1
|
Vogelgsang L, Nisar A, Scharf SA, Rommerskirchen A, Belick D, Dilthey A, Henrich B. Characterisation of Type II DNA Methyltransferases of Metamycoplasma hominis. Microorganisms 2023; 11:1591. [PMID: 37375093 DOI: 10.3390/microorganisms11061591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial virulence, persistence and defence are affected by epigenetic modifications, including DNA methylation. Solitary DNA methyltransferases modulate a variety of cellular processes and influence bacterial virulence; as part of a restriction-modification (RM) system, they act as a primitive immune system in methylating the own DNA, while unmethylated foreign DNA is restricted. We identified a large family of type II DNA methyltransferases in Metamycoplasma hominis, comprising six solitary methyltransferases and four RM systems. Motif-specific 5mC and 6mA methylations were identified with a tailored Tombo analysis on Nanopore reads. Selected motifs with methylation scores >0.5 fit with the gene presence of DAM1 and DAM2, DCM2, DCM3, and DCM6, but not for DCM1, whose activity was strain-dependent. The activity of DCM1 for CmCWGG and of both DAM1 and DAM2 for GmATC was proven in methylation-sensitive restriction and finally for recombinant rDCM1 and rDAM2 against a dam-, dcm-negative background. A hitherto unknown dcm8/dam3 gene fusion containing a (TA) repeat region of varying length was characterized within a single strain, suggesting the expression of DCM8/DAM3 phase variants. The combination of genetic, bioinformatics, and enzymatic approaches enabled the detection of a huge family of type II DNA MTases in M. hominis, whose involvement in virulence and defence can now be characterized in future work.
Collapse
Affiliation(s)
- Lars Vogelgsang
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Azlan Nisar
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Sebastian Alexander Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Anna Rommerskirchen
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Dana Belick
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
2
|
Genome-wide methylome analysis of two strains belonging to the hypervirulent Neisseria meningitidis serogroup W ST-11 clonal complex. Sci Rep 2021; 11:6239. [PMID: 33737546 PMCID: PMC7973814 DOI: 10.1038/s41598-021-85266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
A rising incidence of meningococcal serogroup W disease has been evident in many countries worldwide. Serogroup W isolates belonging to the sequence type (ST)-11 clonal complex have been associated with atypical symptoms and increased case fatality rates. The continued expansion of this clonal complex in the later part of the 2010s has been largely due to a shift from the so-called original UK strain to the 2013 strain. Here we used single-molecule real-time (SMRT) sequencing to determine the methylomes of the two major serogroup W strains belonging to ST-11 clonal complex. Five methylated motifs were identified in this study, and three of the motifs, namely 5'-GATC-3', 5'-GAAGG-3', 5'-GCGCGC-3', were found in all 13 isolates investigated. The results showed no strain-specific motifs or difference in active restriction modification systems between the two strains. Two phase variable methylases were identified and the enrichment or depletion of the methylation motifs generated by these methylases varied between the two strains. Results from this work give further insight into the low diversity of methylomes in highly related strains and encourage further research to decipher the role of regions with under- or overrepresented methylation motifs.
Collapse
|
3
|
Seib KL, Srikhanta YN, Atack JM, Jennings MP. Epigenetic Regulation of Virulence and Immunoevasion by Phase-Variable Restriction-Modification Systems in Bacterial Pathogens. Annu Rev Microbiol 2020; 74:655-671. [PMID: 32689914 DOI: 10.1146/annurev-micro-090817-062346] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| |
Collapse
|
4
|
Sánchez-Busó L, Golparian D, Parkhill J, Unemo M, Harris SR. Genetic variation regulates the activation and specificity of Restriction-Modification systems in Neisseria gonorrhoeae. Sci Rep 2019; 9:14685. [PMID: 31605008 PMCID: PMC6789123 DOI: 10.1038/s41598-019-51102-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/25/2019] [Indexed: 01/14/2023] Open
Abstract
Restriction-Modification systems (RMS) are one of the main mechanisms of defence against foreign DNA invasion and can have an important role in the regulation of gene expression. The obligate human pathogen Neisseria gonorrhoeae carries one of the highest loads of RMS in its genome; between 13 to 15 of the three main types. Previous work has described their organization in the reference genome FA1090 and has inferred the associated methylated motifs. Here, we studied the structure of RMS and target methylated motifs in 25 gonococcal strains sequenced with Single Molecule Real-Time (SMRT) technology, which provides data on DNA modification. The results showed a variable picture of active RMS in different strains, with phase variation switching the activity of Type III RMS, and both the activity and specificity of a Type I RMS. Interestingly, the Dam methylase was found in place of the NgoAXI endonuclease in two of the strains, despite being previously thought to be absent in the gonococcus. We also identified the real methylation target of NgoAXII as 5′-GCAGA-3′, different from that previously described. Results from this work give further insights into the diversity and dynamics of RMS and methylation patterns in N. gonorrhoeae.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. .,Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
5
|
Phillips ZN, Husna AU, Jennings MP, Seib KL, Atack JM. Phasevarions of bacterial pathogens - phase-variable epigenetic regulators evolving from restriction-modification systems. MICROBIOLOGY-SGM 2019; 165:917-928. [PMID: 30994440 DOI: 10.1099/mic.0.000805] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phase-variable DNA methyltransferases control the expression of multiple genes via epigenetic mechanisms in a wide variety of bacterial species. These systems are called phasevarions, for phase-variable regulons. Phasevarions regulate genes involved in pathogenesis, host adaptation and antibiotic resistance. Many human-adapted bacterial pathogens contain phasevarions. These include leading causes of morbidity and mortality worldwide, such as non-typeable Haemophilus influenzae, Streptococcus pneumoniae and Neisseria spp. Phase-variable methyltransferases and phasevarions have also been discovered in environmental organisms and veterinary pathogens. The existence of many different examples suggests that phasevarions have evolved multiple times as a contingency strategy in the bacterial domain, controlling phenotypes that are important in adapting to environmental change. Many of the organisms that contain phasevarions have existing or emerging drug resistance. Vaccines may therefore represent the best and most cost-effective tool to prevent disease caused by these organisms. However, many phasevarions also control the expression of current and putative vaccine candidates; variable expression of antigens could lead to immune evasion, meaning that vaccines designed using these targets become ineffective. It is therefore essential to characterize phasevarions in order to determine an organism's stably expressed antigenic repertoire, and rationally design broadly effective vaccines.
Collapse
Affiliation(s)
- Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Asma-Ul Husna
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
6
|
Atack JM, Tan A, Bakaletz LO, Jennings MP, Seib KL. Phasevarions of Bacterial Pathogens: Methylomics Sheds New Light on Old Enemies. Trends Microbiol 2018; 26:715-726. [PMID: 29452952 PMCID: PMC6054543 DOI: 10.1016/j.tim.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/06/2018] [Accepted: 01/26/2018] [Indexed: 01/04/2023]
Abstract
A wide variety of bacterial pathogens express phase-variable DNA methyltransferases that control expression of multiple genes via epigenetic mechanisms. These randomly switching regulons - phasevarions - regulate genes involved in pathogenesis, host adaptation, and antibiotic resistance. Individual phase-variable genes can be identified in silico as they contain easily recognized features such as simple sequence repeats (SSRs) or inverted repeats (IRs) that mediate the random switching of expression. Conversely, phasevarion-controlled genes do not contain any easily identifiable features. The study of DNA methyltransferase specificity using Single-Molecule, Real-Time (SMRT) sequencing and methylome analysis has rapidly advanced the analysis of phasevarions by allowing methylomics to be combined with whole-transcriptome/proteome analysis to comprehensively characterize these systems in a number of important bacterial pathogens.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
7
|
Seib KL, Jen FEC, Scott AL, Tan A, Jennings MP. Phase variation of DNA methyltransferases and the regulation of virulence and immune evasion in the pathogenic Neisseria. Pathog Dis 2017; 75:3966716. [DOI: 10.1093/femspd/ftx080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 01/31/2023] Open
|
8
|
Tan A, Atack JM, Jennings MP, Seib KL. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development. Front Immunol 2016; 7:586. [PMID: 28018352 PMCID: PMC5149525 DOI: 10.3389/fimmu.2016.00586] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression), are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase-variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - John M Atack
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| |
Collapse
|
9
|
Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci Rep 2016; 6:21015. [PMID: 26867950 PMCID: PMC4751487 DOI: 10.1038/srep21015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the ‘hyperinvasive lineages’ are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.
Collapse
|
10
|
Kwiatek A, Mrozek A, Bacal P, Piekarowicz A, Adamczyk-Popławska M. Type III Methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 Regulates Biofilm Formation and Interactions with Human Cells. Front Microbiol 2015; 6:1426. [PMID: 26733970 PMCID: PMC4685087 DOI: 10.3389/fmicb.2015.01426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological factor of the sexually transmitted gonorrhea disease that may lead, under specific conditions, to systemic infections. The gonococcal genome encodes many restriction modification (RM) systems, which main biological role is to defend the pathogen from potentially harmful foreign DNA. However, RM systems seem also to be involved in several other functions. In this study, we examined the effect of inactivation the N. gonorrhoeae FA1090 ngoAXmod gene encoding M.NgoAX methyltransferase on the global gene expression, biofilm formation, interactions with human epithelial host cells and overall bacterial growth. Expression microarrays showed at least a twofold deregulation of a total of 121 genes in the NgoAX knock-out mutant compared to the wild-type (wt) strain under standard grow conditions. Genes with changed expression levels encoded mostly proteins involved in cell metabolism, DNA replication and repair or regulating cellular processes and signaling (such as cell wall/envelop biogenesis). As determined by the assay with crystal violet, the NgoAX knock-out strain formed a slightly larger biofilm biomass per cell than the wt strain. Live biofilm observations showed that the biofilm formed by the gonococcal ngoAXmod gene mutant is more relaxed, dispersed and thicker than the one formed by the wt strain. This more relaxed feature of the biofilm, in respect to adhesion and bacterial interactions, can be involved in pathogenesis. Moreover, the overall adhesion of mutant bacterial cells to human cells was lower than adhesion of the wt gonococci [adhesion index = 0.672 (±0.2) and 2.15 (±1.53), respectively]; yet, a higher number of mutant than wt bacteria were found inside the Hec-1-B epithelial cells [invasion index = 3.38 (±0.93) × 105 for mutant and 4.67 (±3.09) × 104 for the wt strain]. These results indicate that NgoAX knock-out cells have lower ability to attach to human cells, but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.
Collapse
Affiliation(s)
- Agnieszka Kwiatek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Agnieszka Mrozek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel Bacal
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw Warsaw, Poland
| | - Andrzej Piekarowicz
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | |
Collapse
|
11
|
Seib KL, Jen FEC, Tan A, Scott AL, Kumar R, Power PM, Chen LT, Wu HJ, Wang AHJ, Hill DMC, Luyten YA, Morgan RD, Roberts RJ, Maiden MCJ, Boitano M, Clark TA, Korlach J, Rao DN, Jennings MP. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N(6)-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res 2015; 43:4150-62. [PMID: 25845594 PMCID: PMC4417156 DOI: 10.1093/nar/gkv219] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 01/03/2023] Open
Abstract
Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N(6)-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N(6)-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGY M6A: G-3'), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5'-AC M6A: CC-3') and ModD1 (exemplified by M.Nme579I) (5'-CC M6A: GC-3'). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5'-CGY M6A: G-3'. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5'-GCGC M6A: GG-3' sites, to 100% at 5'-ACGT M6A: GG-3' sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Adeana L Scott
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Peter M Power
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Li-Tzu Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hsing-Ju Wu
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
12
|
Abstract
In prokaryotes, alteration in gene expression was observed with the modification of DNA, especially DNA methylation. Such changes are inherited from generation to generation with no alterations in the DNA sequence and represent the epigenetic signal in prokaryotes. DNA methyltransferases are enzymes involved in DNA modification and thus in epigenetic regulation of gene expression. DNA methylation not only affects the thermodynamic stability of DNA, but also changes its curvature. Methylation of specific residues on DNA can affect the protein-DNA interactions. DNA methylation in prokaryotes regulates a number of physiological processes in the bacterial cell including transcription, DNA mismatch repair and replication initiation. Significantly, many reports have suggested a role of DNA methylation in regulating the expression of a number of genes in virulence and pathogenesis thus, making DNA methlytransferases novel targets for the designing of therapeutics. Here, we summarize the current knowledge about the influence of DNA methylation on gene regulation in different bacteria, and on bacterial virulence.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India,
| | | |
Collapse
|
13
|
Deletion of one nucleotide within the homonucleotide tract present in the hsdS gene alters the DNA sequence specificity of type I restriction-modification system NgoAV. J Bacteriol 2011; 193:6750-9. [PMID: 21984785 DOI: 10.1128/jb.05672-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a result of a frameshift mutation, the hsdS locus of the NgoAV type IC restriction and modification (RM) system comprises two genes, hsdS(NgoAV1) and hsdS(NgoAV2). The specificity subunit, HsdS(NgoAV), the product of the hsdS(NgoAV1) gene, is a naturally truncated form of an archetypal specificity subunit (208 N-terminal amino acids instead of 410). The presence of a homonucleotide tract of seven guanines (poly[G]) at the 3' end of the hsdS(NgoAV1) gene makes the NgoAV system a strong candidate for phase variation, i.e., stochastic addition or reduction in the guanine number. We have constructed mutants with 6 guanines instead of 7 and demonstrated that the deletion of a single nucleotide within the 3' end of the hsdS(NgoAV1) gene restored the fusion between the hsdS(NgoAV1) and hsdS(NgoAV2) genes. We have demonstrated that such a contraction of the homonucleotide tract may occur in vivo: in a Neisseria gonorrhoeae population, a minor subpopulation of cells appeared to have only 6 guanines at the 3' end of the hsdS(NgoAV1) gene. Escherichia coli cells carrying the fused gene and expressing the NgoAVΔ RM system were able to restrict λ phage at a level comparable to that for the wild-type NgoAV system. NgoAV recognizes the quasipalindromic interrupted sequence 5'-GCA(N(8))TGC-3' and methylates both strands. NgoAVΔ recognizes DNA sequences 5'-GCA(N(7))GTCA-3' and 5'-GCA(N(7))CTCA-3', although the latter sequence is methylated only on the complementary strand within the 5'-CTCA-3' region of the second recognition target sequence.
Collapse
|
14
|
Cloning and characterization of the TneDI restriction: modification system of Thermotoga neapolitana. Extremophiles 2011; 15:665-72. [PMID: 21918796 DOI: 10.1007/s00792-011-0397-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/26/2011] [Indexed: 02/05/2023]
Abstract
A putative Type II restriction-modification system of Thermotoga neapolitana, TneDI, was cloned into Escherichia coli XL1-Blue MRF' and characterized. Gene CTN_0339 specifies the endonuclease R.TneDI, while CTN_0340 encodes the cognate DNA methyltransferase M.TneDI. Both enzymes were purified simply by heating the cell lysates of E. coli followed by centrifugation. The enzymes were active over a broad range of temperatures, from 42°C to at least 77°C, with the highest activities observed at 77°C. R.TneDI cleaved at the center of the recognition sequence (CG↓CG) and generated blunt-end cuts. Overexpression of R.TneDI in BL21(DE3) was confirmed by both SDS-PAGE and Western blotting.
Collapse
|
15
|
Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I, Jennings MP, Rappuoli R. A novel epigenetic regulator associated with the hypervirulent
Neisseria meningitidis
clonal complex 41/44. FASEB J 2011; 25:3622-33. [DOI: 10.1096/fj.11-183590] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Jayde A. Gawthorne
- Institute for GlycomicsGriffith University Gold Coast Queensland Australia
| | | | | | | |
Collapse
|