magnetic resonance). The melanin pigment was evaluated as a potent bioactive molecule with bioactivity like antimicrobial, antioxidant, anti-inflammatory, and anticancer activity that describes the therapeutic nature of the extracted melanin pigment. Distinct from the biologically active role the melanin pigment isolated from the yeast, the Cryptococcus extract also exhibited killer toxin activity against the pathogenic yeast Candida albicans.
Collapse
|
10
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Su Y, Xu Y, Li Q, Yuan G, Zheng D. The essential genome of Ralstonia solanacearum. Microbiol Res 2020; 238:126500. [PMID: 32502949 DOI: 10.1016/j.micres.2020.126500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/13/2023]
Abstract
Ralstonia solanacearum is a scientifically/economically important plant pathogenic bacterium. The plant disease caused by R. solanacearum causes huge economic losses, and efficient control measures for the disease remain limited. To gain a better system-level understanding of R. solanacearum, we generated a near-saturated transposon insertion library of R. solanacearum GMI1000 with approximately 240,000 individual insertion mutants. Transposon sequencing (Tn-seq) allowed the mapping of 70.44%-80.96% of all potential insertion sites of the mariner C9 transposase in the genome of R. solanacearum and the identification of 465 genes essential for the growth of R. solanacearum in rich medium. Functional and comparative analyses of essential genes revealed that many basic physiological and biochemical processes such as transcription differ between R. solanacearum and other bacteria. A comparative analysis of essential genes also suggested that 34 genes might be essential only for Ralstonia group bacteria, whereas another 16 essential genes are unique to Ralstonia, providing high-priority candidate targets for developing R. solanacearum-specific drugs.
Collapse
Affiliation(s)
- Yaxing Su
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Qiqin Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Gaoqing Yuan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Dehong Zheng
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
12
|
Martínez LM, Martinez A, Gosset G. Production of Melanins With Recombinant Microorganisms. Front Bioeng Biotechnol 2019; 7:285. [PMID: 31709247 PMCID: PMC6821874 DOI: 10.3389/fbioe.2019.00285] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/07/2019] [Indexed: 11/16/2022] Open
Abstract
The melanins constitute a diverse group of natural products found in most organisms, having functions related to protection against chemical and physical stresses. These products originate from the enzyme-catalyzed oxidation of phenolic and indolic substrates that polymerize to yield melanins, which include eumelanin, pheomelanin, pyomelanin, and the allomelanins. The enzymes involved in melanin formation belong mainly to the tyrosinase and laccase protein families. The melanins are polymeric materials having applications in the pharmaceutical, cosmetic, optical, and electronic industries. The biotechnological production of these polymers is an attractive alternative to obtaining them by extraction from plant or animal material, where they are present at low concentrations. Several species of microorganisms have been identified as having a natural melanogenic capacity. The development and optimization of culture conditions with these organisms has resulted in processes for generating melanins. These processes are based on the conversion of melanin precursors present in the culture medium to the corresponding polymers. With the application of genetic engineering techniques, it has become possible to overexpress genes encoding enzymes involved in melanin formation, mostly tyrosinases, leading to an improvement in the productivity of melanogenic organisms, as well as allowing the generation of novel recombinant microbial strains that can produce diverse types of melanins. Furthermore, the metabolic engineering of microbial hosts by modifying pathways related to the supply of melanogenic precursors has resulted in strains with the capacity of performing the total synthesis of melanins from simple carbon sources in the scale of grams. In this review, the latest advances toward the generation of recombinant melanin production strains and production processes are summarized and discussed.
Collapse
Affiliation(s)
- Luz María Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
13
|
Mejía-Caballero A, de Anda R, Hernández-Chávez G, Rogg S, Martinez A, Bolívar F, Castaño VM, Gosset G. Biosynthesis of catechol melanin from glycerol employing metabolically engineered Escherichia coli. Microb Cell Fact 2016; 15:161. [PMID: 27659593 PMCID: PMC5034560 DOI: 10.1186/s12934-016-0561-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanins comprise a chemically-diverse group of polymeric pigments whose function is related to protection against physical and chemical stress factors. These polymers have current and potential applications in the chemical, medical, electronics and materials industries. The biotechnological production of melanins offers the possibility of obtaining these pigments in pure form and relatively low cost. In this study, Escherichia coli strains were engineered to evaluate the production of melanin from supplemented catechol or from glycerol-derived catechol produced by an Escherichia coli strain generated by metabolic engineering. RESULTS It was determined that an improved mutant version of the tyrosinase from Rhizobium etli (MutmelA), could employ catechol as a substrate to generate melanin. Strain E. coli W3110 expressing MutmelA was grown in bioreactor batch cultures with catechol supplemented in the medium. Under these conditions, 0.29 g/L of catechol melanin were produced. A strain with the capacity to synthesize catechol melanin from a simple carbon source was generated by integrating the gene MutmelA into the chromosome of E. coli W3110 trpD9923, that has been modified to produce catechol by the expression of genes encoding a feedback inhibition resistant version of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, transketolase and anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1. In batch cultures with this strain employing complex medium with 40 g/L glycerol as a carbon source, 1.21 g/L of catechol melanin were produced. The melanin was analysed by employing Fourier transform infrared spectroscopy, revealing the expected characteristics for a catechol-derived polymer. CONCLUSIONS This constitutes the first report of an engineered E. coli strain and a fermentation process for producing a catechol melanin from a simple carbon source (glycerol) at gram level, opening the possibility of generating a large quantity of this polymer for its detailed characterization and the development of novel applications.
Collapse
Affiliation(s)
- Alejandra Mejía-Caballero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Ramón de Anda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Simone Rogg
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Victor M Castaño
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico.
| |
Collapse
|
14
|
Ketelboeter LM, Bardy SL. Methods to Inhibit Bacterial Pyomelanin Production and Determine the Corresponding Increase in Sensitivity to Oxidative Stress. J Vis Exp 2015:e53105. [PMID: 26382879 DOI: 10.3791/53105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pyomelanin is an extracellular red-brown pigment produced by several bacterial and fungal species. This pigment is derived from the tyrosine catabolism pathway and contributes to increased oxidative stress resistance. Pyomelanin production in Pseudomonas aeruginosa is reduced in a dose dependent manner through treatment with 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC). We describe a titration method using multiple concentrations of NTBC to determine the concentration of drug that will reduce or abolish pyomelanin production in bacteria. The titration method has an easily quantifiable outcome, a visible reduction in pigment production with increasing drug concentrations. We also describe a microtiter plate method to assay antibiotic minimum inhibitory concentration (MIC) in bacteria. This method uses a minimum of resources and can easily be scaled up to test multiple antibiotics in one microtiter plate for one strain of bacteria. The MIC assay can be adapted to test the affects of non-antibiotic compounds on bacterial growth at specific concentrations. Finally, we describe a method for testing bacterial sensitivity to oxidative stress by incorporating H2O2 into agar plates and spotting multiple dilutions of bacteria onto the plates. Sensitivity to oxidative stress is indicated by reductions in colony number and size for the different dilutions on plates containing H2O2 compared to a no H2O2 control. The oxidative stress spot plate assay uses a minimum of resources and low concentrations of H2O2. Importantly, it also has good reproducibility. This spot plate assay could be adapted to test bacterial sensitivity to various compounds by incorporating the compounds in agar plates and characterizing the resulting bacterial growth.
Collapse
Affiliation(s)
| | - Sonia L Bardy
- Department of Biological Sciences, University of Wisconsin Milwaukee;
| |
Collapse
|
15
|
Wenter R, Hütz K, Dibbern D, Li T, Reisinger V, Plöscher M, Eichacker L, Eddie B, Hanson T, Bryant DA, Overmann J. Expression-based identification of genetic determinants of the bacterial symbiosis 'Chlorochromatium aggregatum'. Environ Microbiol 2010; 12:2259-76. [PMID: 21966918 DOI: 10.1111/j.1462-2920.2010.02206.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phototrophic consortium 'Chlorochromatium aggregatum' is a highly structured association of green sulfur bacterial epibionts surrounding a central, motile bacterium and is the most specific symbiosis currently known between two phylogenetically distinct bacterial species. Genes and gene products potentially involved in the symbiotic interaction were identified on the genomic, transcriptomic and proteomic level. As compared with the 11 available genomes of free-living relatives, only 186 open reading frames were found to be unique to the epibiont genome. 2-D differential gel electrophoresis (2-D DIGE) of the soluble proteomes recovered 1612 protein spots of which 54 were detected exclusively in consortia but not in pure epibiont cultures. Using mass spectrometry analyses, the 13 most intense of the 54 spots could be attributed to the epibiont. Analyses of the membrane proteins of consortia, of consortia treated with cross-linkers and of pure cultures indicated that a branched chain amino acid ABC-transporter binding protein is only expressed in the symbiotic state of the epibiont. Furthermore, analyses of chlorosomes revealed that an uncharacterized 11 kDa epibiont protein is only expressed during symbiosis. This protein may be involved in the intracellular sorting of chlorosomes. Application of a novel prokaryotic cDNA suppression subtractive hybridization technique led to identification of 14 differentially regulated genes, and comparison of the transcriptomes of symbiotic and free-living epibionts indicated that 328 genes were differentially transcribed. The three approaches were mostly complementary and thereby yielded a first inventory of 352 genes that are likely to be involved in the bacterial interaction in 'C. aggregatum'. Notably, most of the regulated genes encoded components of central metabolic pathways whereas only very few (7.5%) of the unique 'symbiosis genes' turned out to be regulated under the experimental conditions tested. This pronounced regulation of central metabolic pathways may serve to fine-tune the symbiotic interaction in 'C. aggregatum' in response to environmental conditions.
Collapse
Affiliation(s)
- Roland Wenter
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Großhadernerstrasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|